
Bull. Nov. Comp.Center, Comp. Science, 29 (2009), 79–88
c© 2009 NCC Publisher

The uniform constraint solving API for UniCalc

E. S. Petrov

Abstract. The paper describes a programming interface that we have developed
to separate constraints, solvers, and cooperation strategies in a constraint program-
ming toolkit UniCalc. The interface is simple but it allows us to express such con-
straint solving techniques as increasing the level of consistency, various strategies
for exhaustive search, and cooperation of constraint, symbolic and linear interval
solvers.

1. Introduction

Constraint programming is a highly successful technology for solving the
combinatorial problems (scheduling, staff allocation, assignment, routing,
design, etc.) and non-linear constraints. Constraint programming toolkits
are used by companies such as Amazon.com, British Airways, Chevron,
Cisco, Ford, HP, KLM, Lockheed Martin, Nestle, Oracle, Proctor & Gamble,
Renault, SNCF, UPS, and Volvo [1].

The main purpose of constraint programming toolkits is efficient solution
of as wide class of constraints as possible. Because an efficient “solver of
everything” hardly exists, the need for combination and interaction of con-
straint solvers is widely recognized. This area of constraint programming is
called cooperative constraint solving.

UniCalc is a constraint programming toolkit developed by the Russian
Research Institute of Artificial Intelligence and A.P. Ershov Institute of In-
formatics Systems to answer the research requests from customers in indus-
try, science and Russian government. Most of such requests are related to
reliable numerical solution of non-linear design and mathematical modeling
problems.

Currently UniCalc consists of 4 constraint solvers and a number of coop-
eration strategies hard-coded for those solvers. The paper describes the pro-
gramming interface that we have developed to separate constraints, solvers,
and cooperation strategies in UniCalc. We refer to this interface as Uniform
constraint solving application programming interface (UCS API). The basic
UCS API is simple but it allows us to express such constraint solving tech-
niques as increasing the level of consistency, various strategies for exhaustive
search, and cooperation of constraint, symbolic and linear interval solvers.

The paper is organized as follows. Section 2 gives an overview of exis-
tent software that exploits/enables interaction between solvers. Section 3
describes the architecture of the UniCalc system. Section 4 defines the basic



80 E. S. Petrov

UCS API. Section 5 gives usage examples for the basic UCS API. Section 6
concludes the paper.

2. Related work

Solution of non-linear constraints is a popular tool of analysis and modeling
in such areas as finance, oil and gas, energy, and industry. The corresponding
constraint programming toolkits are numerous but each solves efficiently
only the constraints of a certain small class (linear, geometric, etc.).

The need for combination and interaction of constraint solvers is widely
recognized. There have been developed many systems for cooperative con-
straint solving like GMACS [2], BALI [3], Eclipse [6], Prolog IV [7], Meta-S
[4], and CFLP [5].

Though the need for combination and interaction of constraint solvers is
widely recognized, there is no widely accepted API for cooperative constraint
solving. In the above systems, constraint solvers cooperate through ad hoc
APIs that were never released to wider public. In the existent public APIs
(see below), constraint solvers “cooperate” if they use a common format to
store and exchange data, such as constraints, vectors, matrices, etc.

The most constraint-oriented APIs of this type are the COCONUT API
for continuous computer math in C++ [10], the GAMS and AMPL APIs for
non-linear programming in C and FORTRAN [8, 9]. Less specific to con-
straint solving are the Sage API for computer math in the Python language
[11], the Mathematica and MatLab APIs that can be used to do computer
math in C and FORTRAN [12, 13].

The point of this paper is that an API for interaction of constraint solvers
can capture more than sharing a format to exchange data.

3. UniCalc

The constraint programming toolkit UniCalc has been first released by the
Russian Research Institute of Artificial Intelligence (RRIAI) in 1990. Since
that time 5 major releases of UniCalc have been published (the most recent
in 2007). UniCalc has evolved from a single solver called subdefinite calcu-
lations [14] to a system of 4 solvers and a number of efficient cooperation
and search strategies [18].

The first version of UniCalc was released for UNIX in 1987. Actually, this
version was an extended demo for the capabilities of subdefinite calculations.

The next version of UniCalc was released for MS DOS in 1991. This
version could solve only the medium size sets of constraints because of MS
DOS limitations. However, a number of Russian companies were satisfied
the functionality provided by UniCalc and bought this version.



The uniform constraint solving API for UniCalc 81

UniCalc 3.14 was released for MS Windows 3.1 in 1994. The user inter-
face was reworked and computing capabilities were extended, e.g. the size
limitation on the set of constraints was relaxed. In 1995-1996, this version
was ported to MS Windows 95/NT and UNIX dialects for Sun, IBM, HP,
and SGI workstations.

UniCalc 4 was released in 2001. This version was less successful than
UniCalc 3.14 because of lower product quality that was caused by a sig-
nificant rotation of the UniCalc developers in 2000-2001. Many developers
moved from RRIAI to other software companies.

UniCalc 5 was released in 2002 and since that time a number of mi-
nor releases followed in 2004-2007. The user interface was reworked, the
parser of constraints was sped up 100-1000x for large sets of constraints,
new solvers were implemented for linear constraints, and cooperation and
search strategies were also implemented.

UniCalc has been used by many Russian companies, such as AvtoVAZ,
Novosibirsk Chemical Concentrates Plant, Beriev Aircraft Company, and
Kamov Design Bureau. UniCalc has also been used by French companies
Dassault Aviation and Dassault Systemes. The library for interval calcula-
tions from UniCalc has been integrated into the constraint logic program-
ming system Eclipse [6].

As of 2009, UniCalc is the only constraint programming toolkit for solu-
tion of non-linear constraints that is 100% designed and developed in Russian
Federation.

Figure 1 shows the architecture of UniCalc. Boxes show the compo-
nents of UniCalc, the text explains which data are passed between compo-
nents, the arrows show in which direction the data are passed. The solvers
are subdefinite calculations, the interval Gauss-Seidel solver, interval Sim-
plex solver, and symbolic occurrence reducer. Subdefinite calculations are
a propagation-based solver for non-linear constraints. The interval Gauss-
Seidel solver and interval Simplex solver implement the corresponding meth-
ods of interval linear analysis [16, 15].

The strategies are 3B consistency [17], pre-processing with occurrence re-
ducer, subdefinite calculations mixed with exhaustive search, fixed point for
any combination of interval Gauss-Seidel, interval Simplex, and subdefinite
calculations.

4. The Basic UCS API

In UniCalc, we use the UCS API to separate constraint solving from con-
straint solving strategies (constraint solving applications in general). The
strategies work with variables, constraints, sets of constraints, and constraint
solvers. These objects are represented by handles of type UCS HANDLE.
A few of these handles are implementation specific named constants; most



82 E. S. Petrov

Figure 1. The architecture of UniCalc

are created by the strategy.
The strategies can do around 20 basic actions that correspond to the ba-

sic UCS API entries. Normally the actions produce a handle, or a
UCS ENUM value (UCS YES, UCS NO, UCS UNCERTAIN, or
UCS ERROR), or an index (non-negative integer).

The actions on invalid combinations of objects produce either
UCS NO OBJECT (if the action produces a handle), or UCS ERROR (oth-
erwise). The strategies can use a service function to get a human-readable
message that explains the error.

A solver S can be used on a set C of constraints in 3 ways.

• Check whether S is relevant to solving C with sCheckRelevant(S, C)

• Apply S to C with sApply(S, C)

• Ask S to indicate the “freest” variable in C with sFindFreest(S, C)

The solvers are free to change C in any way and indicate any variable as
the freest. The expected behavior is however to preserve the solution space
of C and to indicate the least controlled variable as the 4 solvers available
in UniCalc do (see below).



The uniform constraint solving API for UniCalc 83

The strategies can create new solvers with sNew(Relevant, Apply, Freest)
given the pointers to the functions Relevant, Apply, Freest that take a set
of constraints and return a value of the corresponding type. If Relevant
is NULL, the new solver is relevant to any set of constraints. If Apply is
NULL, the new solver always returns UCS ERROR. If Freest is NULL, the
new solver always returns UCS NO OBJECT as the freest variable.

The solvers available in UniCalc are represented by 4 named handles.
These handles are specific to our implementation of the UCS API.

• Subdefinite calculations UCS SUBDEFINITE CALC

• Interval Gauss-Seidel solver UCS GAUSS SEIDEL

• Interval Simplex solver UCS SIMPLEX

• Symbolic occurrence reducer UCS OCCURENCE REDUCER

Usually, a set of constraints is passed to a strategy as a parameter. A set
of constraints can also be created from a zero-terminated string text with
pCreate(text). If text starts with “file://”, the rest of it must point to an ex-
istent file, and the set of constraints is read from there. Otherwise text must
be a set of constraints in the UniCalc language, e.g. pCreate(“x=cos(x+y);
y=sin(x-y);”). The empty set of constraints is created with pCreate(“”). See
[18] and the references therein for a description of the UniCalc language.

The strategies can test whether the set C of constraints has a unique
solution with pCheckUnique(C), or has no solution with pCheckInconsis-
tent(C), or has a small (“small” is configured outside the UCS API) so-
lution space with pCheckSmallSpace(C). The first two tests may return
UCS UNCERTAIN if answering definitely would take much resource.

The strategies can query the number of variables in a set C of constraints
with vNumberOf(C), get the i-th variable in C with vGet(C, i), make the
bounds on variables V and W disjoint with vMakeDisjoint(V, W), assign
the bounds on a variable W to a variable V with vAssignBounds(V, W).

The strategies can query the number of constraints in a set C of con-
straints with cNumberOf(C), get the i-th constraint in C with cGet(C, i),
insert and delete a constraint c into/from a set C of constraints with cIn-
sert(C, c) and cDelete(C, c).

The strategies can get the index of a variable or constraint X in a set C of
constraints with pFind(C, X). The strategies can copy an object O (except
solvers) with oCopy(O) and close a handle to an object O with oClose(O).

Memory and concurrency management for the UCS API objects are
implementation-specific. UniCalc implements a reference counting mech-
anism to decide when the memory occupied by a particular object can be
freed. UniCalc also use handles to serialize the concurrent write access to
the corresponding objects.



84 E. S. Petrov

5. Examples of using the UCS API

The basic UCS API is simple but allows us to express increment of the
level of consistency (so called “3B consistency”), pre-processing with occur-
rence reducer, subdefinite calculations mixed with exhaustive search, fixed
point for any combination of interval Gauss-Seidel, interval Simplex, and
subdefinite calculations. In this section, we give a simplified code for these
strategies.

5.1. Symbolic pre-processing

Symbolic pre-processing is a sequence of the symbolic occurrence reducer
and a solver. Symbolic pre-processing improves the bounds calculated by
propagation-based solvers like UCS SUBDEFINITE CALC and enlarges the
set of constraints available to linear solvers like UCS GAUSS SEIDEL and
UCS SIMPLEX.

The corresponding function symbolic prep is straightforward. To keep
the error message, we return after an error immediately.

UniCalc uses this strategy for S = UCS SUBDEFINITE CALC, S =
UCS GAUSS SEIDEL, and S = UCS SIMPLEX.

void symbolic_prep(UCS_HANDLE S, UCS_HANDLE C)
{

if (sApply(UCS_OCCURENCE_REDUCER, C) == UCS_ERROR)
return;

sApply(S, C);
}

5.2. 3B consistency

3B consistency is a constraint solving technique that tries to “trim” the
bounding box found by a constraint solver with the help of reasoning by
contradiction.

The function refuteBounds(S, C, V, i) checks, with the help of the solver
S, whether the bounds on the variable V are consistent with the bounds on
the i-th variable in C. The function 3b(S, C) enforces 3B consistency with
the help of the solver S. For simplicity, we omit error handling.

UniCalc uses this strategy for S = UCS SUBDEFINITE CALC.

int refuteBounds(
UCS_HANDLE S, UCS_HANDLE C, UCS_HANDLE V, int i)

{
int refute = 0;
UCS_HANDLE copy = oCopy(C);
vAssignBounds(vGet(copy, i), V);



The uniform constraint solving API for UniCalc 85

sApply(S, copy);
refute = pCheckInconsistent(copy) == UCS_YES;
oClose(copy); // also closes the handle returned by vGet
return refute;

}

void _3b(UCS_HANDLE S, UCS_HANDLE C)
{

while (1) {
int i, loop = 0;
for (i = 0; i != vNumberOf(C); i++) {

UCS_HANDLE vari = vGet(C, i);
UCS_HANDLE V = oCopy(vari), W = oCopy(vari);
vMakeDisjoint(V, W);
if (refuteBounds(S, C, V, i)) {

vAssignBounds(vari, W);
sApply(S, C);
loop = 1;

} else if (refuteBounds(S, C, W, i)) {
vAssignBounds(vari, V);
sApply(S, C);
loop = 1;

}
oClose(vari);
oClose(V);
oClose(W);

}
if (!loop) break;

}}

5.3. Exhaustive search and subdefinite calculations

Exhaustive search is a common-knowledge constraint solving technique that
applies reasoning by case until all solutions to the set of constraints are
isolated.

The function exhaustiveSearch(S, C) implements the breadth-first search
for solutions to the set C of constraints using the solver S to discard boxes
that do not contain solutions to C. The strategy assumes that S indicates
the same variable as the freest in C and its copy. For simplicity, we omit
error handling.

UniCalc uses exhaustive search for S = UCS SUBDEFINITE CALC.

#include <list> // use STL template list
void exhaustiveSearch(UCS_HANDLE S, UCS_HANDLE C)



86 E. S. Petrov

{
std::list<UCS_HANDLE> space, solutions, invariant;
space.push_back(C);
while (!space.empty()) {

UCS_HANDLE C = space.front();
space.pop_front();
if (sCheckRelevant(S, C) != UCS_YES) {

invariant.push_back(C);
continue;

}
sApply(S, C);
if (pCheckUnique(C) == UCS_YES) {

solutions.push_back(C);
} else if (pCheckInconsistent(C) == UCS_YES) {

oClose(C);
continue;

} else {
UCS_HANDLE copy = oCopy(C);
UCS_HANDLE freestC = sFindFreest(S, C);
UCS_HANDLE freestCopy = sFindFreest(S, copy);
vMakeDisjoint(freestC, freestCopy);
oClose(freestC);
oClose(freestCopy);
space.push_back(C);
space.push_back(copy);

}}}

5.4. Fixed point of linear solvers and subdefinite calculations

A fixed point of a set of solvers is another common-knowledge constraint
solving technique for solvers that share the same representation of con-
straints.

The function fixedPoint(S, nS, nLoop, C) tries to calculate the fixed point
for the set S of nS solvers. If the fixed point is not reached in nLoop steps,
then the strategy returns the approximation obtained after the nLoop-th
step. For simplicity, we omit error handling.

UniCalc uses fixed point
S[] = {UCS SUBDEFINITE CALC, UCS GAUSS SEIDEL,

UCS SIMPLEX},
S[] = {UCS SUBDEFINITE CALC, UCS GAUSS SEIDEL}, and
S[] = {UCS SUBDEFINITE CALC, UCS SIMPLEX}.
void fixedPoint(

UCS_HANDLE S[], size_t nS, size_t nLoop, UCS_HANDLE C)



The uniform constraint solving API for UniCalc 87

{
while (nLoop) {

int i;
for (i = 0; i != n; i++) {

if (sCheckRelevant(S[i], C) == UCS_YES) {
sApply(S[i], C);
nLoop = 0;

}}}}

6. Conclusion

In this paper, we introduced the Uniform constraint solving application pro-
gramming interface (the UCS API). The basic UCS API consists of around
20 entries but allows us to express such constraint solving techniques as
3B consistency, various strategies for exhaustive search, cooperation of con-
straint, symbolic and linear interval solvers.

We would like that, having read this paper, the reader keep the following
two points about API’s for the real world cooperative constraint solving:

• An API for cooperative constraint solving can be simple.

• An API for cooperative constraint solving can express more than shar-
ing data format.

We will focus our future work on a language that will allow the users of
UniCalc to specify constraint solving strategies along with the constraints
to be solved. This language will give to the users of UniCalc more freedom
than just selection from the set of hard-coded constraint solving strategies.

We thank the Russian Research Institute of Artificial Intelligence and
A.P. Ershov Institute of Informatics Systems for supporting this work.

References

[1] van Beek P., Walsh T. Principles of Constraint Programming and Constraint
Processing: A Review // AI Magazine. – 2004. – Vol. 25, N 4.

[2] Kleymenov A., Semenov A. Using a Cooperative Solving Approach to Global
Optimization Problems // Lect. Notes Comput. Sci. – Berlin: Springer, 2005.
– Vol. 3478. – P. 86–100.

[3] Monfroy E. A Solver Collaboration in BALI // Proc. IJCSLP 1998. – The
MIT Press, 1998. – P. 349–350.

[4] Frank S., Hofstedt P., Mai P.R. A Flexible Meta-solver Framework for Con-
straint Solver Collaboration // Lect. Notes Comput. Sci. – Berlin: Springer,
2003. – Vol. 2821 – P. 520–534.



88 E. S. Petrov

[5] Estevez-Martin S., Fernandez A. J., Hortala-Gonzalez T., Saenz-Perez F. A
Proposal for the Cooperation of Solvers in Constraint Functional Logic Pro-
gramming // Electronic Notes in Theor. Comput. Sci. (ENTCS) archive. –
Elsevier Science Publishers, 2007. – Vol. 188. – P. 37–51.

[6] Apt K. R., Wallace M. Constraint Logic Programming using Eclipse. –
Cambridge University Press, 2007. – Open source project Eclipse Web site
http://87.230.22.228.

[7] Colmerauer A. Le Manuel de Prolog IV. – PrologIA: 1996.

[8] Brooke A., Kendrick D., Murows A. Gams Release 2.25: A User’s
Guide/Book. – Course Technology, 1992. – The GAMS project Web site
http://www.gams.com.

[9] Fourer R., Gay D. M., Kernighan B. W. AMPL: A Modeling Language for
Mathematical Programming. – Duxbury Press, 2003.

[10] The COCONUT Project. –
Web site http://www.mat.univie.ac.at/users/coconut.

[11] The Sage Open Source Project. –
Web site http://www.sagemath.org/doc/reference.

[12] Wolfram S. The Mathematica Book. – Cambridge University Press, 1999. –
Online manual http://reference.wolfram.com

[13] Hanselman D., Littlefield B. R. Mastering MATLAB 6. – Prentice Hall, 2000.
– Online manual http://www.mathworks.com/access/helpdesk/help/techdoc

[14] Narin’yani A. S. Sub-Definiteness, Over-Definiteness, and Absurdity in Knowl-
edge Representation (Some Algebraic Aspects) // Proc. Conf. Artificial Intel-
ligence Applications 1985. – IEEE Computer Society/North-Holland, 1985. –
P. 142–143

[15] Neumaier A., Shcherbina O. Safe bounds in linear and mixed-integer program-
ming // Math. Programming. – 2004. – Vol. 99 – P. 283–296.

[16] Kearfott B. Preconditioners for the interval Gauss-Seidel method // SIAM J.
on Numerical Analysis. – 1990. – Vol. 27, Iss. 3. – P. 804–822.

[17] Collavizza M., Deloble F., Rueher M. Comparing partial consistencies // J.
Reliable Computing. – 1999. – Vol. 5. – P. 1–16.

[18] Botoeva E., Kostov Yu., Petrov E. A reliable linear constraint solver for the
UniCalc system // Joint Bull. of NCC&IIS. Ser.: Comput. Sci. – 2006. – Iss.
24. – P. 101–111.


