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Modification of Bougeault—Andre mixing
length hypothesis and its numerical
verification

G.A. Platov

This paper represents an attempt to improve the parameterization scheme,
proposed by Bougeault and Andre. Modification deals with non-local feature of
the turbulent mixing and proposes some kernel convolution form for the turbulent
mixing length. This kernel is an influence function of the turbulence located at
one point to the turbulence at some other point. The set of numerical experiments
shows the advantage of proposed modification for high vertical resolution or for
vanishing background turbulent coefficient.

1. Introduction

G.I. Taylor [1] was the first, who introduced the idea of the homogeneous
and isotropic turbulence. Later Kolmogorov {2] developed a theory of locally
homogeneous and locally isotropic turbulence. He proposed also to consider
turbulent kinetic energy equation together with the Reynolds stress equa-
tions [3]. Thus the problem of the turbulence description diminishes to
the description of its intensity and turbulent fluctuation scale, named here-
after as mixing length (ML). The calculation of the last one progresses from
the empirically prescribed profiles to some parameterizations based on the
Blackadar expression with Le-limit and Bougeault and Andre [8] procedure.

Proportionality of turbulent fluxes to the locally mean gradients and in-
troduction of the turbulent viscosity coefficient means that Reynolds stresses
are always of the same sign as the mean gradients and thus turbulence re-
duces always the kinetic energy of large scale motion. However, it does not
take a place for the geostrophic fluids as reported Starr [4], Deardorff [5] and
Turner [6]. The way to avoid this uncertainty is to construct from the Keller—
Fridman system the higher order closures. Following this way Lykossov [7]
obtained the analytical expressions for counter-gradients initially proposed
by Deardorff [5].

The purpose of this paper is to build some improvement of ML hypothesis
of Bougeault and Andre [8] to compare original parameterization of it with
modified one.

The second chapter contains the description of statistical comparison
technique. Then we give some idea of how to improve the parameterization
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procedure of Bougeault and Andre. The fourth chapter includes the results
of numerical experiments. Finally we resume with some concluding remarks.

2. Comparison indexes

To stand out the qualitative properties of the models to reproduce ade-
quately spatial and temporal distribution of the boundary layer character-
istics let us introduce some indexes based on the statistical analysis of the
data. Initially we have some correlation coefficients obtained as a result of
natural data comparison with the calculated ones. As we have four charac-
teristics of the lower atmosphere: potential temperature (), specific humid-
ity (¢), zone and meridian wind components (u, v) varying both in time and
in space, so we can build 8 correlation coefficients. Four of them reflect the
coherency of temporal variations, while the other four reflect the identity of
the spatial distributions. It is quite difficult to operate with 8 coefficients.
So we should build some indexes, the number of which would be less than 8,
reflecting model capabilities more compactly. Each index we can build as a
function of the correlation coefficients. This function is any combination of
several numbers of the two-variable function (TVF). This TVF is to obey
two conditions:

F(Ry, R2) = F(R2, R1),
F(F(Ry, Ra), F(R3, R4)) = F(F(Ry, R3), F(R2, R4)).

The averaging TVF, for example F(Ry, Ry) = 1/2(R; + Ry), satisfies these
conditions, but according to this form, if Ry = 1 and R; = 0, then F = 0.5.
It is a good value for the correlation coefficient but with Rz = 0 it cannot be
good. It seems to be preferable the function of geometric mean F(Ry, Rz) =
xv/|R1Rz], where x is a factor equal to —1, if R; and/or R; are negative,
and equal to 1 other case.

2xt 5 indexes represent the following model properties:

Rgs - variability of the scalar characteristics
Rs = F(F (R4, R}), F (R, RY)),
where R} — correlation coefficient of j-th characteristics by i-th coor-
dinate (f — time, z — vertical coordinate);
Ry - variability of the wind vector Ry = F(F(R., RZ), F(R!, RZ));
R; - temporal variability R, = F(F (R}, R;), F(R,, R}));
R, - spatial variability R, = F(F(R§, R}), 7 (Ri, R}));
Rt - total model index Ry = F(F(Rs, Ry}, F(Ry, R;)).
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3. Bougeault—Andre parameterization and 1ts
modification

According to the Bougeault-Andre approach [8] let us consider the motion
of a fluid parcel, initially disturbed with energy b(z) equal to the turbulent
kinetic energy in situ. The gravity and the buoyancy force this parcel to
oscillate near the stationary state. For the moist air parcel we have

022 — _pog + p(2)g,
dt_pogpg

where z(t) - vertical coordinate of the moving parcel, pg - its density, p — the
density of the surrounding fluid. Substituting the density by the equivalent
potential temperature, defined by

8, (z) = T(z)( e )) (1+ 0.61¢(2)),

(T, p, g — temperature, pressure and specific humidity of the air) and inte-
grating one can obtain

w(t) = w(to) - B [ (Ou() - 83(z, 20))dr.

Here 6 (2, 20) = 0,(20) + [} 7adz’ is the temperature of the moving par-
cel, changed by the adiabatic compression and phase transformation, v, -
adiabatic gradient for the wet air, 3 = g/# — buoyancy. The initial parcel
velocity is proportional to the square root of the kinetic energy:

w(to) = tp\/b(20)-

According to the sign of this expression one can obtain the height of the
maximum ascent L, and the depth of the maximum descent Lgown of the
parcel trajectory. ML is taken to be a function of L, and Lgown. Bougeault
and Andre define ML as mean inverse value:

l_l(l L1 )
L_2 Lup Ldown-

Let us consider the homogeneous layer with the density barriers at the ends
of interval [a, b]. In this case the above expression provides a squared depen-
dence of L on z. ML reaches its maximum value at the center of the interval
with the magnitude proportional to its length (b — a). According to the
previous equation the coefficient proportionality & is equal to 2 (Figure 1).
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Figure 1. Vertical distribution of ML in the homogeneous layer

The advantages of this parameterization regarding the traditional pa-
rameterizations, based on Blackadar’s form, are the following:

e no gross overestimation of ML near the inversion region, because for
z = 0o ML vanishes;

o the clear physical interpretation of ML and its relation with the inter-
nal wave length.

Blackadar’s parameterizations suppose some value L, as a limit for z — oo.
The reasonings of this limit are unclear, as a rule.

' The procedure, proposed in [8], with the equation of motion is analogous
to the turbulent energy equation, but some terms of the last equation are ne-
glected. It is still unclear, why considered parcel only. loses energy during its
motion and cannot get it from the mean velocity flow shear. The interaction
between the parcels is also to make some correction of the energy balance.
Another question for latter discussion is the minimum ML value proposed in
[8] to be equal to the numerical grid step. This proposal relates the results
of numerical experiment with numerical realization of model. According to
this for very fine resolution minimum value of L vanishes. It cannot be so
because of the following consideration.

Let us consider the turbulent energy balance equation in the following

form:
09 _ 9 ,0(¢) e
99t~ 38z 8z L

where ¢ = Vb, G = —ﬁ(%";) + %%
it is to emphasize that if at some point ¢ = 0 and G < 0 (the stratification
is stable), then L would be always equal to 0 for the definition made and
hence turbulent energy would be equal to 0 too. That is turbulence never
penetrates into the undisturbed regions.

This conclusion seams to be paradox and follows our suggestion that the
parcel trajectory properties, starting its motion from point 2o, influence the
characteristics of the turbulence at only that point. Fortunately, through

+qLG,

2
. From the analysis of this equation
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the vicinity of this point move also the parcels that start from the other
initial positions. Likely, they also contribute to the ML in situ, because they
transfer the turbulent energy to the undisturbed regions. Thus ML depends
not only on the zp-parcels, but also on those separated by the distances less
than Ly (2 < 20) or Lgown (2 > 20).

Following this consideration, let us introduce two influence functions —
upper Ly, (z, 20) and lower L3, (2, 20). In case Lyp(2) > 20— 2 > 0, we can
let L3,.n(2, 20) be equal to 2o — z and the rest L,,(2) — (2o — 2) contribute
to Ly (2, 20). We can do analogously if Laown(2) > z — 20 > 0 takes place.
Thus we have

20—z for Lyp(2)> 29— 2
N LU <
down1%» <0 {Ldown(z) — (2= 29) for Lgown(2) > z— 2o for 2> 2
0 for Lgown(z) < z — 29 =<0
Lyp(2)—(z0— 2) for Lyp(z) > 20—2
Ly (2, 20) = {0 Pz forLu:Ez}<zz—z forz <z
up\%s {z — 29 for Lgown(2) > 2—20 for z > 2
0 for Laown(2) < 2—2 =

These expressions indicate that influence functions contain the information
of the path lengths under and above zp of the parcels coming to that lo-
cation from 2. To get the net upper and lower ML one can convolute
this functions at the region {Li";’IJ : Ly,(2,20) > 0} and at the region
{le?)wn : L:lown(zlzo) > 0}

~ 1 *
Lup(ZQ) = mﬁm Lup(z, ZQ)dZ,
up

- 1 -
Ldown(20) = %] /L w Ldown(2 20)dz,

down down

It is possible now to determine a new ML by the same formulae as
Bougeault and Andre [8] did

Lol L)
f,_2 idup 'i'down '

Proposed modification gives non zero value of ML near the turbulently dis-
turbed region. This value depends only on the disturbance nature and do
not on the numerical realization. It has also the advantages of Bougeault
and Andre [8] approach.
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4. Numerical experiments

First numerical experiment provides a comparison of the proposed param-
eterization with the original one. The whole model is analogous to those
described in the previous work [9]. The initial conditions are the following:

0(z) = 90-{-601, g(z2) =0, u(2)=Up=10m/s, v(z)=0, q(z)=0.

Here, 8 is the potential temperature (fp = 284°K, 68 = 6°, H =2 km); ¢ is
the specific humidity; u, v are zone and meridian wind componen's; ¢ is
liquid moisture concentration.

The boundary conditions are constant except the sea surface temperature
that varies as follows: :

8| ,_o(t) = 6o+ 661(1 — cos(2mt/T))

(66, = 2°). The mixed layer is to develop near the surface under the above
condition.
First set of figures shows the results of Bougeault and Andre model sim-
ulation. Figure 2 demonstrates potential temperature section in the plane
. of two coordinates — t and z. The growth of the mixed layer height takes
place during the first'two cycles, but on the third cycle it does not because of
condensation processes at the top of it. The portion of the water vapor con-
denses and makes the surrounding air significantly warmer. The cloud cell
forms the inversion layer at the lower height preventing the mixed layer to
grow up continuously. Figure 3 indicates the distribution of liquid moisture
concentration there. As dne can see a small portion of liquid water arises
even at the end of the second cycle, but this does not influence significantly
on the temperature and turbulent characteristics’ distribution.
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Figure 2. Potential temperature distribution with some vertical profiles
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Figure 3. Liquid moisture concentration distribution with some vertical profiles
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Figure 5. Turbulent potential temperature flux

The next two Figures 4 and 5 demonstrate the distributions of the ML
and turbulent heat flux (w'¢’). The maximum ML value is about-150 m.
The first cycle ML maximum forms at the height of about 500 m, then it
decreases slightly. The second one overlaps the previous by the intensity and
the vertical size. The third maximum forms under the control of the topped
cloudiness, so it is less intensive and cannot reach the height of the second
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one, because of the energy lost against the buoyancy force. Analyzing the
turbulent heat fluxes profiles we can see that these ones contain a very sharp
variation at the top of the mixed layer for every cycle maximum. This is
because of very narrow inversion layer. It forms provided a small turbulent
penetration through it. According to the counter-gradient parameterization
we have a small upward flux at the homogeneous layer.
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Figure 6. Potential temperature distribution with some profiles obtained by the
modified version
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Figure 7. ML distribution with some profiles obtained by the modified version

The proposed modification of the Bougeault-Andre approach shows anal-
ogous results. The first distinction concerns the condensation processes dur-
ing the third cycle. In the modified model these are not taking place, so the
mixed-layer height grows continuously. Every cycle generates a new portion
of turbulence that reaches the height of the previous one (Figures 6, 7, and
8). What is to say about the potential temperature flux (or heat flux) is that
it becomes more smoothed and now it is in good agreement with the custom
knowledge about it. The inversion layer is not so distinct as in the previous
experiment, because turbulent penetration processes significantly destroy it.
A large amount of turbulent energy contributes to this destruction of buoy-
ancy barrier at the top of the mixed layer. Hence, ML has a maximum value
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Figure 8. Turbulent potential temperature flux obtained by the modified version

that approximately 3 times less. The last is the principal difference between
the original and modified the Bougeault—-Andre parameterizations.

The minimum value of the ML in this experiment is allowed to be zero,
while in the previous one it is equal to 1 meter (vertical resolution of the
model is 50 m). Following Bougeault and Andre strictly we are to set it
equal to 50 m. Meanwhile, the last experiment shows that its value is near
always less than 50 m.

To examine both variants of the ML parameterization the same data set
as in [9] was in use. The comparison of the model results with these data
gives the correlation indexes summarized in the following table.

Parameterization types Rs | Rv | R: R. | Rr

Original Bougeault-Andre ML | 78.9 | 42.5 | 54.2 | 61.8 | 57.9
Modified Bougeault—-Andre ML, | 82.3 | 44.5 | 55.0 | 66.7 | 60.6

We can see that modification improved the model by approximately 3 %.
More significant improvement takes place in vertical distribution index about
5%. Looking at the correlation coefficients for atmosphere characteristics,
presented in Figure 9, one can notice that better distribution both in time
and in space arises for the specific humidity and meridian component of
wind velocity.

5. Conclusion

The statistical properties of the boundary layer model using the Bougeault-
Andre parameterization become more satisfactory, when model includes the
proposed modification. This modification concerns the non-local feature
of mixing, that is neighboring turbulent source can radiate turbulent curls
capable to reach some undisturbed area. It makes also model to be more
independent on the numerical space resolution.
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Figure 9. Spatial correlation coefficient vs. temporal one for the potential tem-
perature, specific humidity and both components of wind velocity
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