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Modeling of the free convection in a viscous
compressible fluid

Yu.V. Perepechko, K.E. Sorokin, Kh.Kh. Imomnazarov

Convection is one of the basic types of the flows used in description of
processes of the Earth’s interior and the Earth’s atmosphere. The simulation
of convection of many geological systems under the assumption of an incom-
pressible medium in the Boussinesq approximation often appears to be poor
and the model of a compressible medium is used not only when simulating
processes in the atmosphere, but, also, when simulating dense media of such
geological systems as magmatic fluid systems, the convective upper mantle
with allowance for phase transitions, dynamics of magma in deep chambers
and magma-conductors, a convective warm-up of the lithosphere magmatic
fluids, dynamics of liquid hydrothermal systems with allowance for magma
boiling and hydrothermal solution, condensation of a gas, etc. In the given
paper, a numerical model for analysis of dynamics of such media with vari-
able kinetic and thermodynamic parameters is constructed. The choice of a
numerical algorithm was determined by the necessity to ensure the physical
correctness of the solution at arbitrary spatial and time scales of the system
under investigation as a large spatial scale of the system and large times of
its evolution make it difficult to carry out laboratory simulation as well as
field measurements. The control volume method satisfies this condition.

1. Problem formulation

In this paper, the problem about the free convection of a compressible fluid
in the classical statement [1], which is used in many papers, presenting
a “benchmark solution” [2–4] is studied. The domain of the square form
(Figure 1) is investigated. On the side boundaries of the computational
domain, the values of temperature are fixed: on the left-hand wall, the
value of temperature TH is given higher than the value of temperature TC
on the right-hand wall. The upper and the bottom walls are considered to
be adiabatic. On all the boundaries, conditions of non-flow and slippages
are set. As was mentioned above, a fluid is taken to be Newtonian, viscous,
compressible. As the objective of calculations here is deriving a stationary
flow, the assignment representation of the initial distribution of the basic
values is not of first importance. The temperature at the initial moment is
constant and equal to the temperature on a cold wall (TC), and the medium
is considered to be at rest.
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The system of governing equations, defining a convective flow of a fluid,
includes the equation of continuity, the Navier–Stokes equation, and the
entropy equation, respectively:
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Figure 1. Statement of the
problem about the natural
convection

In the system of equations (1) and further
the variables u, ρ, p, T , and s denote ve-
locity, density, pressure, temperature, and en-
tropy, respectively; η is the dynamic viscosity,
ν = η/ρ is the kinematic viscosity, κ is the
heat conductivity, χ = κ/(cpρ) is the ther-
mal conductivity; and g is the gravitational
acceleration.

The equations of state close the system:

T = T0 + eρs(ρ− ρ0) + ess(s− s0),

p = p0 + ρ2
0eρρ(ρ− ρ0) + ρ2

0eρs(s− s0),
(2)

in which the coefficients ess, eρs, eρρ are expressed through the values of
known thermodynamic parameters of the medium: the thermal expansion
coefficient β, the compressibility α, the heat capacity cp:
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d
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β

d
,

Here, d = ρ0αcp/T − ρ2
0β

2, the parameters ρ0, s0, T0 = Tc, p0 = ρ0gr
characterize an arbitrary non-stress state of continuum. In this paper, an
assumption about constant coefficients of the equation of state, and, also,
the values of dynamic viscosity, thermal conductivity, heat capacity is made.

Let us reduce system (1), (2) to the dimensionless form. As thermal
processes are defining, we use dimensionless time in terms of thermal con-
ductivity χ, that is the characteristic time of the system is determined by
thermal processes:
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The dimensionless system of equations (1) takes the form
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and is characterized by the dimensionless parameters
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χ
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where Ra is the Rayleigh number, the basic similarity criterion when study-
ing the free convection of an incompressible medium; Pr is the Prandtl
number; N1 and N2 are dimensionless numbers being a corollary of com-
pressibility of a fluid in the system taken into account (4). Hereafter, all
parameters are dimensionless and the tilde is omitted.

The numerical solution of boundary
value problem is realized on the basis of the
control volume method (CVM) [5] which
provides the physical behavior of approx-
imations of the governing equations and
hence the solutions of the problem on any
time scale. This is a necessary condition
for investigation of processes in the geo-
logical systems characterized by large spa-
tial scales and large time periods of the de-
velopment of processes, whose experimen-
tal and field verification is difficult or even

Figure 2. A chess grid and ap-
propriate notations

impossible. An important property of the CVM is a precise integral con-
servation of such quantities, as mass, impulse and energy in any group of
control volumes and, hence, in the whole computational domain.

It is convenient to make an approximation of differential equations of
motion of a fluid in the problem about the free convection on a staggered
uniform grid (Figure 2). At the node points ◦ the values of ρ, P , T , s and
at the node points →, ↑ the values of vertical and horizontal components of
the velocity (u, v) are respectively calculated.

When applying the numerical algorithm in question to the solution of
problems associated with the analysis of geological models for constructing
discrete analogs of the differential equations, the time implicit approxima-
tion scheme is used. This provides the possibility of carrying out calculations
on large time intervals, that is, on geological time intervals. For calculation
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of values of independent variables on the boundaries of control volumes, the
upstream difference scheme that improves the physical behavior of a discrete
analog and results in acceleration of the convergence rate is used.

For calculation of the pressure field and the flow field at each time step,
the iteration scheme SIMPLE [5] was used, which consists in the following:
the initial pressure field is given; discrete analogs of the equations of motion
are solved and an approximate value of the velocity is determined; the equa-
tion for determination of grid values with allowance for pressure is solved;
the corrected field of pressure is calculated; the corrected value of the ve-
locity from the corrector formulas and from approximate values is found at
Step 1; the new value of density from the equation of state with allowance
for the corrected pressure field is calculated; the corrected pressure is repre-
sented as a new approximate value of the pressure field and the procedure
is repeated up to attaining the convergence of the solution. Further, a dis-
crete analog of the entropy equation is solved, from the equation of state
the temperature is calculated and passage to the next time step is made.

The convergence criterion of the iteration scheme SIMPLE is considered
to be the discrepancy of the continuity equation. The linear algebraic equa-
tion systems obtained at discretization of governing equations, will be solved
with the use of the alternating direction method.

2. Results and discussions

When solving a test problem, we investigated the convection of water with
the following properties under normal conditions (P0 = 1.01325 · 105 Pa,
T0 = 293 K): the density ρ0 = 999.8 kg/m3; the dynamic viscosity, the ther-
mal conduction and the specific heat of the medium are determined by the
following values, respectively: µ = 0.0017888 kg/(s m), κ = 0.566 W/(K m),
cp = 4212.0 J/(kg K). Coefficients of isothermal dilatation and volumet-
ric compression also correspond to parameters of water: β = −9.973486 ·
10−5 K−1, α = 2.493870 · 10−7 Pa−1.

Calculations were conducted on the grid with discretization up to 81×81
nodes on each of spatial coordinates. It was assumed that the computational
domain is of the square form.

For the comparison of the numerical results obtained with those repre-
sented in [2], the calculations were carried out with the respective Rayleigh
numbers: Ra = 103, 105, 107. The comparison was made using values of
the local Nusselt number on the hot boundary Nu = ∂T

∂x

∣∣∣
x=0

whose graphs

are represented in [2]. Results of calculations of temperature fields and their
comparison with those in [2] are presented in Figure 3 (a) and (b). The com-
parisons of the calculated modification of the local Nusselt number along the
hot boundary with standard results obtained by other authors are presented
in Figure 3 (c).



Modeling of the free convection in a viscous compressible fluid 63

Ra = 103

Ra = 105

Ra = 107

a b c

Figure 3. The comparison of temperature distribution: (a) the results of the given
paper, (b) the benchmark [2], and (c) the local Nusselt number Nu vs. y-coordinate
(— [2], 4 [3], � [4], FEM [2], – – MCV)

At Ra = 103, is a weakly intensive flow with low gradients of temperature
and pressure. A very good coincidence of the calculated temperature distri-
bution and, especially, of the local Nusselt number with standard results [2]
is distinct, which means the absence of the influence of the compressibility
of a fluid on the picture of a flow and on the defining conductive mechanism
of the heat in the system transfer with these parameters.

At Ra = 105, the flow becomes more intensive, the heat transfer begins
to be defined by a convective flow, but a good coincidence of the results with
calculations for an incompressible liquid is conserved.
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At Ra = 107, an intensive flow with high gradients of temperature and
pressure is developing. At such high Rayleigh numbers, the compressibil-
ity of a fluid starts to affect the development of a convective flow. In the
represented figures, a difference between the distribution of the local Nus-
selt number and standard results, which is associated with allowance for
compressibility, is observed.

Thus, in this paper, the numerical model is obtained that permits car-
rying out the simulation of the heat-mass transfer processes in compressible
media with variable viscosity. Differences at large Rayleigh numbers denote
the range of parameters in which the compressibility effects start to be of first
importance. The given model will be further developed in the two-velocity
model of convection in the explored geological systems. The computer model
obtained can be used as a hydrodynamic basis when simulating the evolu-
tion of magmatic, hydrothermal systems, when investigating the ultrasonic
action on a convective the flow in fluid and in the fluid-magmatic systems.
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