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Modeling of the nonlinear motion of saturated
granular media∗

Yu.V. Perepechko, K.E. Sorokin, Kh.Kh. Imomnazarov

Abstract. A nonlinear model of the saturated granular media based on a two-
phase mixture model of viscous liquids is proposed. A mathematical model of
the two-velocity dynamics of a granular medium involves the temperature phase
equilibrium and the absence of the pressure phase equilibrium and is consistent
from the thermodynamic standpoint. The obtained two-velocity model was verified
by comparison with the results of numerical calculations for the one-velocity model.
The convective and the pressure flows of the mixture of compressible viscous liquids
for various conditions are simulated.

Introduction

In this paper, the nonlinear hydrodynamics of saturated granular media
is investigated. Published works on this topic are focused, mainly, on the
investigation of acoustic processes in multiphase media or on the large-scale
study of the two-fluid hydrodynamics of incompressible media. Heat and
mass transfer processes in compressible saturated granular media for a wide
range of time periods have been studied to a lesser extent. Complexity of the
experimental verification of numerical modeling of such systems requires the
use of both mathematical and numerical methods to ensure the correctness
of the physical model of differential equations and their finite difference
approximation.

The mathematical model developed in this paper is constructed within
the framework of conservation laws method [1, 2]. The method is based on
matching the first and second laws of thermodynamics, conservation laws,
and group invariance of the equations, which provides the thermodynamic
consistency of nonlinear dynamics models of complex subsurface geometries.
With this approach we have obtained various models of the dynamics of a
two-velocity medium: saturated porous media [2–4], two-fluid media both
assuming the phase pressure equilibrium [5] and without it [6]. The com-
parison of the simulation results for the model of saturated porous media
[7] with experimental data on the Stoneley wave [8] demonstrated the effi-
cacy of the method of conservation laws for classical simulations of complex
media.

∗Supported by the RFBR under Grant 13-01-00689, The Russian Ministry of Education
under Grant (HA-07.514.11.4156).
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1. Mathematical model

The model of the two-phase medium, studied in this paper, assumes the
absence of the pressure equilibrium between the phases, but the presence of
the temperature equilibrium [5]. The two-velocity medium has the following
structure: solid granules move relative to the fluid, interacting both directly,
and through the fluid. Solids and fluids jointly make up a two-velocity con-
tinuum whose unit volume is characterized by two densities, two velocities,
and entropy. The choice of the functional dependence of the internal energy
fixes thermodynamics of the medium: the internal energy per unit volume
of the medium is determined by the first law of thermodynamics:

dE0 = TdS + µdρ+ q dρ1 + (u− v, dj0), (1)

where ρ, ρ1, ρ2 are the density of the medium, the partial density of solid
granules and the partial density of the fluid, respectively, ρ = ρ1 + ρ2, µ is
the chemical potential, q is the potential of interfacial interaction, E0 is the
internal energy per unit volume, S is the entropy per unit volume, T is the
temperature, u is the granule velocity, v is the fluid velocity, j0 = j − ρv
is part of the momentum density which is invariant in terms of the Galilei
transformations, and j = ρ1u + ρ2v is the momentum density.

The evolution of the density of the two-phase medium and of the granule
density is determined by the conservation laws

∂ρ

∂t
+ div j = 0,

∂ρ1

∂t
+ div(ρ1u) = 0. (2)

The mass conservation law of the fluid is a consequence of equations (2).
The laws of conservation of momentum, energy, entropy (in reversible

approximation) should also be valid

∂ji
∂t

+∂kΠik = 0 (i = 1, 2, 3),
∂E

∂t
+divQ = 0,

∂S

∂t
+div

(S
ρ
j
)

= 0. (3)

Here and after the summation from 1 to 3 is carried out in terms of the
repeated indices, ∂i = ∂

∂xi
, Πik is the momentum flux density tensor, E =

E0 + (v, j0) + ρv2/2 is the total energy per unit volume, Q is the flux of
energy, and S is the entropy per unit volume.

The system of equations (2) and (3) needs to be supplemented with the
equation of motion of one of the phases, in this case with the equation of
fluid [2]

∂v

∂t
+ (v,∇)v = −∇µ− S

ρ
∇T, (4)

in which the kind of forces causing the motion of the fluid is determined
by the conditions of fulfilment of thermodynamic equilibrium: ∇µ = 0,
∇T = 0, u = v.
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The fluxes and pressure in the medium are uniquely determined in the
process of implementation of the conservation laws [5]

Q =
(
µ+

v2

2
− (u,v)

)
j + TS

j

ρ
+ (u, j − ρv)u + qρ1u,

Πik = ρ1uiuk + ρ2vivk + pδik + qρ1δij , (5)

p = −E0 + TS + µρ+ (u− v, j − ρv).

The presence of the direct interaction of granules leads to an additional
contribution to the internal energy (the term q dρ1) and, as a consequence,
additional contributions to the flux of energy and the momentum flux density
tensor. The stress tensor is defined in the ordinary way σik = −pδik−qρ1δjk.

Inclusion of dissipative processes leads to additional fluxes in the gov-
erning equations

∂E

∂t
+ ∂i(Qi +Wi) = 0, (6)

∂ji
∂t

+ ∂k(Πik + π1ik + π2ik) = 0. (7)

Here the fluxes Q and Πik are defined by (5), W is the irreversible energy
flux, π1ik, π2ik are the irreversible momentum fluxes. The friction force of
the interfacial friction f should be introduced into the equation of motion
of the continuum fluid:

∂v

∂t
+ (v,∇)v = −1

ρ
∇p+

ρ1

ρ
∇q + f . (8)

The entropy flux fq and the entropy production R are added into the
equation for entropy

∂S

∂t
+ div

(S
ρ
j + fq

)
=
R

T
. (9)

The procedure of matching equations (2), (6)–(9) with the first law of
thermodynamics (1) leads to the definition of the energy flux and, according
to the Onsager theory, to the dissipation function as well [2]

Wi = qi + π1ikuk + π2ikvk, R = f(u1 − u2) + fq∇T + π1ikuik + π2ikvik.

The structure of the dissipation function allows one to enter the linear dissi-
pation relations for the fluxes of the vector nature and their corresponding
thermodynamic forces.

The two-velocity two-fluid dynamics equations with thermodynamics of
the medium, specified by the dependence e = e(ρ1, ρ2,u,v, s), can be rep-
resented in a gravitational field as
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∂ρ1

∂t
+ div(ρ1u) = 0,

∂ρ2

∂t
+ div(ρ2v) = 0, (10)

∂u

∂t
+ (u,∇)u = −1

ρ
∇p− ρ2

ρ
∇q − ρ2

ρ1
f + f1 + g, (11)

∂v

∂t
+ (v,∇)v = −1

ρ
∇p+

ρ1

ρ
∇q + f + f2 + g. (12)

The entropy is carried by an average velocity of the two-phase flux j/ρ:

∂s

∂t
+

1

ρ
(j,∇)s = −1

ρ
div fq +

R

ρT
, (13)

where the dissipation function R is determined by

R = ρ2b(u− v)2 + κ
1

T
(∇T )2 + 2ν

(
∇T, (u− v)

)
+ η1u

2
ik + η2v

2
ik. (14)

The dissipative fluxes f , fq, f1, f2 are defined by the relations

f = b(u− v) +
1

ρ2
ν∇T, fq = κ

1

T
∇T + ν(u− v), (15)

f1i =
1

ρ1
∂k(η1uik) +

1

ρ1
ν∂iT, f2i =

1

ρ2
∂k(η2vik)− 1

ρ2
ν∂iT. (16)

Here uik =
1

2

(
∂kui + ∂iuk −

2

3
δik divu

)
, vik =

1

2

(
∂kvi + ∂ivk −

2

3
δik div v

)
are the strain rate tensors; g is the acceleration of gravity, e = E/ρ is the
mass energy density, s = S/ρ is the mass entropy density. The interfacial
friction coefficient b, the shear viscosities ηi, the thermal conductivity κ and
the kinetic coefficient ν are functions of the thermodynamic parameters.
Effects of the bulk viscosity are not considered in this paper. The presence
of the interphase interaction parameter q, introducing the second pressure
into the two-fluid medium, leads, as in porous media, to the appearance of
the second longitudinal sound [6].

The equations of state of the two-phase medium closing the dynamic
equations (10)–(16) are presented in the linear approximation as follows:

δρ1 = ρ1α δp+ ρ1ρ2αq δq − ρ1β δT,

δρ2 = ρ2α δp− ρ1ρ2αq δq − ρ2β δT.

Due to the above assumptions, the total density of the medium and the
entropy density are determined only by the temperature and pressure, and
do not depend on the second pressure:

δs =
cp
T
δT − 1

ρ
β δp.



Modeling of the nonlinear motion of saturated granular media 55

The introduced coefficients of the volume compression α, αq, the thermal
expansion β, and the specific heat cp of the two-fluid medium should be
determined experimentally. In this model, these coefficients were taken to
be additive subsystems. The coefficients of the volumetric compression are
associated with the sound velocities in the medium c1, c2, by the relations
α−1 = ρc2

1, α−1
q = ρc2

2.

2. Method for solving equations of the model

The solution to nonlinear 2D equations of the two-fluid hydrodynamics with-
out phase pressure equilibrium (10)–(16) was carried out numerically by
the control volume method [9]. The numerical solution of the two-velocity
hydrodynamics equations (10)–(13) is complicated by the presence of the
second pressure in the equations of motion of phases. In order to overcome
this problem, the iterative algorithm SIMPLE was adapted to the calcula-
tion of pressure fields through corrections in pressures and velocities [10].
For solving a SLAE of a complex structure arising in the equations for the
corrections in the pressures, an adapted method of alternating directions,
to ensure a rapid convergence of the iterative procedure for dense grids, was
used. The calculation results reveal a good convergence of the numerical
method.

The scheme of numerical analysis includes the following steps: construct-
ing a grid in the computational domain; discretization of differential equa-
tions and boundary conditions, solving a system of linear algebraic equations
of discrete analogs; constructing an algorithm for the calculation of the pres-
sure field that is coordinated with the velocity field. The control volume
method (CVM) allows obtaining dis-
crete analogs of the original equa-
tions of the model that meet the ex-
act integral balances even on coarse
meshes. All the numerical calcula-
tions of the problems being solved
in the two-velocity hydrodynamics
are carried out on rectangular uni-
form grids with a shift of calcula-
tion nodes for the components of the
velocity vectors (the grids s1, s2)
with respect to the calculation nodes
for other variables in the model
(the grid s0), thus excluding ob-
taining non-physical solutions (Fig-
ure 1). The values of the model vari-
ables at a time step are calculated

Figure 1. Control volume for the 2D
simulation
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according to a fully implicit scheme, which allows one to get rid of restric-
tions on the time step imposed by the Courant condition and makes possible
to carry out calculations on the time scales required for applications under
consideration.

In discretization of convective terms, in order to determine the values of
a dependent variable on the faces of the control volumes we use the scheme
with differences opposite to the flux, which provides only the first order
approximation of the original equations, however, has a strict physical basis
and enables obtaining meaningful solutions in terms of physics in the study
of essentially all flux regimes. The result of integration over the control
volume (the grid s1) of the first convective term in the equation of motion
will be as follows (here and after r = 1, 2):

tn+1∫
tn

yj+1/2∫
yj−1/2

xi+1∫
xi

urx
∂(ρrurx)

∂x
dx dy dt

=
{
un+1
rx;i+1/2,j

[
a1
i+3/2,j + a1

i−1/2,j +
(
(ρrurx)n+1

i+1,j − (ρrurx)n+1
i,j

)
∆y
]
−

un+1
rx;i+3/2,ja

1
i+3/2,j − u

n+1
rx;i−1/2,ja

1
i−1/2,j

}
∆t,

where

a1
i+3/2,j = max

(
−(ρrurx)n+1

i+1,j , 0
)

∆y, a1
i−1/2,j = max

(
(ρrurx)n+1

i,j , 0
)

∆y.

For the approximation on the faces of control volumes of coefficients,
which are part of the diffusion terms of the governing equations, the as-
sumption of a linear variation of such coefficients between the nodes of the
computational grid is used. When integrating the diffusion terms as they
are, the differences rearward are used. The integration of the first diffusion
term of the equation of motion gives

tn+1∫
tn

yj+1/2∫
yj−1/2

xi+1∫
xi

∂

∂x

(
ηr
∂urx
∂x

)
dx dy dt

=

{
ηr;i+1,j

(
∂urx
∂x

)n+1

i+1,j

− ηr;i,j

(
∂urx
∂x

)n+1

i,j

}
∆y∆t

=
{
−un+1

rx;i+1/2,j(a
2
i+3/2,j + a2

i−1/2,j) + un+1
rx;i+3/2,ja

2
i+3/2,j +

un+1
rx;i−1/2,ja

2
i−1/2,j

}
∆t, (17)

where a2
i+3/2,j = ηr;i+1,j

∆y

∆x
, a2

i−1/2,j = ηr;i,j
∆y

∆x
.
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In integrating the non-stationary terms, as well as the terms taking into
account the effect of interfacial interaction and the pressure derivatives the
differences rearward are used.

It should be noted that the continuity equation is integrated, but is not
explicitly solved. Its resulting discrete analog (the grid s0):

(ρn+1
r;i,j − ρnr;i,j)∆x∆y

∆t
+
(

(ρrurx)n+1
i+1/2,j − (ρrurx)n+1

i−1/2,j

)
∆y +(

(ρrury)n+1
i,j+1/2 − (ρrury)n+1

i,j−1/2

)
∆x = 0 (18)

is used when deriving discrete analogs of other governing equations and when
deriving equations for corrections for the pressure and the parameter Q.

After integration of all the terms, the discrete analog of the equation of
motion for urx has the following form:

ar;i+1/2,ju
n+1
rx;i+1/2,j = ar;i+3/2,ju

n+1
rx;i+3/2,j + ar;i−1/2,ju

n+1
rx;i−1/2,j +

ar;i+1/2,j+1u
n+1
rx;i+1/2,j+1 + ar;i+1/2,j−1u

n+1
rx;i+1/2,j−1 +

(−1)r
ρn+1

1;i+1/2,jρ
n+1
2;i+1/2,j

ρn+1
i+1/2,j

(Qn+1
i,j −Q

n+1
i+1,j)∆y +

ρn+1
r;i+1/2,j

ρn+1
i+1/2,j

(Pn+1
i,j − Pn+1

i+1,j)∆y + br;i+1/2,j ,

ar;i+3/2,j = a1
i+3/2,j + a2

i+3/2,j ,

ar;i+1/2,j = anr + ar;i+3/2,j + ar;i−1/2,j + ar;i+1/2,j+1 + ar;i+1/2,j−1 +

bρn+1
2;i+1/2,j∆x∆y,

anr =
ρnri+1/2,j∆x∆y

∆t
,

br;i+1/2,j = anru
n
rx;i+1/2,j + bρn+1

2;i+1/2,ju
n+1
(3−r)x;i+1/2,j∆x∆y + τr;i+1/2,j ,

where ar;i−1/2,j , ar;i+1/2,j+1, and ar;i+1/2,j−1 are calculated similar to
ar;i+3/2,j , and τr;i+1/2,j is the result of integration of cross diffusion terms
similar to equation (17). A similar technique is used for discretization of the
remaining equations of the model.

This paper investigates hydrodynamic problems whose formulation in-
volves two types of boundary conditions for the equations of motion and for
the entropy balance equation, when on the boundary either the values of the
dependent variable are specified or the infinity is interpreted: ur

∣∣
Γ

= const

or
∂ur

∂y

∣∣∣
Γ

= 0
(
∂ur

∂x

∣∣∣
Γ

= 0
)

, or T
∣∣
Γ

= const or
∂T

∂y

∣∣∣
Γ

= 0
(
∂T

∂x

∣∣∣
Γ

= 0
)

. Ap-

proximation of each type of the boundary conditions in both cases is similar
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and is carried out according to the above described technique, except for
the integration with respect to half the control volume when discretizing
the first type conditions.

To calculate the velocity fields and consistent with them the pressure field
and the parameter field Q, exactly satisfying the continuity equation, we
use the iterative algorithm SIMPLE, requiring adaptation to a two-velocity
hydrodynamic model, due to the presence in the equations of motion of the
parameter Q, which is the analog to the second pressure.

In the transition to a new time step, the initial assumption of the ap-
proximate the pressure field values P ∗ and the parameter field Q∗ is made,
their true values being determined by the correction values P ′ and Q′:

P = P ∗ + P ′, Q = Q∗ +Q′. (19)

In a similar manner we introduce corrections for the velocity vector com-
ponents:

urx = u∗rx + u′rx, ury = u∗ry + u′ry. (20)

Further, by subtracting the exact and approximate discrete analogs to
the equations of motion and rejecting a number of terms that may be admis-
sible in using the algorithm SIMPLE, we introduce the following expressions
for corrections:

u′rx;i+1/2,j =
∆y

ar;i+1/2,j

ρr;i+1/2,j

ρi+1/2,j
(P ′i,j − P ′i+1,j) +

(−1)r
∆y

ar;i+1/2,j

ρ1;i+1/2,jρ2;i+1/2,j

ρi+1/2,j
(Q′i,j −Q′i+1,j), (21)

u′ry;i,j+1/2 =
∆x

ar;i,j+1/2

ρr;i,j+1/2

ρi,j+1/2
(P ′i,j − P ′i,j+1) +

(−1)r
∆x

ar;i,j+1/2

ρ1;i,j+1/2ρ2;i,j+1/2

ρi,j+1/2
(Q′i,j −Q′i,j+1). (22)

Substituting (20)–(22) into the discrete analogs of continuity equations
(18) leads to a linear algebraic equation for calculating the corrections for
the pressure field and the parameter Q (values of linear coefficients are not
given here, because they are cumbersome and uninformative):

Ai,jP
′
i,j +Bi,jQ

′
i,j = Ai+1,jP

′
i+1,j +Bi+1,jQ

′
i+1,j +Ai−1,jP

′
i−1,j +

Bi−1,jQ
′
i−1,j +Ai,j+1P

′
i,j+1 +Bi,j+1Q

′
i,j+1 +

Ai,j−1P
′
i,j−1 +Bi,j−1Q

′
i,j−1 + Ei,j ,

where Ei,j comprises the residuals of the equations of continuity and is a
necessary indicator to the convergence of the iterative process.

A stepwise scheme of applying the algorithm is as follows:
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1. The assumption of the first approximation of the pressure field P ∗ and
the parameter Q∗.

2. The solution to discrete analogs of equations of motion (18) to find ap-
proximate values of the fields of the components of the vector velocities
u∗rx and u∗ry.

3. Finding the field of correcting the pressure P ′ and the correction pa-
rameter Q′ from the solution of the correcting equation.

4. Calculation of a new value of the pressure field P and the parameter
Q by formulas (19).

5. Calculation of new values for the velocity field components urx, ury
by formula (20).

6. Solution of the discrete analog to the entropy balance equation.

7. Recalculation of the density and the temperature fields through the
equation of state with the new values of the pressure and the entropy
fields.

8. Representation of the corrected pressure field P and the parameter Q
as new values P ∗ and Q∗, repeating the procedure up to the conver-
gence of the iterative process.

To resolve the resulting discrete analogs to the governing equations of
the model, we use a combination of the direct method of three-point sweep
with an iterative Gauss–Seidel method which is the method of alternating
directions with a supplementary modification to solve a complex structured
system of equations for correcting the pressure and the parameter.

3. Numerical results

The paper presents the results of numerical modeling of non-stationary hy-
drodynamic problems of the two-velocity granular medium. To verify the
mathematical model, we have considered a classical problem of convection
in a rectangular cavity with different temperatures on the lateral boundaries
[11–13] as applied to the two-velocity hydrodynamics. The geometry of the
computational domain is shown in Figure 2 (in Figures 2, 3, 9 below the hor-
izontal axis corresponds to the variable x, the vertical axis being y). At the
boundaries, the non-flow and adhesion conditions are set. The temperature
at the initial time was assumed to be the same in the domain, except for
the left boundary, where the temperature rise by was observed. Figure 2
is an example illustrating a difference in the temperature distribution when
attaining a stationary state of convection in the two-fluid medium with and
without consideration of the interfacial friction and viscosity of the phases.
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Figure 2. The two-velocity model of the temperature convection profiles in the
two-phase sandstone-water media without (b = 0) and with (b = 10−2, 10−1)
interfacial friction

Figure 3. The distribution of the Nusselt number Nu on the left hot boundary
for Ra = 103, 105: crosses denote the results of the one-velocity model [14], circles
denote the results of the two-velocity model with identical component parameters,
the solid line denotes the data taken from [11–13], the dashed line denotes the data
taken from [11–13]

The verification of the model was carried out on the one-velocity model
[14] and compared to the standard reference calculations. With the coin-
cidence of properties of the phases that make up a two-velocity medium a
limit transition to the one-fluid model is performed, which is reflected in
Figure 3, which shows the profiles of the local Nusselt number. The lat-
ter characterizes the relationship between the intensity of heat transfer by
convection and conduction, on the left hot boundary for different Rayleigh
numbers for the two-velocity model under consideration, and one-velocity
models.

The data shown in Figure 3 demonstrate a good agreement of the values
of the Nusselt number on a hot wall obtained for the two-velocity model
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Figure 4. The temperature profiles and the velocity components along the central
vertical and horizontal cross-sections of the computational domain for the one-
velocity (1V) model and for the two-velocity (2V) model with the same component
properties with different values of the Rayleigh number (Ra = 103, 105)

with the same component, and those obtained according to the benchmark
calculations [11–13] and the results of calculations within one-velocity model
[10] for a convective flow characterized by different Rayleigh numbers. The
corresponding velocity components and temperature profiles along the cen-
tral vertical and horizontal cross-sections of the computational domain for
the two-velocity model with identical component parameters and the one-
velocity model are shown in Figure 4.

Examples of convective flows of a two-phase medium with different prop-
erties of the phases (water-saturated sandstone) are given in Figure 5. The
figures demonstrate a strong influence of the interphase friction on the char-
acter of a convective flow and a weak influence on the temperature distri-
bution.

In other words, the interphase friction does not practically affect the heat
transfer mechanism. A strong dependence on the Rayleigh number observed
in Figure 3 is not the case with the analogous variation of the Darcy number
for the two-fluid mixture (Figure 6).

The interaction of phases is clearly observed also in the problem of the
pressure flow through the canal. The computational domain is a vertical
rectangular canal, on whose lateral boundaries the non-flow and the adhesion
conditions were accepted. The upper boundary was assumed to be free.
In the central part of the lower boundary, phase 2 was pumped. Initially,
the two-fluid medium in the canal was at rest.
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Figure 5. The temperature profiles and the velocity components along the central
vertical and horizontal cross-sections of the domain for the Rayleigh number Ra2 =
107 without (b = 0) and with (b = 10−2) interfacial friction. This is the case of a
free convection in a two-phase medium sandstone/water

Figure 6. The values of the Nusselt number on the left hot boundary for vari-
ous Rayleigh numbers (left, Ra = 103, 105, 107 ) and the Darcy numbers (right,
Da = 10−2, 10−4, 10−6). Two-velocity model with components corresponding to
sandstone saturated with water

The verification results of the one-velocity model for a viscous compress-
ible fluid are shown in Figure 7. Properties of the phases of a two-fluid
medium were chosen to be identical and corresponding to water parameters.
There is a good agreement between the results.

Examples of the results of the simulation of the Poiseuille flow in the two-
phase medium canal with different properties of the phases (water-saturated
sandstone) are presented in Figures 8 and 9.
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Figure 7. The pressure and vertical velocity component profiles along the central
vertical section with different Reynolds numbers (Re = 50, 100, 150, 400, 800)
and the velocity vectors components along three horizontal sections (y = 0.9, 2.2,
4.6) with the Reynolds number Re = 100 for the one-velocity (1V) model, the
two-velocity (2V) model and the results from [15]

Figure 8. The vertical components of the phase velocity profiles along the central
cross-section along the canal without (ηs = 0) and with (ηs = 105) viscosity of
the second phase and without (b = 0) and with (b = 103) interfacial friction. The
two-phase medium is a sandstone saturated with water
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Figure 9. The fields of vertical components uy (top) and vy (bottom) of the phase
velocities at different time instants. The two-phase medium is a water-saturated
sandstone

4. Conclusion

Thus, in this paper the thermodynamically consistent model of the dynam-
ics of the two-velocity two-fluid media without phase pressure equilibrium,
whose numerical implementation is based on the control volume method,
is proposed. The model obtained allows us to study nonlinear processes of
heat and mass transfer in heterophase media in a wide range of characteristic
times.

References

[1] Landau L.D., Lifshitz E.M. Course of Theoretical Physics, Fluid Mechanics.––
Pergamon Press, 1987.

[2] Blohin A.M., Dorovsky V.N. Mathematical Modelling in the Theory of Multi-
velocity Continuum.–– Nova Science Publishing Incorporation, 1995.

[3] Dorovsky V.N. Mathematical models of two-velocity media // Mathematical
and Computer Modelling. –– 1995.–– Vol. 21, No. 7. –– P. 17–28.

[4] Dorovsky V.N., Perepechko Yu.V. Mathematical models of two-velocity media.
Part II // Mathematical and Computer Modelling.–– 1996.–– Vol. 24, No. 10.––
P. 69–80.

[5] Dorovsky V.N., Perepechko Yu.V. Theory of partial melt // Geology and Geo-
physics. –– 1989.–– Vol. 9. –– P. 56–64 (In Russian).



Modeling of the nonlinear motion of saturated granular media 65

[6] Dorovsky V.N., Perepechko Yu.V. A hydrodynamic model for a solution
in fracture-porous media // Geology and Geophysics. –– 1996. –– Iss. 9. ––
P. 123–134 (In Russian).

[7] Dorovsky V.N., Perepechko Yu.V., Fedorov A.I. The Stoneley waves in the
Biot–Johnson theory and continual filtration theory // Russian Geology and
Geophysics. –– 2012.–– Vol. 53. –– P. 621–630.

[8] Winkler K.W., Liu H.L., Johnson D.L. Permeability and borehole Stoneley
waves: Comparison between experiment and theory // Geophys. –– 1989. ––
Vol. 54. –– P. 66–75.

[9] Patankar S.V. Numerical Heat Transfer and Fluid Flow. –– Taylor & Francis
Group., 1980.

[10] Perepechko Yu.V., Sorokin K.E. Two-velocity dynamics of compressible het-
erogeneous media // Natural and Technical Sciences. –– 2012. –– No. 5. ––
P. 40–48.

[11] Wan D.C., Patnaik B.S.V., Wei G.W. A new benchmark quality solution for
the buoyancy-driven cavity by discrete singular convolution // Numerical Heat
Transfer. Part B.–– 2001.–– Vol. 40. –– P. 199–288.

[12] Massarotti N., Nithiarasu P., Zienkiewicz O.C. Characteristic-Based-Split
(CBS) algorithm for incompressible flow problems with heat transfer // Int.
J. Numer. Meth. Heat Fluid Flow.–– 1998.–– Vol. 8. –– P. 969–990.

[13] Manzari M.T. An explicit finite element algorithm for convective heat trans-
fer problems // Int. J. Numer. Meth. Heat Fluid Flow. –– 1999. –– Vol. 9. ––
P. 860–877.

[14] Perepechko Yu.V., Sorokin K.E., Imomnazarov Kh.Kh. Numerical simula-
tion of the free convection in a viscous compressible fluid // Bull. Novosi-
birsk Comp. Center. Ser. Mathematical Modeling in Geophysics.––Novosibirsk,
2011. –– Iss. 14. –– P. 59–64.

[15] Buryatsky E.V., Kostin A.G., Nikiforovich E.I., Rozumnyuk Ch.N. A method
of numerical solution of the Navier-Stokes equations in variable velocity-
pressure // Applied Mechanics. –– 2008. –– Vol. 10, No. 2. –– P. 13–23 (In Rus-
sian).



66


