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Numerical solution to first boundary-value
problem for axially symmetric Poisson equations

using finite element method

V.O. Pirogov, M.V. Urev

Abstract. Unlike common approaches this paper does not rely on results for 3D
problems. Degeneration of the operator on a part of the border requires the use
of the corresponding weight functional spaces to analyze a variational statement to
build a difference scheme and to prove the convergence. A result of convergence
is proven using piecewise linear finite elements. The estimate of the convergence
rate of the approximate solution to the exact one is not worse than in the case of
non-degenerate equation. A numerical example that confirms the estimate is given.

1. Introduction

This paper deals with the first boundary value problem for the following
degenerating elliptic equation:

A(u) ≡ −∂2u

∂x2
− 1

y

∂

∂y

(
y
∂u

∂y

)
= f(x, y), (1)

in the domain D, which lies in the top half-plane y > 0. The boundary Γ
of the domain D consists of a section Γ0 = [a, b] of the axis y = 0 and a
smooth curve Γ1 with its ends at the points a and b. To exclude possible
singularities in a junction of Γ1 and Γ0 and to simplify a numerical analysis,
we would assume that there exists d > 0 such that a subregion D ∩ (y < d)
is a rectangle.

Equation (1) is a common axially symmetric Poisson equation in the
cylindrical coordinates. Various approaches to solution of this problem were
considered in a numerous publications [1–3].

The main feature of the problem in question is its degeneration on part
of the border Γ0. This factor must be taken into account while formulating
a variational statement, building a variation-difference scheme using a finite
element method and when analyzing convergence. To analyze degenerating
elliptical equations it is convenient to use appropriate weighted Sobolev’s
spaces [4].

First, let us rewrite equation (1) in the divergent form to apply a varia-
tional method
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− ∂

∂x

(
y
∂u

∂x

)
− ∂

∂y

(
y
∂u

∂y

)
= yf(x, y). (2)

The equation (2) is elliptic in the domain Dδ = D ∩ (y > δ), δ > 0,
and it degenerates on the axis y = 0. Note that depending on exponential
order of degeneration, the boundary values may be required either on the
whole border Γ or on Γ1 only, while Γ0 would be free of the boundary
conditions. The case considered has the so-called “strong degeneration”
and homogenous boundary conditions are required on Γ1, only.

To state and to analyze the first boundary value problem for equation
(2), we use weighted spaces H1

y (D), H̃2
y (D) and their subspaces.

Let H1
y (D) denote the space of measurable in D functions having all the

distributional derivatives of the first order in D for which the following value
is finite:

‖u‖H1
y(D) =

(∫
D

y(u2
x + u2

y) dD +
∫

D
yu2 dD

)1/2
.

The former value is a norm in H1
y (D). Similarly, the space H̃2

y (D) is defined
by finiteness of the value

‖u‖H̃2
y(D) =

( ∫
D

y(u2
xx + 2u2

xy + u2
yy) dD +

∫
D

y−1u2
y dD + ‖u‖2

H1
y(D)

)1/2
.

We will use ‖ · ‖ to denote the norm in L2(D).
Next, C∞0 (D) denotes a class of finite infinitely differentiable functions

in D,
◦
C∞Γ1

(D) denotes a linear manifold of infinitely differentiable functions
in D, which vanish in a strip adjacent to the boundary Γ1 (a strip is unique
for each function), and all the functions whose derivatives (including the
function itself) can be continuously extended in D. Finally, E(D) denotes

linear space of functions in
◦
C∞Γ1

(D) such that uy = 0 on Γ0.

Now we are ready to define the working spaces. Let
◦
H1

y(D) be the closure

of the lineal C∞0 (D) in the norm of H1
y (D) and

◦
H̃2

y(D) be the closure of the
linear space E(D) in the norm of H̃2

y (D).

Lemma 1. The function from H1
y (D) belongs to the space

◦
H1

y(D) if and
only if its trace on the border Γ1 of the domain D is zero.

Proof. For any small δ > 0, a space
◦
H1

y(Dδ) of restricted to Dδ = D ∩
(y > δ) functions from

◦
H1

y(D) is equivalent to the common Sobolev space
◦
H1

Γ1,δ(Dδ) which is defined as the closure of the lineal
◦
C∞Γ1,δ(Dδ) in the norm

H1(Dδ). The elements of the former space have zero trace on Γ1,δ [5, p. 152].
This follows from the equality u|Γ1,δ

= 0, where Γ1,δ = Γ1 ∩ (y ≥ δ).
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On the line of degeneration Γ0, a function
◦
H1

y(D) can have any finite

value. Also it is possible that functions from
◦
H1

y(D) tend to infinity while
y → 0 (see [6]).

Lemma 2. Let u ∈
◦
H̃2

y(D). Then uy

∣∣
Γ0
∈ L2(Γ0) and uy

∣∣
Γ0

= 0.

The proof of this lemma can be found in [7, 8].

Lemma 3. The following inequality holds for u ∈ C∞0 (D)∫
D

σα(y)u2(x, y) dD ≤ C(α)
∫

D
y2αu2

y dD, (3)

where

σα(y) =

{
y2α−2, α 6= 1/2,

y−1| ln y|−2−ε, α = 1/2, ε > 0,

C(α) =

{
4/(2α− 1)2, α 6= 1/2,

C > 0, α = 1/2.

The proof of this lemma can be found in [9, p. 513–568].

Lemma 4. Any function u ∈
◦
H1

y(D) has zero trace on Γ1.

Proof. For any small δ > 0, the space
◦
H1

y(Dδ) of functions from
◦
H1

y(D)

restricted to Dδ = D∩ (y > δ) is equivalent to the Sobolev space
◦
H1

Γ1,δ(Dδ)

which is defined as closure of the lineal
◦
C∞Γ1,δ(Dδ) in the manifold norm

H1(Dδ) whose elements have zero trace on Γ1,δ, see [5, p. 148]. This leads
to the equality u|Γ1,δ

= 0 where Γ1,δ = Γ1 ∩ (y ≥ δ).

2. Variational statement

We define the weak solution to the first boundary-value problem for equation
(1) in the domain D as a function u ∈

◦
H1

y(D), for which the following integral
equality holds:

∀v ∈
◦
H

1
y(D) a1(u, v) = l1(v), (4)

where

a1(u, v) =
∫

D
y∇u · ∇v dD, l1(v) =

∫
D

yfv dD, f ∈ L2,y(D),

L2,y(D) =
{
f : y1/2f ∈ L2(D)

}
, ∇w =

(∂w

∂x
,
∂w

∂x

)
.
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Theorem 1. Let f ∈ L2,y(D). Then the solution of the variational problem
(4) exists, is unique, and the following estimate holds:

‖u‖H1
y(D) ≤ C‖f‖L2,y(D). (5)

Proof. To prove the theorem, let us check the conditions of the Lax–
Milgram lemma on elements of the dense set C∞0 (D) in the space

◦
H1

y(D).

First we check
◦
H1

y(D)-coercivity of the bilinear form a1(·, ·). By using
inequality (3) with α = 1, which is analogous to the Friedrichs inequality,
we obtain

a1(u, u) =
∫

D
y|∇u|2dD ≥ C1

[∫
D

y|∇u|2 dD +
∫

D
y2|∇u|2 dD

]
≥ C2

[∫
D

y|∇u|2 dD +
∫

D
u2 dD

]
≥ C3 ‖u‖2

H1
y(D). (6)

Therefore, the bilinear form a1(u, v) is
◦
H1

y(D)-coercive.
Continuity of the bilinear form a1(u, v) in the norm of the space H1

y (D)
on C∞0 (D)×C∞0 (D) and the linear form l1(v) on C∞0 (D) are obtained from
the Cauchy–Bunyakovskii inequality:

|a1(u, v)| =
∣∣∣∣∫

D
y∇u · ∇v dD

∣∣∣∣ ≤ (∫
D

y|∇u|2dD

)1/2(∫
D

y|∇v|2dD

)1/2

≤ ‖u‖H1
y(D)‖v‖H1

y(D). (7)

|l1(v)| =
∣∣∣∣∫

D
yfv dD

∣∣∣∣ ≤ ‖y1/2f‖‖y1/2v‖ ≤ C4‖v‖H1
y(D). (8)

Finally, all the conditions of the Lax–Milgram lemma are checked on ele-
ments of the dense set C∞0 (D) in

◦
H1

y(D). The correctness of these conditions

on the elements of
◦
H1

y(D) is determined by a common closure procedure in
inequalities (6)–(8).

We define the strong solution to the first boundary value problem in the

domain D for equation (1) as a function u ∈
◦
H̃2

y(D), for which the following
equality holds:

∀v ∈
◦
H̃2

y(D) a2(u, v) = l2(v), (9)

where

a2(u, v) =
∫

D
yA(u)A(v) dD, l2(v) =

∫
D

yA(v) fdD, f ∈ L2,y(D).
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Theorem 2. Let f ∈ L2,y(D). Then the solution u0 of variational problem
(9) exists, is unique, and the following estimate holds:

‖u0‖H̃2
y(D) ≤ C ‖f‖L2,y(D). (10)

Proof. We again check the conditions of the Lax–Milgram lemma for prob-

lem (9) on elements of the space E(D) dense in
◦
H̃2

y(D).

The
◦
H̃2

y(D)-coercivity of the bilinear form a2(u, v) is proved by the in-
equality

∀u ∈
◦
H̃2

y(D) a2(u, u) ≥ γ‖u‖2
H̃2

y(D)
, γ > 0. (11)

Let u ∈ E(D). Then

a2(u, u) =
∫

D
y(A(u))2 dD =

∫
D

y
[
(y−1(yuy)y)2 + 2y−1(yuy)yuxx + u2

xx

]
dD

=
∫

D
y(y−1(yuy)y)2 dD + 2

∫
D

(yuy)yuxx dD +
∫

D
yu2

xx dD. (12)

We transform the first term in (12) using integration by parts and the
fact that all the derivatives of u on Γ1 are equal to zero and uy vanishes
on Γ0: ∫

D
y(y−1(yuy)y)2 dD =

∫
D

y[u2
yy + 2y−1uyuyy + (y−1uy)2] dD

=
∫

D
yu2

yy dD +
∫

D
[(u2

y)y + y−1u2
y] dD

=
∫

D
yu2

yy dD +
∫

D
y−1(yu2

y)y dD

=
∫

D
yu2

yy dD +
∫

D
y−1u2

y dD.

By integrating the second term in (12) twice by parts, at first with respect
to y and then with respect to x, we arrive at

2
∫

D
(yuy)yuxx dD = −2

∫
D

yuyuxxy dD = 2
∫

D
yu2

xy dD.

Finally, we obtain

a2(u, u) =
∫

D
y(u2

xx + 2u2
xy + u2

yy) dD +
∫

D
y−1u2

y dD. (13)

This formula shows that the value
√

a2(u, u) is equal to the seminorm of

the function u in the space
◦
H̃2

y(D).
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Let us prove that in the space
◦
H̃2

y(D) the seminorm defined in (13) is
equivalent to the norm. It is easy to notice that inequality (3) holds for the
functions u ∈ E(D) in the case 2α − 1 > 0. Applying it with 2α = 3 to
u ∈ E(D) we obtain∫

D
y−1u2

y dD ≥ C1

∫
D

y3u2
y dD ≥ C2

∫
D

yu2 dD, (14)∫
D

y−1u2
y dD ≥ C3

∫
D

yu2
y dD. (15)

To finish the proof of coercivity inequality (11), we need to prove that∫
D

yu2
x dD ≤ 1

2

(∫
D

yu2
xx dD +

∫
D

yu2 dD
)
. (16)

Indeed, ∫
D

yuxux dD = −
∫

D
yuxxu dD = −

∫
D

(y1/2uxx)(y1/2u) dD

≤
(∫

D
yu2

xx dD
)1/2(∫

D
yu2 dD

)1/2

≤ 1
2

(∫
D

yu2
xx dD +

∫
D

yu2 dD
)
.

Using inequalities (14)–(16) to attain the lower estimate for seminorm de-
fined in (13), we obtain (11) for each u ∈ E(D).

Continuity of the bilinear form a2(·, ·) and of the linear functional l2(·)
follows from equality (13) and the Cauchy–Bunyakovskii inequality:

|a2(u, v)| ≤ |a2(u, u)|1/2|a2(v, v)|1/2 ≤ ‖u‖H̃2
y(D)‖v‖H̃2

y(D), (17)

|l2(v)| =
∣∣∣∫

D
yfA(v) dD

∣∣∣ ≤ ( ∫
D

yf2 dD
)1/2( ∫

D
y(A(v))2 dD

)1/2

≤ M‖v‖H̃2
y(D), (18)

where u, v ∈ E(D).

Passing to the limit proves inequality (10) for any u ∈
◦
H̃2

y(D), inequality

(18) for any v ∈
◦
H̃2

y(D), and inequality (17) for any u, v ∈
◦
H̃2

y(D).

3. Approximation with linear functions

Let for the domain D, the grid domains Dex
h (D ⊂ Dex

h ) and Din
h (Din

h ⊂
D) with sets of nodes R̄ex

h and R̄in
h be built [10], Dex

h is a minimal set of
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triangulation elements containing D with its boundary and Din
h is a maximal

set of triangulation elements containing D without its boundary. We assume
that in the grid domains Dex

h and Din
h , the triangles are regular adjacent to

Γ0. In the case of an irregular grid, we assume that the grid domains Dex
h

and Din
h satisfy additional regularity conditions (e.g. see [10, p. 69]).

Note that any function u ∈ H2
y (D) can be considered continuous on D.

Indeed, a function u ∈ H2
y (D), considered for any ε > 0 in the subdomain

Dε = D \ (y ≤ ε) is an element of Sobolev’s space H2(Dε), whose elements
are continuous in Dε according to Sobolev’s embedding theorem. This and
Lemma 2 bring about continuity of the function u in D and the fact that
u = 0 on Γ0.

For a function u ∈
◦
H2

y(D), we define a piecewise-linear function ũ

ũ(x, y) =

{ ∑
(xi,yi)∈R̄ex

h
u(xi, yi)ϕi(x, y), y > h,∑

(xi,yj)∈R̄ex
h

u(xi, yj)ϕi(x, y), y ≤ h,
(19)

where the function ϕi(x, y) is linear in each triangulation element and equal
to 1 in the node (xi, yi) and to 0 in all other nodes. The function ũ(x, y) is

continuous and belongs to
◦
H̃2

y(D
ex
h ).

Assume that for the domain D considered, it is possible to continue any

function from the weight spaces
◦
H1

y(D) and
◦
H̃2

y(D
ex
h ) saving its norm and

class of smoothness on the whole half-plane R2
+ = {(x, y) : y > 0}.

Theorem 3. Let u ∈
◦
H̃2

y(D
ex
h ) be continued on R2

+ with its norm and
smoothness class saved. Let also the grid domain Dex

h be regular. Then the
following inequalities hold :

‖u− ũ‖L2,y(Dex
h ) ≤ Ch2‖u‖H̃2

y(D), (20)

‖u− ũ‖H1
y(Dex

h ) ≤ Ch‖u‖H̃2
y(D). (21)

The proof of this theorem is analogous to the appropriate proof in [10]
except in this case the result should be first proven for the dense set E(D)
and then completed with passing to the limit.

4. A numerical example

As a numerical example, we present the results of numerical solution of
the first boundary value problem for equation (1) in a unit square D =
(0, 1)× (0, 1). In this case Γ0 =

{
(x, 0), x ∈ [0, 1]

}
and Γ1 = Γ \ Γ0.
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Let the domain D be partitioned into squares with vertices{
(xi, yj) : xi = ih, yj = jh, i, j ∈ 0, N + 1

}
.

We prepare triangulation by splitting the mesh cells into triangles along
the lines parallel to x = y. Next, we define finite elements φi,j , i ∈ 1, N ,
j ∈ 2, N , as functions linear in each of the triangulation elements, whose
values are equal to 1/h at the node (xi, yj) and to zero at all other nodes.
Elements adjacent to the axis y = 0, i.e., φi,1, i ∈ 1, N we define as linear
functions, whose values are equal to 1/h in (xi, y1), (xi, y0) and to zero in
all other nodes.

To find the approximate solution

uh(x, y) =
N∑

j=1

N∑
i=1

hui,jφi,j(x, y), (22)

we need to calculate the coefficients ui,j from the system of linear equations

a1(uh, φk,l) = l1(φk,l), k, l ∈ 1, N. (23)

The matrix of the linear system is the following:

Aū = f, (24)

where ū = (ui,j), A = (ai,j,k,l) = (a1(φi,j , φk,l)), f = (fk,l) = (l1(φk,l)),
i, j, k, l ∈ 1, N .

Finally, we have the following finite difference scheme for problem (23):

−
y3

j+1 − 2y3
j + y3

j−1

6h4
(ui+1,j − 2ui,j − ui−1,j)−

y2
j+1 − y2

j

2h3
(ui,j+1 − ui,j)−

y2
j − y2

j−1

2h3
(ui,j − ui,j−1) = fi,j , j > 1,

−
y3

j+1 − 2y3
j + y3

j−1

6h4
(ui+1,j − 2ui,j − ui−1,j)−

y2
j+1 − y2

j

2h3
(ui,j+1 − ui,j) = fi,j , j = 1.

Note that the matrix of linear system (24) is symmetric and has 5-diago-
nal structure. In addition, it belongs to the class of the so-called M-matrices
(see [11, p. 41]).

As a test problem, we have solved the first boundary-value problem for
equation (1) with
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f(x, y) = −(4− 16y2)x2(1− x2)− y2(1− y2)(2− 12x2).

The exact solution in this case is u(x, y) = x2(1− x2)y2(1− y2).
Linear system (24) was solved using the conjugate gradients method

with a preconditioner. The preconditioner is based on an incomplete block
factorization method with a row sum compensation [11, p. 162]. The stop
criterion for iterations was the reduction of the residual by 10 orders in
magnitude. To check the convergence rate, the problem was solved on a
sequence of nested grids. The first grid had N = 10 and the parameter N
doubled each following one.

The table below shows the values δN = ‖u−u2h‖L2,y(D)/‖u−uh‖L2,y(D),
where uh is solution of the problem on a grid with the step h = 1/N and u
is the exact solution.

N 20 40 80 160 320 640 1280
δN 3.78 3.88 3.91 3.94 3.94 3.96 3.96

The results are in correspondence with theoretical estimate (20) and demon-
strate the second order of convergence in the norm of the space L2,y(D).
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