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Boundedness conditions and the direct
analysis of computation errors of a
recurrent relation

A.N. Ostilovsky

In this paper the recurrent relation generating the chain fraction is considered. We
find different non-weakened sufficient conditions of its boundedness and small growth of
computation errors, caused by the inaccuracy of arithmetical operations implementation.
These conditions as well as error estimates do not contain any indefinite constants and
are expressed in the form of exact inequalities through machine e.

1. Introduction

In this paper the recurrent relation

— Qg

c1=0, Bo=0, ﬁk=m,

k=1,2,..., (1.1)

is considered. This relation appears, for example, in the solution of the
system of linear algebraic equations with the matrix

A = tridiag(cx, by, ax) (1.2)

by the sweep method.
It is well-known that under conditions of the diagonal dominance, i.e.,

ay
— < v = .
bk|+ <r<l, k=12,..., (1.3)

Ck
bx
and when at least one of these inequalities is rigorous, the following estimate

takes place:
|ﬂk|$"'! k:1’21"' . (1-4)

In the present paper it is shown that for 7 < 1 condition (1.3) can be
weakened. In Section 2 the other non-weakened conditions are found, which
are sufficient for (1.4). For this case r < 1 is not assumed. In Section 3
sufficient conditions for bondedness of |3i| are found. Then the estimate
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of sup |Bk| is obtained. In Section 3 we will note, particularly, the mutual
disposition of the domains »(7) for different r.

The direct analysis of errors in computer realization (1.1) is made on
the exact model of machine arithmetic unlike [1]. All errors are expressed
through e57, namely, the machine relative error of unity. The estimations
for the total relative errors are given not exactly to within small highest
orders, but as true inequalities. These estimations do not contain the
indefinite constants. The conditional noumber is not present in them in
the explict form as well. The restrictions on ¢k, by, a; are found, for which
the growth of the relative computation error f is inessential (the details
are in the text). Under these restrictions the smoothness of coefficients is
not required. For the analysis of errors the theoretical-group methods are
used.

2. Boundedness of 3. The direct problem

Let us assume that all by = 1 in (1.1), i.e., we will consider

—ag
1+ exfBr—r’

Let » > 0 be set. Our aim is to indicate the non-recurrent condition
on ¢k, a in (2.1) sufficient for

61=O, ﬂ():[], /.'}k-‘— k=1,2,... . (21)

1Bl <7, kE=1,2,... . (2.2)

It is well-known that one of such conditions for » < 1 is a condition of
diagonal dominance

(ck.ax) € p(r) = {(c,a): |e|+]a| <7}, k=1,2,.... (2.3)

Let us weaken (2.3) and offer a number of other conditions providing (2.2).
On the coordinate plane cOa we will represent the domains w;;(r), ¥(r),
which are given by the systems of inequalities (see Figure 1)

(=1)'r%c+ (=1)a+r >0,

=1
Wij('l‘") = 0< (_1)J ;“ < T qu = 1527 (2‘4)
_1yi—12
e# (111,

rle| + |a| < 7,

2.5
el # (25)
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Figure 1

It is not difficult to check
Lemma 2.1. If Bi—1 € [0,(~1)r] and (ck,ar) € wi;(r), then
Br€[0,(-1y7], i,j=1,2, k=2,3....
Corollary 2.1. If (ck, ax) € wii(r), ie.,
0<ap <, —rzck——ak+'r20, ck#%, k=1,2,..., (2.6)
then By € [-7,0], k =1,2,....
Corollary 2.2. If (ck, ax) € way(r), i.e.,
—7<ar <0, rlxtar+r>0, cx# ~-i-, k=1,2,..., (2.7)
then B € [0,7), k= 1,2,....
Corollary 2.3. If (ck,ax) € v(r), i.e.,
|ex| # %, ekl +lag] <7, k=1,2,..., (2.8)
then |Bk| <7, k=1,2,....

Remark 2.1. For r < 1 we have a strict inclusion p(r) C v(r). Thus,
Corollary 2.3 is the promised weakening of condition (2.3). Moreover, it
is already impossible to widen the domain v(r) keeping |Bx] < 7. In other
words, the domain v(r) and the estimate |3| < r are the best, i.e., for any
m = 2,3,..., and for any point (¢,a) ¢ v(r) the recurrent relation of the
kind (2.1) exists such that



- 58 : A.N. Ostilovsky

(civa;)) €v(r), i<m (em,am)=(c,a), |Bm|>r.

Remark 2.2. The domains wy;, wyy in Corollaries 2.1, 2.2 and the estimates
for Bi are also the best possible.

3. Boundedness of 8;. The inverse problem

Let us examine (2.1) again. Consider arcy # 0 for k£ > 1. In this section
we will find the sufficient conditions for the boundedness of sequence Jj
and the value supy |8k

At first, let us find the necessary and sufficient conditions of existence
of the number > 0 such that all points (c,ax) are in the domain (7).
Then, if a set of such r is not empty we will find ro = inf 7. And according
to Corollary 2.3, if all (¢k,ax) € v(rg), then |GBx| < 7o for any k.

From (2.5) it follows that (cx,ar) € v(r) for all k if and only if

Plel ol <, k=1,2,... . (3.1)

For the solvability with respect to 7 of the system of quadratic inequalities
(3.1) it is necessary

lexax| < 41, k=23,.... (3.2)

Let (3.2) be satisfied. Then for any number r (3.1) has solution if and only
if

= . < v = mi x < . .
u Iirc?%{m <vwv 1’?:_{1% Uk, lai| < v (3.3)
Here
u 1 - /1 —4|cray 1+ /1~ 4|crak k=23
k= = ’ = Ly 0y

v =
2|k ’ 2|

For this the minimum r = 7o, satisfying the system (3.1) is rop =
max{|a;|,u}. Thus, the following theorem takes place.

Theorem 3.1. Let for relation (2.1) the following conditions be satisfied:

1) 0<|ekar| <%, k> 2

1— /1= d[cpag| 1+ /1 — 4fcxar|
2) u = max lexax| < v =min * leax].

k>2 2|ex] k>2 2|k '

3) '011| <.
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Then |Bx| < ro = max{|ai|,u}, k > 1, and in addition it is impossible to
lower the estimate ro in the class of relations of the kind (2.1) satisfying
conditions 1)-3).

The similar considerations can be conducted for the domains wy(r)
and wqy(r). Denoting

L = {lekak > 0}, I = {lekak < 0},
we arrive at the following theorem.

Theorem 3.2. Let for relation (2.1) I, Iz # ¢ and the following conditions
be satisfied

1) all a;. have the same signs;

2) 0<cpax <%, kel

1- 1 —derag 14 /1 —4ey
3)u:ma.x———-—-—q°f-’-‘-§v:min t Chlk

kel 2l ek ke,  2lex]
" 4) a=maxgep, ax| < v.
Then |Bk| < 1o, or more precisely,
Br € (0,79 - signag], &k >1, ro=max{|a;|,u}.
Moreover, it is impossible to lower the estimate rq.

The question about existence of the domain v(r), covering all setting
points (ck,ax) has an interesting geometrical interpretation. Straight lines
+r?c + a = 7 from (2.5), which limit the thomb »(r) are considered to be
tangents towards the branches of the hyperbola |ca| = 1/4 from (3.2).

The rhomb area v(r) is equal to 2 and does not depend on r. The
following circumstance is turned out to be somewhat unexpected. Let us
take two such thombs as v(0,5) and (0, 7). Neither the first nor the second
rhomb lies in another. It is not difficult to imagine the set {(ck,ax)|k =
1,2,...,}, which is not included into (0, 7) but lies in ©(0,5). Corollary 2.3
does not allow to confirm that all |3¢] < 0.7. But at the same time this
very consequence guarantees that all |3;| < 0.5.

Example 3.1. Let ¢; = -0.1, ¢z = 1000, a; = -10.1, k = 2,3,... .
Then By = 0,1. For this |cxax| > 1/4 and (ck,ax) ¢ v(r) for any r > 0,
k=2,3,....
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This example points out that the condition |cxax| < 1/4 is not necessary
for |Bk| < 7. It is necessary for hitting all (cx, ax) in any rthomb (7). And
according to Corollary 2.3 the latter condition is sufficient for |Bx| < r.

4. Recurrent relation for 63;

Let us return to non-normalized relation (1.1). We will consider ajci # 0,
k > 2. Investigate the process of accumulation of the round-off error in
computer realization of (1.1). We will use the model

fllzxy)=(zxy)(1+¢), le|<em, *€{+,-,x,/}. (4.1)

Unlike the exact values S; we will denote the valugs received in process
of computations according to (1.1) in model (4.1) as Bi. Let us deduce the
recurrent relation for the relative error

6B = ﬂ—"_—ﬂ"; kE=1,2,....
B

In accordance with (1.1), (4.1)

= —ak(1+ €x3)
[ekBr-1(1 4 €x1) + bi](1 + x2)’

el e 1=1,23 k=1,2:0

Hence,
- A1em)
T —qk(1+ €k1)0Bk—1 + 1 — qrégr
where 4
G = —BiBr-1, k=152,.... (4.2)
Qg
Having denoted
’ EM '
= = qr(l s .
M= B ak(1+€r) (4.3)
we obtain
’6 _ 2 /
sgp= B b OB B e WLl . ()

T =g 8Bk-1+ 1 — qkern
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5. Recurrent relations for g,

The value g; is the main characteristic in (4.4). From (1.1), (4.2) follows:

—C -
%z__ﬁﬁi- k=2,3,....

_ ckfr—1 + by’
Now it is easy to check that
1

n=0 @Gg=—F7—"—, - (5.1)
de(T+ax-1)
where Ckr_1
dp= Xk-1 0 p_93 ...,
brbi-q
Iterating (5.1) we obtain
1 dy
=0, = , = , k=3,4,.... 5.2
0 g2 = Ol e A R (5.2)

6. Boundedness of ¢,. The direct problem

Let some ¢ € (0,1) be given. Our aim is to point out the non-recurrent
conditions on the coefficients dj sufficient for x| < ¢, k = 2,3,... .
—  Denote the intervals in R

1@ = [,,0),  &ula)= (0.7,

S i
(@) = [{77,0), &al0) = (0, ;3]
It is not difficult to check

Lemma 6.1. If gx—1 € (0,(-1)'q) and di € &;(q), then ¢ € (0,(~1)iq),
ij=1,2k=3,4,....

Corollary 6.1. Ifdy € &11(q), k = 2,3,..., then gt € [-q,0), k =2,3,...

Corollary 8.2. If d; € £12(q), di € £22(q), k = 3,4,... , then g € (0,q),
k=23,....

Corollary 6.3. If d2 € £11(q) U &12(q), d2 € E21(g) U €22(q), & =3.4,..,
then |gx| < q, k=2,3,....

For ¢ = 1 we obtain
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Lemma 6.2. If
dy<1/2, dp<1/4, k=3,4,..., (6.1)
then |qi| <1, k=2,3,....

Having applied to (5.2) the method from Section 2 we obtain, for ex-
ample,

Theorem 6.1. If

1 (13
dady < =, <0, di+dpy<
3dy < 5 1-d2—0 Et+ a1 <

then |qx| <1, k=2,3,....

, dir <=, k=4,5..., (6.2)

N ]
N =

In Figure 2 we show how Theorem 6.1 generalizes Lemma 6.2. Here
the domain from Lemma 6.2 is covered with double hatching.

dx

[SIC

N l

di 1

I ™
=

OO K

Figure 2

Remark 6.1. All domains for dy, dr—; and estimates for ¢ are the best.

7. Boundedness of q,. The inverse problem
Let there exists a concrete relation of the kind (1.1). Denote

dy =infdy, D =supdy, k>3.
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If
d?. 2 1/2, D $ 1/43 (7'1)

then according to Lemma 6.2 Q = supgs, |gx| < 1.

In this section we will determine more exactly the estimate for Q in
conditions (7.1), having expressed it only through d and D.

Only three cases are possible.

1) di. < 0, k = 2,3,.... Then according to Corollary 6.1 all g < 0
and all di should be considered in &;1(g). Now it is necessary to define the
minimum ¢; > 0 such that dy, d € £1(Q1). It is evident that this is

@1 =max{1_Td§i;’T:-id} <1.

2) di >0, k=2,3,.... According to Corollary 6.2 all ¢, > 0 and we
ought to find minimum @y > 0 such that dy € £12(Q2), D € £22(Q2). It is
evident that this is

|da| 1—2D—\/1——4D} <

szma.x{l__ldzl, 2D

3) There exists di of different signs. According to Corollary 6.3 we
ought to find the minimum Q3 > 0 such that d; € £11(Q3) U &12(Q3),
d, D € £1(Q3) U €22(Q3). This is

|d2] 1 —+1+ 4d? 1—‘2D——\/1—4D}<1
1—dy’ 2d ’ 2D =

Remark 7.1. In the class of relations of the kind (1.1) satisfying (7.1) the
estimates @)1, (@2, @3 are attained.

Q3= ma.x'{

Now one more estimate for |3;| can be done. From (1.1), (4.2) it
follows:

0 = |5ra+a0| < |E|a+a@. k22,

for all these ¢ = 1,2, 3, which are chosen according to which case out of the
three ones takes place.

At last, in condition dy < 1/2, dj; < 1/4, k > 3 we will get the lower
estimate for |cxBr—1 + bi|. From the latter estimate for 8, and Lemma 6.2
it follows:

lexBr-1 4 bkl = |1 — di(1 + gx—1)||bk] > 0,5]bi|, & > 2.

In other words, if |bz| > ¢, |br] > 2¢, k > 3, then the absolute value of all
denominators in (1.1) are more than «.
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8. The estimates of §3;

Now we can finish the investigation started in Section 4. In Sections 6, 7
the estimates for Q = sup|gk| are given. Let Q < 1. Then from (4.4)
follows:

Q'6Bk-1| + 3eh,
—Q'|6Br-1]| + 1 = Qeps’

for those numbers k = 2,3,...,s, for which the denominator in (8.1) will
remain positive. The estimate s will be obtained below. Consider the
right-hand side of (8.1) as a fraction-linear function L(|68k-1]) with the

matrix
. Q' 3em
T -Q" 1-Qem |7

This function is the increasing one. Therefore,

|68k+1] < L(168x]) < L(L(16Bk-11)) < ... < LE(|681]) < L¥(enr).

The function [* is again fraction-linear with the matrix
k) gk
* 151) liz)
= k ky | -
Iy 1
k)

k
lgl)EM 25 152 (81)
em + 153

[68k| <

Q' =Q(1 +en), (8.1)

Then
|6ﬂk+l| < ‘Ck(sM) = (k)
I
for those numbers k, for which the denominator here remains positive.
Having raised the matrix L to power k by induction we obtain

Kerr +185) < Q%err +3Q* 4+ + Q'+ 1)él,
e +18) > 1- Q%+ + Q7+ Q"+ kQ)en —
3Q*+2Q" + -+ (k- 1)Qem.
Hence, from (8.2) for Q' < 1 follows:
(3k + 1)y,
1— (K2 + 3k)eh,

where s is the maximum, for which the denominator is positive here, i.c.,

[6Bk41] <

k<s, (8.2)
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s < ~2,— -1
3eny
Similarly, for Q' < 1
4¢! 1.-Q'
16841l < — o] —AZkQ'E}.J’ k< Qe (8.3)

Note that the inequalities for |§8k44| in (8.3), (8.4) are valid, but not “with
accuracy, till small higher orders”. These inequalities do not contain any
indefinite constants and do not contain, in the evident form, the condition-
alities of the matrix tridiag (ck,bk,ar). The constant @' from estimates
(8.3), (8.4), a priori is estimated easily by the methods of Sections 6, 7.

Example 8.1. Let

1—-+/241
GI:T’ a,k:—ﬁ, blzbk:1$ Ck:IO, k=2,3,...-

Then
Br =P =~a; €(0,1), Q=@Q,=60/61<1.

It means that (8.4) takes place.
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