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Modeling the inhomogeneous two-phase flows with
an admixture in inclined channels∗

Yu. Perepechko, K. Sorokin, Sh. Imomnazarov

Abstract. The paper studies the flow of a two-phase medium in a gravity field
channel. The thermodynamically consistent equations of the mathematical model
of the dynamics of a two-velocity medium with an admixture were developed within
the framework of the method of conservation laws. Its numerical implementation
was carried out based on the control volume method. The nature of the motion of
inhomogeneous flows in horizontal and inclined channels, the development of flow
instability, as well as the effect of the surface tension gradient on flow regimes are
investigated.
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Introduction

Modeling the flows of heterophase condensed media is currently central due
to a wide range of applications in solving problems arising in the study of
both natural and technological systems. A correct hydrodynamic analysis
of heterophase flows of various mixtures of viscous liquids, suspensions of
solid particles, especially, the analysis of the development of various kinds
of flow instabilities, in particular, convective and sedimentation instability,
must be based on the consistent theory of the two-velocity hydrodynamics.
Such a phenomenological approach that ensures the physical correctness of
the model is the method of thermodynamically consistent conservation laws
[1–4]. Within the framework of this approach, the dynamics of two-velocity
media was investigated, including saturated porous media containing impu-
rities [5], suspensions of solid particles in a melt [6]. In this study, based
on this method, the dynamics of a mixture of mobile media is investigated
in a two-velocity hydrodynamic approximation in the presence of an im-
purity and taking into account the surface tension of the dispersed phase;
various modes of a homogeneous and an inhomogeneous two-phase flow in
a pipe with different inclination angles in a gravity field are studied. The
used hydrodynamic model of dispersed media takes into account dissipa-
tive (thermal and viscous effects, diffusion, interfacial friction) and surface
phenomena in a two-phase medium.
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1. Mathematical model

The present study deals with the study of the nonlinear non-stationary dy-
namics of two-velocity condensed media, such as suspensions, emulsions,
colloidal solutions. The elementary volume of such a heterophase medium
is characterized by the partial densities ρ1, ρ2 and the velocities u, v of
the dispersed and dispersing phases, the density of the impurity, if any, the
number of particles of the dispersed phase n, as well as the temperature T
and the concentration of the impurity c. The governing equations for the
dynamics of a heterophase medium are derived using the method of con-
servation laws under the assumption of phase equilibrium with respect to
temperature and pressure [6, 7]. In the dissipative case in a gravity field,
the governing equations can be represented in the following form
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It is defined above that ρ = ρ1 + ρ2, j = ρ1u + ρ2v are the density and
momentum of a two-velocity medium; p is the pressure; µa is the chemical
potentials of a two-phase medium and impurities; σ is the surface tension
tensor; ς is the specific surface area of the dispersed phase; g is the ac-
celeration of gravity. The impurity concentration in a two-phase medium
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and in phases is determined by the relations c = ρa/ρ, c1 = c + 2λ1ρ2/ρ1,
c2 = c−2λ1. S is the entropy of a two-phase medium, S2 = Sρ2/ρ−2λρ2/ρ,
S1 = Sρ1/ρ+2λρ2/ρ are the entropy of phases. The kinetic coefficients of the
interfacial friction b, the shear viscosity of the phases ηi, the mutual viscosity
η12, the thermal conductivity of the two-phase medium κ and the coefficients
λ1, λ2, ν are the functions of thermodynamic parameters. The strain rate
tensors are determined by the relations u1ik = ∂ku1i + ∂iu1k− 2/3δik divu1,
u2ik = ∂ku2i + ∂iu2k − 2/3δik divu2. The bulk viscosity effects are not
considered in the model.

The equations of state of a two-phase medium, which close the dynamic
equations (1)–(7), are obtained in the linear approximation: δρ = ρα δp −
ρβ δT , δs = cp δT/T−β δp/ρ. The coefficients of the volumetric compression
α, the thermal expansion β, and the specific heat cp are additive in phases.
The impurity is taken into account in the approximation of an ideal solution:
µa = d1p + d2T + R̄T ln c, R̄ is the universal gas constant. The surface
tension is determined by the Shishkovsky ratio σ = σ0(Tc−T )/(Tc−Tref)−
σ1 ln(1 + ac).

2. Numerical model

The difference approximation of the equations of the two-velocity hydrody-
namics is based on the control volume method [8, 9], which provides accurate
integral conservation of such quantities as mass, momentum and energy in
any volume. Discretization of the governing equations was carried out on a
rectangular uniform grid with a shift of the design nodes for the components
of the velocity vectors with respect to the design nodes for the remaining
variables. A completely implicit scheme with respect to time is used. When
approximating the convective terms for calculating fluxes through the faces
of control volumes, the second order HLPA scheme was implemented [10],
which provides a good accuracy and satisfies the convective boundedness
criterion. The diffusion terms are approximated using a central difference
scheme. To calculate the pressure field consistent with the flow field, an
analogue of the IPSA iterative procedure was implemented [11]. The ap-
proximation of the terms that determine the force interaction of the phases
is carried out completely implicitly. Within the framework of the developed
computational algorithm, the continuity equation is not resolved explicitly;
its discrete analogue is used to derive discrete analogues of other equations
and to derive a correction equation for pressure. The finite difference ap-
proximation of the boundary conditions in both cases is similar and is carried
out according to the second-order scheme [12].

To calculate the velocity fields and the pressure field matched to the
continuity equation, a version of the iterative procedure SIMPLE was im-
plemented [8]. When switching to a new time step, an initial assumption
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about the approximate value of the pressure field is made, while the true
value is determined through the correction. Corrections for the components
of the velocity vectors are introduced in a similar way. Further, by subtract-
ing the exact and approximate discrete analogs of the equations of motion
and eliminating the number of terms, which is allowed within the frame-
work of using the basic version of the SIMPLE procedure, expressions for
the corrections are introduced. A feature of the IPSA procedure is the use
of a phase-wide discrete analog of the continuity equation when deriving a
correction equation for pressure.

The step-by-step scheme for applying the procedure is as follows:

1. Start with an approximate pressure field;

2. Solve the discrete analogs of equations of motion for finding approxi-
mate values of velocity fields;

3. Find the pressure correction;

4. Calculate a new pressure value;

5. Calculate the new values of the fields of the velocity vector compo-
nents;

6. Solve the discrete analogs of the remaining equations of the model,
recalculate the density and temperature fields using thermodynamic
relations;

7. Assign the corrected pressure field as a new one, return to Step 2 and
repeat the procedure until the iterative process converges.

For the numerical solution of systems of linear algebraic equations of
discrete analogs of control equations and a correction equation for pressure,
the alternating direction method and the parallel direct solver PARDISO,
implemented as part of the Intel MKL mathematical library [13], were used.

3. Calculation results

In the numerical modeling, the problem of the evolution of the dispersed
phase in the case of the pressure flow of a heterophase medium in an in-
clined channel, the development of convective and sedimentation instability,
as well as the effect of an admixture on the flow pattern by changing the
surface tension gradient and redistribution of an admixture between phases
were investigated. A mixture of viscous compressible fluids was taken as
a model heterophase medium. By specifying the thermodynamic and ki-
netic parameters, such a model allows one to describe both emulsions and
suspensions.

The computational domain is taken as a rectangular channel with 0.5×
2 m size. The side walls of the channel are defined by fixed impermeable
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surfaces, that is, the planes serve as adiabatic insulation and there are no
normal and tangential velocity components. Either a pressure drop is set
between the inlet and outlet boundaries of the region, or the constant phase
velocities are set at the inlet boundary. For the temperature of the medium
and the impurity concentration, the Dirichlet conditions at the inlet bound-
ary and the Neumann conditions at the outlet boundary are set. As the
initial distribution of particles of the dispersed phase, a layered distribu-
tion, that is inhomogeneous over the channel cross-section, was specified.
This is because a uniform initial distribution of the phase content, sedimen-
tation processes are sufficiently weak, and instability does not develop or,
depending on the specified pressure drop, develops slowly, the flow is almost
stationary. It should be noted that the distribution of physical and partial
phase densities at the initial instant of time is set consistently with setting
the pressure as a result of the iterative process with allowance for the gravity
field.

The values of physical parameters for the dispersed phase are: ρfs =
880 kg/m3, αs = 1.2 · 10−10 Pa−1, ηs = 0.1 kg/(m s); for the dispersion

phase: ρfl = 998 kg/m3, αl = 4.7 · 10−9 Pa−1, ηl = 0.001 kg/(m s). The
volume fraction of the dispersion phase at the initial time is equal to φ =
0.5. In addition, the following parameters were set: d1 = 0.1 m3/kg, d2 =
0.001 m2/(K s2), Tc = 513 K, Tref = 293 K, a1 = 7 · 10−2 N/m, σ2 =
0.1÷ 2 N/m. The parameter σ2 characterizes the value of the derivative of
the surface tension from the concentration of the impurity in the solution
and determines its surface activity. In the calculations, the values of the
dissipative parameters λ2 = 10−2 kg/(m s2), λ1 = 10−6 and the diffusion
coefficient D = 2 · 10−9 m2/s were used. The calculations were made with
allowance for a change in the friction coefficient associated with a change
in the density of the dispersed phase during the dynamic process of phase
redistribution.

The figures below show the distributions of the density of the number of
particles of the dispersed phase in the two-phase medium n and the relative
velocity of movement of the dispersed and dispersive phases w.

Figure 1 shows the results of modeling a flow in a horizontal channel
in a gravity field. At the inlet boundary of the channel, the horizontal
components of the vectors of velocities of the carrier and dispersed phases
are specified, respectively, u1x = u2x = 0.1 m/s. At the initial moment of
time, there is no phase movement; from the upper to the lower boundary of
the computational domain, the profile of the content of the dispersion phase
is set from 0.8 up to 0.2 with rather a sharp change in the volume content
of phases identified along the central axis of the channel.

The formation of a zone of development of instability is observed, which
reaches 70–80 cm. Further along the flow, in the region of an increased
gradient of the volumetric content of phases, fluctuations rapidly grow and
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Figure 1. Distribution of the specific content of dispersed phase particles in a hor-
izontal channel for the times of 9, 13.5, and 15.6 s

a strongly mixed flow is formed with a displacement of the dispersed phase
towards the channel boundary. In the future, this picture of the development
of instability and the flow of the dispersed phase is constantly reproduced.

The simulation results of the flow in an inclined channel with an inclina-
tion angle of 5◦ and 25◦ are shown in Figure 2 and 3. At the inlet boundary
of the channel, the horizontal components of the vectors of velocities of the
carrier and dispersed phases are respectively, set as u1x = u2x = 0.1 m/s.
At the initial instant of time from the upper to the lower boundary of the
computational domain, a drop is set. The distribution of the content of the
dispersed phase was set similar to the problem without a channel tilt.

Figure 2. Distribution of the specific content of dispersed phase particles in an
inclined channel with an inclination angle of 5◦ for the times of 9, 13.5, and 15.6 s
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Figure 3. Distribution of the specific content of dispersed phase particles in an
inclined channel with an inclination angle of 25◦ for the times of 9, 13.5, and 15.6 s

The development of the sedimentation instability against the hydro-
dynamic background in this formulation of the problem with a gap incli-
nation relative to the gravity field of 5◦ and, especially, 25◦ demonstrates a
rather a strong difference from the development of instability in the prob-
lem for a flow in a horizontal channel. The zone of the initial development
of instability is also present, however, the formation of vortex structures is
observed throughout the entire region of the flow of the water-oil mixture.
Further over the downstream, the initial stratification of the two-phase mix-
ture is retained, and the region of a highly mixed flow is shifted to the lower
part of the channel.

It should be noted that the development of instability in a two-phase flow
in this formulation of the problem significantly differs from the problem with
a given pressure drop. When a constant flow rate is set, the instability de-
velopment zone of the order of 40 cm is observed at the inlet boundary of
the channel. Further along the flow, in the region of an increased phase con-
tent gradient, fluctuations rapidly grow and a strongly mixed flow is formed
with the evolution of the dispersed phase towards the channel boundary.
This picture of the course and development of instability is constantly re-
produced. When a pressure drop is specified, the instability develops in
the entire region of the channel. An increase in the pressure drop leads to
an active drift of convective structures and further the downstream. The
mixture composition becomes almost uniform due to mixing throughout the
channel cross-section.

Figures 4–6 show the effect of an impurity on the flow of a heterophase
medium due to the redistribution of an impurity between the phases (Fig-
ure 4) and due to a change in the surface tension (Figures 5, 6).
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Figure 4. Profiles along the central cross-section of the computational domain
when varying the parameter λ1 = 0.01, 0.1, 1, 1.5, 1.75, 2, 2.05, 2.1 · 10−2

Figure 5. Profiles along the central cross-section of the computational domain
when varying the magnitude of the surface tension gradient for the values σ2 =
10−4, 0.1, 0.5, 1, 2, 2.5, 3, 3.5 N/m
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Figure 6. Profiles of the central vertical cross-section of the computational domain
when varying the magnitude of the surface tension gradient for the values σ2 =
10−4, 0.1, 0.5, 1, 2, 2.5, 3, 3.5 N/m

The results obtained show a weak influence of the effect associated with
different rates of entrainment of impurities by phases on the flow regime
of the heterophase mixture (see Figure 4). At the values of the parameter
λ1 ≤ 10−3, the presence of an impurity does not affect the flow regime; at
the value λ1 > 2 · 10−2, the effect on the flow regime becomes noticeable.

The effect of the impurity on the flow regime of the dispersed mixture
due to a change in the value of the surface tension appears to be more
significant. At σ0 = 7 · 10−2 N/m, for the values σ2 > 1 N/m, a significant
effect on the flow regime is observed (see Figures 5, 6).

Conclusion

In this paper, based on the control volume method, the nonlinear processes
of heat and mass transfer and diffusion in heterophase condensed media in
the presence of an impurity and with allowance for the surface tension of
the dispersed phase is studied. The development of instability of an inho-
mogeneous heterophase flow in inclined channels is considered. The effect
of an impurity on the dynamics of the motion of such media, which leads
to the acceleration of the motion of the dispersion phase and a significant
deceleration of the motion of particles of the dispersed phase in an unsteady
flow regime, is shown.
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