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Numerical comparison of the source identification
problem with the continuation problem for

the air quality evaluation scenario∗

A.V. Penenko, A.V. Gochakov

Abstract. In the data assimilation algorithms for the air quality applications, the
source identification problem can be considered as an auxiliary one for the solution
of the model state function continuation problem. The algorithm based on the
ensembles of the adjoint problem solutions is applied to solve the inverse problems.
The source identification and the corresponding continuation problems solution are
numerically compared in the Novosibirsk city inverse modeling scenario. In the
numerical experiments, the relative error for the continuation problem is less than
the relative error for the source identification problem.
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1. Introduction

The air pollution transport and transformation models can be used to in-
terpret the air quality monitoring data in terms of the emission sources and
extend the air quality estimates to the unobservable locations in space, time,
and for the chemical substances. The mathematical problems of restoring
the unobserved variables are called the inverse and data assimilation prob-
lems [1–5]. In this sense we can consider both source identification and
continuation problems. In the data assimilation algorithms for the air qual-
ity applications, the source identification problem can be an auxiliary one
for the continuation problem solution [6, 7]. The measurement data can be
insufficient for the source identification itself, but it may be sufficient for the
satisfactory state function estimation.

In a series of papers, we study the properties of the algorithm based on
the ensembles of the adjoint problem solutions (adjoint ensembles) [8,9]. In
this algorithm, the inverse problem is transformed to the parametric quasi-
linear operator equation family, which is solved by the TSVD regularized
Newton–Kantorovich method. The objective of this paper is to compare the
reconstruction results for the inverse source and the inverse continuation
problems in an inverse modeling an air the quality applications.
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2. Methods

A convection-diffusion-reaction model for l = 1, . . . , Nc is considered in the
domain ΩT = Ω × (0, T ) with boundary ∂ΩT = ∂Ω × [0, T [, where Ω is
a sufficiently smooth approximation of the bounded rectangular domain
[0, X]× [0, Y ] in R2, T > 0:

∂ϕl

∂t
−∇ · (diag(µl)∇ϕl − uϕl) + Pl(t,ϕ)ϕl = Πl(t,ϕ) + fl + rl,

(x, t) ∈ ΩT ,
(1)

n · (diag(µl)∇ϕl) + βlϕl = αR
l , (x, t) ∈ Γout ⊂ ∂ΩT , (2)

ϕl = αD
l , (x, t) ∈ Γin ⊂ ∂ΩT , (3)

ϕl = ϕ0
l , x ∈ Ω, t = 0, (4)

where Nc is the number of considered substances, ϕl = ϕl(x, t) denotes the
concentration of the lth substance at a point (x, t) ∈ ΩT , ϕ is the vector of
ϕl(x, t) for l = 1, . . . , Nc –– it is called the state function, L = {1, . . . , Nc}.
The functions µl(x, t) ∈ R2 correspond to the diffusion coefficients, diag(a)
is the diagonal matrix with the vector a on the diagonal, u(x, t) ∈ R2 is the
underlying flow speed.

The boundaries Γin and Γout are parts of the domain boundary ∂ΩT in
which the vector u(x, t) points inwards the domain ΩT and is zero or points
outwards the domain ΩT , respectively, n is the outer normal.

The functions αR
l (x, t), αD

l (x, t) and ϕ0
l (x) are boundary and initial con-

ditions, respectively, fl(x, t) is the a priori known source function, rl(x, t) is
a source function to be determined with the inverse problem solution (the
uncertainty function).

Let r ∈ R, where R ⊂ L2(ΩT ;RNc
ρ ) is the set of admissible sources such

that the direct problem has a solution. Destruction and production operator
elements Pl,Πl : [0, T ]×RNc

+ → R+ are defined by the transformation model
(in the case of the chemical transformations, they are polynomials with
positive coefficients depending on time). We assume all the functions and
model parameters to be smooth enough for the solutions to exist and further
transformations to make sense.

The direct problem: given fl, rl, µl, ul, α
R
l , αD

l , ϕ0
l , we find ϕ from

(1)–(4).

Let the exact source function r(∗) be found and Lmeas denote a set of
indices of the measured substances. We consider two inverse source identi-
fication problems with different types of measurement data available:
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1. With the final concentration field image {ϕ(∗)
l (x, T ) | x ∈ Ω, l ∈

Lmeas}.

2. With a time series of concentrations {ϕ(∗)
l (x, t) | t ∈ [0, T ], x ∈ χ, l ∈

Lmeas} in a given set of the measurement sites χ.

Here ϕ(∗) is the solution of the direct problem with the source function r(∗).
The continuation problem is to find ϕ(∗) from the measurement data or to
continue it from the measurement sites to the whole domain with respect to
space, time and chemical species.

For the solution of the inverse source problems, we use the algorithm
based on the ensembles of the adjoint problem solutions for the final im-
ages [8] and for time series-type data [9]. The cases differ in the ensem-
ble construction procedures and share common quasi-linear operator equa-
tions solver based on the regularized TSVD Newton–Kantorovich method.
In both cases, we optimize an ensemble of the adjoint problem solutions
according to the maximal projection of the initial discrepancy onto the ap-
propriate trigonometric cosine-basis [8].

3. Numerical experiments

As an example, we consider the atmospheric chemistry transformation mech-
anism RADM2 [10] taken from WRF-Chem model [11] with 61 species and
156 chemical reactions. To prepare the coefficients of the chemical transport
model (1)–(4), the meteorological parameter u is calculated with the WRF
model [12] in the area restricted by geographic coordinates 54.75–55.16◦N,
82.66–83.37◦E (99×99 points) with a horizontal grid spacing of 460 m, con-
taining 30 vertical levels to a height of 50 hPa. The domain corresponds to
the city of Novosibirsk.

The calculations were carried out for the model period for February 1,
2018. To obtain 2D spatial wind speed fields, the 3D WRF fields were
vertically averaged. The horizontal diffusion coefficient was taken as the
constant µ = 1000 m2/s. The domain parameters for the numerical inverse
problem solution are X = Y = 44,160 m, T = 2 × 3,600 s and the grid
parameters are Nx = Ny = 25, Nt = 117.

The point-wise sources are located in the places of the most intensive
thermal power and boiler plants and roads of the city, marked with con-
tours in Figure 1. The sources emit NO only with constant rates. The
emitted substance name and the constant emission regime are known in
the inverse modeling scenario. Emission rates are a priori considered to be
non-negative. The initial guess for the emission rates is zero.

The locations of the measurement sites (marked with red circles in Fig-
ure 1) are taken from the state report [13]. The number of adjoint ensemble
members is 80.



62 A.V. Penenko, A.V. Gochakov

Figure 1. The source function of NO (contours) and the measurement sites (red
circles) in the spatial domain

4. Numerical results

In the numerical experiments, we compare the source reconstruction re-
sults in four scenarios, which are defined by the combinations of two binary
measurement system options: in situ / final concentration image measure-
ments and direct / indirect measurements. The direct measurements cor-
respond to the case when the emitted substance concentration is measured
(Lmeas = {NO}), and the indirect measurements correspond to the case
when the secondary pollutant concentration is measured (Lmeas = {O3}).

The results are presented in Figure 2. The relative errors in L2 are
presented in Figure 3. In Figure 4, the reconstruction errors are presented
with respect to the model time.

Comparing the exact solution in Figure 1 to the source identification
results in Figure 2, we can conclude that the main emission sources (heat
power plants) are approximated, but the reconstructed source is distributed
to a greater extent than the exact one. This may be the reason why the
relative source identification reconstruction error grows with the iterations
(see Figure 3a)). The point-wise sources are hard to identify without the
explicit use this as a priori data. The continuation error decreases both in
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Lmeas = {NO}, Image Lmeas = {O3}, Image

Lmeas = {NO}, In situ Lmeas = {O3}, In situ

Figure 2. Comparison of the source reconstructions for different measured sub-
stances (Lmeas) and different measurement types: final concentration images (Im-
age) and in situ time series (In situ)

the computation time Figure 3 and in the model time Figure 4. In Figure 4,
the background curve corresponds to the direct problem solution with zero
emission sources (i.e., with the initial guess).

We can see that the inverse problem solution algorithm provides a better
solution than the one corresponding to the initial guess. The best reconstruc-
tion was attained for the case of the direct measurements (Lmeas = {NO}).

5. Conclusion

The results of the source reconstruction with different measurement data
types using the plausible scenario for the city of Novosibirsk were compared.
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a b

Figure 3. A relative error for the source identification (a) and for the continuation
problem (b) with respect to the computation time measured in the direct problem
solution times

Figure 4. A relative continuation error with respect to the model time

Analyzing the results, we can conclude that the relative error of the con-
tinuation problem is less than the one obtained for the source identification
problem. In this case, the source identification problem can be considered
as an auxiliary one for the continuation problem solution.
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