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The results of numerical simulation of the Lena
River runoff with the assimilation of satellite data:

summer 2008∗

G.A. Platov, E.G. Klimova

Abstract. The paper discusses the results of preliminary experiments to test the
quality of the data assimilation procedure based on the use of ensemble Kalman
filter applied to the basin of the Laptev Sea in the vicinity of the Lena Delta. As
perturbation we used the river runoff closure, and as the true values – the surface
salinity, taken from a reference experiment with the included river inflow. The
comparison of two numerical experiments with assimilation of simulated salinity
data and without assimilation shows that the proposed assimilation procedure is
able to restore adequately the salinity field.

1. Introduction

Until recently, oceanographic observations were sporadic. Currently, there
is a large number of regular satellite observations (the sea surface tempera-
ture, the sea surface elevation), as well as data being obtained in real time
by autonomous Argo systems. Unfortunately, these observations are more
complicated in case of the Arctic region. For example, satellite data are
useful only if they are received in the summer period in the ice-free area.
The winter recorded values characterize the surface of ice and snow, but not
the ocean. In addition, the satellite trajectories around the Earth are, as a
rule, unfavorable for obtaining reliable data for such high latitudes. Appli-
cation of floating buoys is also limited because they require to make regular
ascents to the surface to transmit the data records, but under the ice cover
it is technically impossible. Nevertheless, the amount of regular information
is continuously growing, which allows us to consider the problem of esti-
mating the ocean state with the help of a mathematical model describing
the dynamics of the shelf seas of the Arctic Ocean with allowance for the
observational data, i.e., the problem of data assimilation. It is commonly
understood that the data assimilation is a joint account of observations and
results of numerical implementation of a mathematical model to obtain the
most accurate assessment of spatial and temporal distribution of the quan-
tities.
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Currently, data assimilation algorithms are widely used for modeling
processes in the ocean. There are many techniques of data assimilation,
but in terms of the mathematical formulation of the problem, they all use
one of the two approaches: variational (3DVAR, 4DVAR) or stochastic (the
Kalman filter). At present, operational ocean data assimilation systems use
both 4DVAR [31] and the Kalman filter [24, 33] methods, and, moreover,
some versions of the multi-element optimum interpolation are also in use
(see, for example, [29]). In Russia, the creation of data assimilation systems
for the ocean is also the focus of the Russian Hydrometeorological Center
from several research groups. Researchers have developed a system for the
ocean data assimilation which uses a variational approach (3DVAR) [28].
The data assimilation system for the ocean based on the variational ap-
proach (4DVAR) is developed by specialists from the Institute of Numerical
Mathematics (Moscow) [1].

The Kalman filter algorithm is currently one of the most popular ap-
proaches to solve the data assimilation problem. To obtain the optimal
estimate of the state vector according to observations and predictive model,
which is nonlinear in general, the solution of the equation for the conditional
mean is required [17]. This problem cannot be solved in general form, there-
fore there are various simplified versions of the problem, which allow us to
reduce it to the equations for the conditional mean and covariance. These
simplifications are based on the linearization relative to the reference state
or on the expansion in power series of the estimation error (truncated second
order filters). Moreover, there may be used an additional assumption that
the considered random fields are Gaussian [17].

The most commonly used area of research into the application of the
Kalman filter is the ensemble approach, first proposed in [6]. It was further
developed in [7, 8, 13–15, 21, 22]. In the ensemble approach, the covariance
matrices of estimation errors are computed for nonlinear prognostic models.
The ensemble Kalman filter is a version of the extended Kalman filter, in
which covariances of the forecast errors are estimated using the ensemble of
forecasts. Along with this approximate description it was proposed to use
suboptimal algorithms [11] in which the probability averaging is replaced by
time-averaging, assuming random fields having temporal ergodicity. This
paper suggests an algorithm based on this approach to solve the problem
of data assimilation of the ocean observations. The development of algo-
rithms for data assimilation for modeling processes in the ocean was based
on our experience of data assimilation systems for the atmospheric pollution
model [19,20].

Evaluation of the algorithm developed was carried out by means of nu-
merical experiments with model-simulated data (the so-called “identical
twin” experiments). It means that numerical experiments were carried out
on assimilation of data with a “real” space-time distribution. They were
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based upon the AARI data of the International Polar Year, 2007–2008 [30],
and the Pathfinder NOAA/AVHRR archive of satellite observations for the
same period.

2. The data assimilation method

The main technique involves the data assimilation algorithm, based on the
theory of the optimal Kalman filtering. Let time dependence of the variable
xfk be described by the equation

xfk = Ak−1(xfk−1), (1)

where Ak−1 is the operator of a prognostic model. The “true” value of the
variable xtk is calculated by the equation

xtk = Ak−1(xtk−1) + εk−1, (2)

where εk−1 is the stochastic vector of the model “noise”, each component of
which is distributed according to a normal distribution with zero mean and
covariance matrix Qk−1. At the time of the observations tk, observational
data are represented as

yok = Hkx
t
k + ξk, (3)

where Hk is the linear operator of the “observations”, interpolating the
values of xtk from grid nodes into observation points; ξk is the vector of
observation errors, which are random variables distributed according to the
normal distribution with zero mean and covariance matrix Rk.

The classical algorithm of the Kalman filter consists of the two steps:
forecast (1), with the time-dependent covariance matrix computed according
to the formula

P f
k = Ak−1P

f
k−1A

T
k−1 +Qk−1, (4)

and analysis
xak = xfk +Kk(yok −Hkx

f
k), (5)

where

Kk = P f
kH

T
k (HkP

f
kH

T
k +Rk)−1, P a

k = (I −KkHk)P f
k .

In these formulas, P f
k and P a

k denote covariance matrix of the forecast errors
and analysis errors, respectively.

Implementation of the Kalman filter algorithm formulas for modern
three-dimensional models of high dimensions is complicated because of the
need to store in memory and to operate with super-high-dimensional matri-
ces. One of the most popular suboptimal algorithms based on the Kalman
filter, is an ensemble Kalman filter [6,8,13]. In the ensemble Kalman filter,
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covariance matrices P f
k are evaluated using an ensemble of forecasts. It re-

quires assigning the ensemble initial fields and the computation and storage
of ensembles of forecasts and analysis.

In the case of the fields having a temporal ergodicity, their covariance
can be estimated by replacing the sample averaging for the time averaging
[11, 32]. Let the values of the random field errors be initially given in the
form

xf0 = xt0 + ∆x0,

where ∆x0 are random variables distributed according to the normal distri-
bution with zero mathematical expectation and covariance matrix P f

0 . We
assume that a change in time of the error is described by the linearized
equation. We denote by ∆xi the forecast errors at the time ti. Then the
covariance matrix of the forecast errors at the time tN = N · ∆t can be
estimated from the running average [11]:

P f
N = ∆xN∆xTN

∼=
1

N − 1

N∑
i=1

∆xi∆x
T
i . (6)

The estimation error on the step of the analysis will satisfy

∆xak = ∆xfk −Kk(yok −Hkx
f
k). (7)

This paper also considers a version in which we estimate the field error cor-
relation, while the dispersion does not change. In this case, the correlation
of the errors is also estimated by the formula of running average (6). A
similar assumption of a constant ratio between the dispersions of the pre-
diction error and the error of observations was made in [33]. In this case it
is possible to avoid the divergence of the ensemble filter with time.

Since the calculation of the covariance by formula (6) is an approximate
estimate, a problem arises common for all ensemble algorithms: unreason-
ably large values of covariances at large distances. For this reason, we use
the so-called localization procedure, as is accepted in the ensemble Kalman
filter approach. It is element-wise multiplication of the covariance matrix
by a function decreasing with distance and with depth

exp

(
−∆z2

2R2
z

)
· exp

(
−∆x2 + ∆y2

2R2

)
,

where
√

∆x2 + ∆y2 and ∆z are horizontal and vertical distances, and R
and Rz are horizontal and vertical scales, which were taken to be equal to
3,000 m and 5 m, respectively.
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3. A regional nested model

To solve the problem of data assimilation of both in situ and satellite mea-
surements in step forecast, a system of nested models described in [26] was
used. The system includes a large-scale submodel of the Arctic and the
North Atlantic Ocean [9, 10] coupled with an ice-snow submodel [16]. The
resulting model participated in the international Arctic Ocean model in-
tercomparison project [27]. The system includes also a regional model [2]
adapted to the Laptev Sea basin with a horizontal resolution concentrated
in the vicinity of the delta of the Lena River. By combining different scale
models, the interaction of processes of the global and the regional scales is
carried out.

Increasing the resolution in the regional model results in a more de-
tailed description of the dynamics, although it requires a large amount of
the CPU time. A number of processes that have an important influence on
this dynamics cannot be correctly described within the large-scale model.
Such processes include the propagation of topographical and coastal trapped
waves and tides. When moving these waves cause the surface level distur-
bance that leads to cracks in the ice cover and helps to relieve the stress
strain in its field.

To have a high horizontal resolution in the areas of a steep shelf slope
is sufficient for a satisfactory description of these waves. In addition, a de-
tailed resolution near the Lena River delta is also necessary for the correct
description of the interaction of riverine and marine water. The model grid
for the region, built to meet these requirements, is shown in Figure 1. To
describe the dynamics of the shelf, a detailed grid resolution is required not
only for the surface, but also for the bottom boundary layer. Moreover, the
model should allow for vertical displacements of the sea surface, i.e., the
“rigid lid” condition, which is used in the large-scale model, is unacceptable
for the regional shelf model. Among the models satisfying these require-
ments, the sigma-coordinate model of the Princeton University (POM) has
been selected as the most studied one [2].

A problem of downscaling needs to be addressed both in terms of ac-
counting a large-scale distribution within a nested model, and in terms of
the integrated account of the influence of smaller-scale processes in the large-
scale dynamics. The first part of this problem is solved by setting the initial
and boundary conditions on the open boundaries of a nested model. The val-
ues of temperature T , salinity S and a normal component of the barotropic
velocity (U, V ) are interpolated onto the boundary nodes of a nested model.
The stream function φ of the large-scale model is converted to obtain the
corresponding sea surface elevation η according to [23]:

∂η

∂x
=

f

gH

∂φ

∂x
− 1

Hρ0

∫ H

0
(H − z)∂ρ

∂x
dz +

τx
gHρ0

,
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Figure 1. A map of the bottom topography (in m) for the Laptev Sea simulation
area. Contours 1 and 2 encircle zones under the direct influence of the main flows of
the Lena River corresponding to the Bykov and the Trofimov outlets. A rectangular
frame indicates to the area depicted in a number of subsequent figures. A series
of concentrated circles and radii represent grid lines of regional models (1 of 30),
while dotted lines represent grid lines of the large-scale model of the Arctic and the
North Atlantic Ocean (1 of 10)

∂η

∂y
=

f

gH

∂φ
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− 1

Hρ0
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0
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τy
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.

Furthermore, the sigma-coordinate model requires the specification of the
background (in the original version, climatic [2]) distributions of tempera-
ture and salinity in the model area in order to reduce the errors associated
with the calculation of the pressure gradient, and the errors associated with
the diffusion of heat and salinity along the sigma surfaces. In the latter case,
the diffusion is applied only to deviations of temperature and salinity from
their background distributions. In the case of nested models, it is reasonable
to use the temperature T0 and the salinity S0 of the large-scale model as
background distributions. Thus, changes in temperature and salinity as a
result of the horizontal diffusion could be presented in the form(

∂T

∂t

)∣∣∣∣
diff
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The idea of a nested model feedback was borrowed from [4, 25], which
describe the parameterization of topographic eddies in the momentum equa-
tion. Applying a similar approach to the equations of heat and salt content,
we obtain the following expressions(

∂T0
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)∣∣∣∣
diff
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where the values T , S, U , and V are obtained by averaging the small-scale
temperature, salinity and components of barotropic velocity over the grid
cell of the large-scale model. In this case, unlike the Newtonian term (also
known as “nudging”), this scheme does not add any new sources or sinks of
heat and salt, but only redistributes the already available contributions.

The location of grids of nested models is presented in Figure 1. The
coordinate lines of the nested model do not coincide with the coordinate lines
of the large-scale model, so, in order to ensure proper interaction between
models, we need to solve the problem of data transfer from one grid to
another. The following interpolation formula was used for this purpose

ψ̃i =
∑
j

Cijψj

/∑
j

Cij , (8)

where ψj is the value of a certain variable ψ at the jth node of the original

grid, ψ̃i is the resulting value obtained by interpolation at the ith node of
the destination grid. The weighting coefficients Cij are calculated depending
on the distance rij between any jth node of the original grid and the ith
node of the destination grid by the formula

Cij = exp

(
−
r2
ij

4R2

)
,

where R is the search radius. The value of R should guarantee the existence
of, at least, three nodes of the original grid within this radius. The summa-
tion in (8) is over N nearest nodes. In order to facilitate the task of inter-
polation from one grid to another during the model run, the pre-calculated
interpolation coefficients Cij/

∑
j Cij were used. Also, it was assumed that

N = 16 and R is equal to the local grid spacing of the large-scale model,
R = max{∆x,∆y}.
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4. Numerical tests

The basic model calculation was carried out using the factual information
for 2008 announced by the International Polar Year (IPY). The latter cir-
cumstance has proved to be important to gain the access to Rosgydromet
database, which carried out an extended program of hydrometeorogical ob-
servations in 2008. The calculation is performed for the open-water season
from September 1 to September 30. For modeling the exchange processes
in the surface layer and calculating components of the heat balance, the
NCEP/NCAR reanalysis data were interpolated onto the sea grid. These
data involve the near-surface wind velocity, humidity and temperature of the
air, along with precipitation rate and cloudiness. Initial state of the Laptev
Sea was built from the ocean state corresponding to September 1, 2008 re-
sults of the large-scale model of the Arctic and the North Atlantic. This
numerical experiment was performed according to AOMIP rules simulating
the period of 1948–2012 (see http://www.whoi.edu/page.do?pid=29917).

4.1. Reference test. The above assimilation scheme was applied to im-
prove the results of the nested shelf model. In order to test the assimilation
procedure, the “true” value was simulated by running this model. The inte-
gration covered the period from 1st to 30th September, 2008. The adopted
initial state of the model was a result of the large-scale model execution,
interpolated onto the grid of the regional model. As consequence, the initial
temperature and salinity fields are rather smooth. The results of the mea-
surements obtained with the gauging station Kyusyur were used to define
the total transport of the Lena River in the model. The average transport
of the river was about 35,000 m3/s (with minimum 26,000 m3/s in Septem-
ber 5 and maximum 44,000 3/s in September 24) and it was proportionally
re-distributed among its four major watercourses: Olenek outlet–– 7 %, Tu-
matsk –– 14 %, Trofimov –– 54 %, and Bykov –– 25 % of the total transport,
with the river water temperature taken to be 10 ◦C, and with salinity equal
to zero.

As the result of this test will be considered as “observation”, we define
the error equal to σo = 0.5, which corresponds to r.m.s. variation of salinity
between the neighboring grid nodes in the vicinity of the Lena delta.

Available observations are a set of satellite data of Pathfinder v. 5.3,
presented online at the NOAA site. It comprises a skin temperature of water
in case the sea surface is not covered with ice or by clouds. Measurements
are timed to the night and to the day, so the observations were made as
frequent as two times a day. Each set contains from a few to 40 thousand
measurements attributable to the model region. Most of measurements were
taken from 5th to 10th September and at the end the month: from 24th to
30th September. Most of them were made in the western part of the area
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a b

Figure 2. Observational data: a) a frequency histogram of acceptable satellite
observations in the Laptev Sea area (high frequency corresponds to a large column
height and a warmer color, ranging from dark blue to dark red), contours at the base
of the histogram represent the salinity field of the base experiment corresponding to
September 30, 2008, b) location of the points of ground observations (open circles)
in the summer of 2008 in the area of the Laptev Sea, the filled circles represent
points of observations made in September

off the Taimyr Peninsula, and in the south-east part in the direction of
theriver outflow off the Lena Delta (Figure 2a). Also, we used the data
obtained when implementing the International Polar Year (IPY) [30]. The
locations, where the corresponding measurements were made, are presented
in Figure 2b.

The results of this reference test for the surface salinity are shown later
in Figures 4a, d, g that show the spread of the river plume (a freshwa-
ter anomaly formed by the riverine runoff) along the coastline to the east.
Similar patterns were also obtained in other papers [3, 5, 12] and have the
qualitative and quantitative similarities with our results.

4.2. Salinity test. In order to evaluate the effectiveness of the data assim-
ilation procedure, the following test was performed, in which the perturbed
external forcing was used, distinguishing it from the reference test. Thus, we
can consider it as perturbation of the model operator Ak−1 in (1). The total
runoff of the Lena River was used as a perturbation parameter. If we set it
to be equal to zero, then the resulting salinity field will show excessive salt
concentrations near the major outflows of the Lena River delta. Checking
the quality of the assimilation procedure will be in how accurately we can re-
store the salinity field by assimilation of our reference test results, produced
with the unperturbed river transport. In the experiments, the covariance
matrix P f

N was evaluated by formula (6), the error was taken as a differ-
ence between the forecast and the “true” values minus the averaged value
of this difference for all i = 1, . . . , N . We evaluate the error of the disturbed
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operator as equal to σf = 5 for the salinity (we still have σo = 0.5).
In order to simulate as many as possible of the existing measurements,

although we used the reference test salinity as assimilable data, but the
salinity values were interpolated only at the points where there are real
observations. Most of observations are attributed to the surface.

The total number of observations N (mainly satellite observations) is
very large, and the inversion of a corresponding covariance matrix with
N × N dimension is more than being difficult. Therefore, we used the
following two simplifications.

The first simplification is the dividing the whole domain into equal sub-
domains, i.e., boxes. More specifically, the dimension of the entire grid
area 301 × 501 was divided into ten parts in each direction. The result
was one hundred boxes with 31 × 51 dimension. Furthermore, for a better
joint of these boxes, we organized overlapping zones of 13 grid nodes wide.
So, taking into account the overlappings, the dimension of the boxes was
found to be 43 × 63. Nevertheless, even for such small subdomains the
amount of data occasionally turned out to be great. In this regard, one
more simplification was made.

It consists in the adopted specification that a maximum amount of data
involved is forced to be equal to Ñ = 500 observations. In the case, where
the actual amount of data is less than 500, all of them, with some exceptions
due to the quality control, are used in the assimilation. If there are more
than 500, then we randomly select Ñ = 500 quality observations, and neglect
the rest one. Some data are subject to excepting due to the quality control
if they are different from the predicted value by more than three standard
deviations.

The data assimilation period is 12 hours, as the available observations
are confined to the nighttime or to the daytime; the deviations from mid-
night or from noon are within 2–3 hours. Therefore, regardless of the true
observation time, they were attributed to either midnight or noon UTC (lo-
cal time is UTC+10). The time interval, corresponding to the period of
assimilation, was divided into 24 intervals, resulting in twenty-four periods
of 30 minutes. The state at the end of each of these periods was taken up
as part of the ensemble for the assimilation procedure. Thus, instead of the
classical ensemble assimilation scheme, where n results of simulation with a
different initial perturbation are analyzed, we consider n time-snapshots of
a simulation with one initial perturbation.

Such a definition of the ensemble initial fields is applied in the weather
forecast and it is called “lagged average forecasting” (LAF) [18]. LAF is
that the ensemble perturbations are taken not at one moment of time, but
for the previous few moments.

Figure 3a above shows a standard deviation of salinity in the experi-
ments with and without data assimilation from the results of the reference
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a b

c d

Figure 3. The test results, the time series of: a) a standard deviation of the

surface salinity from the baseline experiment,

√
(S − Sref)2 for the first (blue line)

and for the second zones (red line) (see Figure 1), the dashed lines correspond
to the experiment without assimilation, the solid lines –– with data assimilation;
c) and d) the average deviation from the baseline experiment S − Sref and the

r.m.s. variation of the deviation

√
(S − Sref − (S − Sref))2, symbols are the same

as those in the figure a; b) the total number of measurements in each 12-hour
periods from satellite data and from the IPY data

test. Periods from 5 to 10 September and from 24 to 30 September, rich of
observations, are characterized by a significant reduction in errors in salinity
in the experiment with data assimilation. In zones 1 and 2 (see Figure 1)
the error is reduced from 6–8 to 2 psu during the first period, and from 5 to
2.3 psu during the second one. The dispersion, corresponding to a standard
deviation shown in Figure 3a, is equal to (S − Sref)2, where S is the result-
ing salinity, and Sref is the corresponding salinity from the reference test,
the overline indicates that the value is area averaged. Dispersion could be
considered as consisting of the two parts. The first one is associated with
the average value of the deviation S − Sref. Another one is dispersion of the
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deviation with respect to its average (S − Sref − S − Sref)2, thus

(S − Sref)2 = S − Sref
2

+ (S − Sref − S − Sref)2.

The first (see Figure 3c) characterizes the area averaged salinity deviation
between these two experiments, and the second (see Figure 3d) characterizes

a b c

d e f

g h i

Figure 4. Results of the surface salinity test on September 10 (a, b, c), on Septem-
ber 20 (d, e, f), and on September 30 (g, h, i). The first column (a, d, g) is from
the reference test, the second column (b, e, h) is from the salinity test without
data assimilation, and the third column (c, f, i) is from the salinity test with data
assimilation
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the spatial variability of the salinity deviation. From these figures it follows
that the error is reduced mainly due to the decrease of the difference between
the average values of the compared experiments, while the areal variability
of the error does not change much regardless of the assimilation, especially
in the first zone.

The surface salinity fields in the experiments with and without assimi-
lation compared to the reference test shows a series of Figures 4. A salinity
anomaly formed in the Buor Khaya Bay (a bay adjacent to the delta of the
Lena River in the east) as a consequence of the summer flood, and result-
ing from the large-scale model, is gradually disappearing in the experiment
without assimilation. The difference between the salinity distribution in the
experiment with the assimilation and the salinity distribution in the refer-
ence test, more prominent on 10th and 20th September, almost completely
disappears in the figure demonstrating these distributions on September 30.

5. Discussion

The results of this paper are preliminary. They demonstrate the numerical
tests for the proposed assimilation procedure. As an assimilated value we
use the most important (in the region) hydrodynamic characteristic of water:
salinity, since its effect on the density is greatest. As the data we used the
results of the reference test. In order to emulate real observations, these
results were used only where data of satellite or ground-based measurements
are available. As a disturbing factor we considered the vanishing of the Lena
River flow. As a result, the freshwater plume, formed in the adjacent bays
in the east, gradually disappears, and the fresh river waters are replaced by
the salty sea waters. In general, the procedure for data assimilation leads to
the recovery of the unperturbed results on the sea surface (Figures 4). But,
at greater depths, where the observations are insufficient, the picture is less
satisfactory. For these depths, some additional assumptions are required to
help in obtaining some appropriate extrapolation of the surface values.

As was already noted, the salinity in the Laptev Sea plays a dominant
role in determining the density of water as its variability in this region is
high due to the presence of large volumes of fresh water from the Lena River.
In addition, salinity, other conditions being equal, has a greater weight in
the equation of state. On the other hand, the Laptev Sea is shallow and
so the wind has a strong impact on the character of water circulation in it.
It is clear that the upper layer is more exposed to the wind (or ice) stress
and the riverine inflow also dominates here. Available vertical profiles show
that in Septemper, the upper mixed layer thickness is about 10–12 m in this
region. What factor is dominant for underlying layers can be seen from a
comparison of flow patterns in the three presented experiments (Figure 5).
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a b

c

Figure 5. Results of the surface
salinity test: the vertically averaged
velocity in the layer from 10 m down
to the bottom in a) the reference test,
b) the salinity test without data as-
similation, and c) the salinity test
with data assimilation
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Comparing Figures 5a and b, we can see that the flow pattern in the
vicinity of the Buor Khaya Bay is more or less similar whether there is a
river inflow or not. The only noticable difference is a slight weakening of
the along-shore current at the entrance of the Yana Bay in the salinity test.
What we see from the assimilation result is that the flow pattern is more
different from the reference test than in the case of no data assimilation.
The reason for this discrepancy lies in disagreement between temperature,
salinity and current velocity fields arising from a correction of the salinity.
For future tests this means that temperature and current velocity must also
be somehow involved into the assimilation algorithm.

In the Arctic, one of the determining factors is also the ice field pattern.
It should be noted that the propagation pattern of the Arctic ice, taken
from the results of the model used, is far from being perfect. For example,
in September 2008, according to satellite images, the Laptev Sea ice edge
moves north to latitude 78◦ N. At the same time, the simulation results show
at 77◦ N latitude ice thickness about 1 m with compactness of 85 %. This
fact demonstrates that in order to obtain satisfactory results of modeling the
dynamics of the Laptev Sea, one should directly use the observed pattern
of the ice field.

Despite the fact that the temperature field as a dynamic factor, plays a
secondary role in the Laptev Sea, the temperature distribution is important
for the studying the marine biology. The Arctic seas, as a whole, provide
a fairly harsh conditions for biological activity. However in the summer,
when rivers supply large amounts of flood waters rich in minerals and mi-
croorganisms, and the polar night is replaced by the polar day, biological
activity markedly increasing. In this case, the temperature isolines are ac-
tually boundaries of life and death for many plants and living organisms.
Thus, the next planned series of experiments will deal with the restoration
of the temperature field.

This research is also preliminary, because here we almost do not com-
pare the proposed scheme of data assimilation with a classical version of
assimilation using the ensemble Kalman filter. The advantage of the newly-
proposed scheme is obvious, as it involves obtaining a set of the ensembles
in one model run. However, the payment for this will be associated with a
possible loss of quality. This will require further studying.

Another important area in terms of improving the procedure for data
assimilation is to use a multi-element approach. In this example, we used
the salinity field, and in the future we are going to use temperature. How-
ever, as part of the assimilation procedure, a joint analysis of salinity and
temperature is possible, including also some data on the rise of the sea level
and ice concentration. It is possible not only to get a better assessment
of these characteristics, but taking into account the cross-covariances, any
other characteristics of a regional ocean model.
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6. Conclusion

This paper discusses the results of preliminary experiments to test the qual-
ity of the data assimilation procedure based on the use of theensemble
Kalman filter as applied to the basin of the Laptev Sea in the vicinity of
the Lena Delta. As perturbation, we used the closure of the river runoff,
and as true values the surface salinity was considered, taken from a reference
experiment with the included river inflow. The comparison of two numerical
experiments with assimilation of simulated salinity data and without assim-
ilation have shown that the proposed assimilation procedure is capable to
satisfactorily restore the salinity field. However, it should be noted that the
resulting circulation structure is moving away from the structure shown in
the reference experiment in the vicinity of the Lena Delta. This fact raises
questions about the involvement in the process of data assimilation of some
other prognostic variables.
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