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Notes on pressure gradient correction*

G.A. Platov, John F.F. Middleton

The new pressure gradient correction method was developed for the models
with topography-following coordinate system. The test experiments were based on
the upwelling and downwelling modeling in Great Australian Bight. They show
that new method gives more reliable correction in comparison with Fortunato and
Baptista one.

1. Introduction

The topography-following coordinate systems continue to grow in popular-
ity because they are able to provide a better resolution for surface and bot-
tom boundary layers simultaneously. As a matter of fact, one of the most
significant disadvantages of the models based on these coordinates is poor
approximation of horizontal gradients, especially, in the vicinity of the steep
slopes. The development of accurate and efficient numerical methods could
be divided [1] into the following four categories: the vertical interpolation
method (back to z levels), subtract reference state, high order numerical
schemes and retaining integral properties.

In the vicinity of a steep slope, the grid cells are vertically stretched so
that the neighboring point in the cross-shore direction at the same level goes
much deeper than the nearest point at the underlying sigma-level. It makes
the so-called “hydrostatic inconsistency”. In fact, if we want a grid to be
hydrostatically consistent, then we have to choose the horizontal spacing
according to the following constraint

Az OH < Ao
H oz~ o
If in order to resolve the bottom boundary layer we have at least 1 m res-
olution near the bottom at 500 m isobath, and the total depth varies from
40 m to 4000-6000 m, then at least 2300-2500 grid nodes are in need to
obey this constraint and to build up a simple monotonic deepening.
Let us look at what we will have if, for example, some variable ¢ has a
two-layer vertical structure, so that in the area over the solid line a (Figure 1)
it is equal to ¢; and in the underlying area — to ¢,. The horizontal gradient
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at the point A, which is in the middle of the cell, could be estimated as
follows:
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where ¢ and k are indices of X and o-coordinate grid spacings.
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According to the above assumptions the second term in the expression
is equal to zero, because both ¢;x_1 ~ ¢ and ¢;_1 1 — ¢;_1 % are equal
to zero. Both differences in the first term give the same value

 Bik-1— Di1k-1 = Pik — bic1k =2 — 1

and, finally, the whole expression yields a non-zero value. In other words,
it provides a way of converting the originally vertical gradient into the hori-
zontal one. This conversion is as stronger as larger the difference between ¢;
and ¢, and as longer the vertical stretching of the grid cell. This example is,
of course, idealized. The main point of this idealization is that we consider
the transition zone between the two areas to be of zero thickness. In fact it
simply means that a depth difference between the two points (¢,k — 1) and
(¢ — 1, k) could be of the same order or larger than thickness of the density
interface zone. Thus we might approximately say that the density interface
is lying right between z; _;; and 2;;_;.

So, if one has a horizontal interface (or the one which is about to be
horizontal) with a large vertical gradient that crosses the steep slope, a
large horizontal gradient error is expected when using a numerical cell-based
scheme.
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2. Back to the Cartesian system

In the situation discussed above, the most effective remedy seams to go
back to the Cartesian coordinate system to evaluate the gradient. Looking
at Figure 1 one could offer to consider the function values at points 1 and
2 which are at the same level with the point A. These values could be
calculated using the vertical interpolation. The following subtraction will
give us a horizontal gradient component now evaluated in the Cartesian
coordinates. In the previous example, if the vertical resolution is fine enough,
meaning that there is, at least, one node present between the solid line and
A-level on both vertical lines ¢ and i — 1, then this would give us a zero
gradient value, just what it should be. -

Nevertheless, there is still a problem with this approach, when one of two

points 1 or 2 is beneath the bottom. So, the value could not be calculated
via interpolation (Figure 2). Fortunato

and Baptista [2] (hereafter FB) argue also
that it is a bad idea to use extrapolation in i
this case as it can lead to instability in the . -
evaluation of the density and velocity gra-
dients. They proposed to consider point 1/
instead of point 1, where the value could
be estimated using the linear interpolation
between the last two points B’ and B”. As
before the value at point 2 is the linear in-
terpolation between the two nearest grid .
points Z' and Z". So, the gradient at 4is
based on the difference between points 2
and 1'. Note, that now it is not a central
difference scheme and hence we lower the
scheme order.

The practical usage of this approach bring about the idea that the im-
portance of the points B' and B" is overestimated in this method. The value
at point 2 is based on the two nearest grid points Z' and Z” and the error
depends only on the vertical resolution of the grid; while the value of point
1" is based on the points B' and B” which are strongly separated vertically.
So, this value is less reliable in the case of large vertical gradients, just like
in the previous example. It makes this scheme closer to the cell-based one.
If the line a from the previous example goes horizontally right between the
points Z" and B”, this scheme will give the largest possible gradient value,
which is only two times smaller than that in the previous example but again
could be significantly different from zero. This situation is quite realistic
though, because the vertical scale of the density interfacial zone could be
smaller than the depth difference between the points B! and B".
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Figure 2. Explanation drawing
for the FB method
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3. New approach .
Keeping the above said in mind, we were trying to build a scheme which
instead of interpolating a value across the interface will interpolate the hor-
izontal gradient itself as it does not so dramatically change. The next figure
(Figure 3) demonstrates the explanation details.

Figure 3. Explanation drawing for the newly proposed method

So, we are going to obtain the horizontal gradient value at the point A
using the vertical interpolation of gradients between the points C' and C”,
which are at the same level as the points B’ and B". The gradient value at
the point C' is calculated via the central difference scheme between points
2 and B’. Like in the previous case the value at 2 is an interpolant between
the two nearest grid points Z' and Z". The gradient value at point C” is set
equal to the gradient value based on the difference scheme between points
3’ and B”, and 3’ is interpolant between the two nearest points Y’ and Y.
If the depth at i + 1 is less than at 7, then the gradient value at C” may be
set equal to zero.

4. Application technique

So far we were speaking about this problem in general. Now, we will con-
centrate on the horizontal pressure gradient problem in the Princeton Ocean
Model (POM) (3].

The pressure gradient in the Cartesian coordinates is related with the
sigma coordinates as follows:
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oz = o TH

where b’ = b(z,0') and

b db, o OH 8b,

dc ~ 8z, H oz, o’
where * is denoted to variables in the sigma coordinates [4]. The buoyancy
is b = (p — P)g/po, where p is density; p(z) is the horizontally flattened
density, and p,(o) is its projection on the sigma coordinates; po is a con-
stant reference density; g is the gravity constant; H = H(z) is the bottom
topography; and po = po(z). It is essential to consider (p — p) instead of p
in the buoyancy definition because it helps to subtract interpolation errors
caused by transformation from the Cartesian to the sigma coordinates.

Assume, we can evaluate a buoyancy gradient in the Cartesian coordi-

nates using one of the above methods: either the FB or the proposed one.
Then the right-hand side of the latter expression may be calculated with the
POM standard procedure, which is cell-based, and the numerical scheme is
an analogue to the scheme described in our first example. So, it contains an
error that can be estimated as

Bb] B [ab,. o OH b,
method

0 g
o Oz

€ITOor ~ € = [

Oz Oz, H Oz, d0lpoy
After that the obtained € is used as corrector for the POM calculated pres-
sure gradient.

Mellor et al. [4] proposed to evaluate € from the initial conditions and
to hold it constant through the whole run. We use three variants: the first
is similar to [4], the second with 5 or 10-day-updating period for € with the
following 2-day-ramping period, and, finally, with each time-step updating
for ¢ (without ramping).

_ The idea of using two additional variants came after the estimation of the
correction changes. It shows that the difference between €(t) and €(t = 0)
essentially grows up after each 5-10 days, thus needing re-estimation.

5. Preliminary tests

The following preliminary tests strategy was applied.

The prescribed temperature (density) distribution was applied to esti-
mate an error in the pressure gradient evaluation on the basis of the proposed
method. The slope in use deepens from 100 m down to 1700 m over 40 km in
the offshore direction. In this direction, 9 uniformly distributed grid nodes
are used, so that the horizontal spacing is 5 km and deepening between
the two neighboring nodes is 200 m. We used 40 sigma levels giving a bet-
ter resolution for the top and the bottom Ekman layers. The prescribed
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density interface intersects the bottom line at the depth hiy and goes off-
shore. A variety of different pressure gradients is produced by a set of the
density interface tilts in the offshore direction. They could be identified as
upwelling-like, neutral and downwelling-like. The first and the third provide
the offshore downward and upward tilts respectively. It means dhin /dz < 0
or > 0. The neutral case assumes no tilt of density interface or dh;y, /dz = 0.
The density interface itself is defined by its thickness d and the magnitude
of a temperature drop. We fixed the latter to be 5 degrees assuming that
its increasing or decreasing will result in the pressure gradient error linear
response. Using this approach we tabulated the maximum pressure gradient
error (both positive and negative) depending on the values hint, dhiny/dz,
and d. It is convenient to represent a pressure gradient error in terms of the
geostrophic velocity correction (GVC) made by this error. The results show
that a maximum error gives about 58 cm/s artificial bottom current.

In order to decrease pressure gradient error in the Princeton model it
is assumed to use the density anomalies (p — pa) instead of the density
p to calculate a pressure gradient. It means that the horizontally averaged
density is subtracted from the in situ density giving a smaller vertical density
gradient. Analytically it makes no difference for the horizontal pressure
gradients until the subtracted density is horizontally constant. We used the
tabulated error values to evaluate a maximum possible error in the case of
the Great Australian Bight domain grid with initial density distribution.
The field of (p — p,) at each grid point was considered as a combination of
two idealized density interface profiles counteracting with each other., The
effectiveness of their counteraction depends on how they overlap each other.
There are only three possible cases of their overlapping. The first and most
effective is the one when the first interface layer is totally covered with
another one. It decreases the magnitude in the density drop in the most
effective way. But practically it is not possible to prepare the horizontally
constant p, so that it will cover p interface everywhere in the region. So, the
two other cases take place as well. The second case is when the interfaces
are not completely overlapping each other (the density drop is partially
decreased) and the third case is when they do not overlap at all (two separate
interfaces).

Using this gives us an error histogram collected from all the alongshore
nodes where the density interface intersects the bottom line. These his-
tograms will be considered in the next sections.

5.1. General tests

5.1.1. Downwelling tests. We have executed several tests trying to get
a better description for pressure gradient in the region of the continental
slope in the Great Australian Bight and surrounding area (Figure 4). The



Notes on pressure gradient correction 49

34 b

=38

=40

-2k

p/f
S
’

-

44 A

4

1 L 1 1 1 1 1 1 [l
130 132 134 136 138 140 142 144 146 148 150

Figure 4. Downwelling model: Part of the Australian shelf slope zone
between 200 m and 2 km isobaths used to evaluate the pressure gradient
errors for downwelling model domain

OCCAM output data [5] along with [6] and [7] data sets were used to set the
initial and the boundary conditions and surface heat, salt and momentum
fluxes for the austral winter season. The core of the density interface layer
crosses the slope at a depth of 500-600 m, the temperature there being
15-17°C. The interface thickness, estimated as the minimum vertical dis-
tance, where the temperature drops by 5°, varies between 200-250 m near
the slope, while & levels deepen here by 80-150 m from point to point in the
offshore direction, but near the Kangaroo island and at the Bass Strait west
mouth the deepening goes up to 150-200 m. Thus, the ratio here is going
down to 1.0-1.7, while all methods give an error less than 10 cm/s only if
the ratio exceeds 2.0 value. So, we might expect significant errors in this
regions if no average density subtractions were applied.

The first two of the above described histograms present the largest ex-
pected errors for the downwelling model domain with the downwelling-like
density interface tilt and the neutral tilt. In the downwelling-like case (Fig-
ure 5) both methods give more or less reliable results. Even the original
POM scheme gives errors less than 5-9 cm/s. In the neutral case, (Fig-
ure 6) it is even better, all the methods giving errors less than 3 cm/s, but
the FB method and the POM scheme increase the number of points with
errors from 7-15 cm/s range.

The first 30 day-run used the € estimated from the initial conditions with
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Figure 5. Histogram of a number of points with maximum possible error in spec-
ified ranges. Downwelling model — downwelling-like tilt. FB - Fortunato and
Baptista, New — the proposed method, POM - the original POM procedure
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Figure 6. Histogram of a number of points with maximum possible error in spec-
ified ranges. Downwelling model — no tilt

the FB approach. The GVC for the specified region has a maximum value
about 24 cm/s, while the mean value is slightly below 1 cm/s and r.m.s.
value is about 2.4 cm/s. Using the model output we could estimate what
might be the correction in the days to follow. The difference ¢(t) —e€(0) would
give us then the error associated with the pressure gradient inconsistency
taking place during the run. Table 1 presents these errors in terms of the
associated along-shore component of the geostrophic velocity. '
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Table 1. Along-shore component of the GVC based on initial density field, errors
calculated for days 10, 20 and 30 and GVC based on day 30 density field (test with
correction applied one time on day 0)

Max Mean r.m.s. K.E.
€0 24.0221 0.9530 2.3892 2.8542
€10 — €0 8.6146 0.19760 10.52334 0.136940
€20 — €0 9.0608 0.22361 0.55734 0.155320
€30 — €p 8.2901 0.23379 0.56001 0.156810
€30 20.8754 1.0018 2.5064 3.1419

Table 2. Along-shore component of the GVC based on initial density field, errors
calculated for FB pressure gradient assumption for days 10, 20 and 30 and GVC
based on day 30 density field (tests with correction applied once per 10 days)

Max Mean r.m.s. K.E.
€0 24.0221 0.9530 2.3892 2.8542
€10 — €0 8.6146 0.19760 0.52334 0.136940
€30 — €10 8.9601 0.21443 0.52408 0.137330
€30 — €20 10.5024 0.25132 0.63095 0.199050
€30 40.9561 1.0988 2.8177 3.9696

The GVC characteristics grow slightly: the maximum value becomes
approximately equal to 30 cm/s, and r.m.s. is about to be the same, i.e.,
2.5 cm/s. However the in situ difference becomes significant. Thus, the
maximum error is about 8-9 cm/s and the r.m.s. error ranges from 0.52 to
0.56 during the most of the run. We could not get along with 8-9 cm/s
error on the slope, because this has the same order as the undercurrent
velocity. As we are going to investigate the slope currents, we have to do
something to decrease this value. That is why we decided to update the
correction term during the run-time. Table 2 shows the result for the FB
approach. This method was applied with 10 day interval with the following
2-day linear ramping. We can also estimate the error by subtracting two
subsequent correction terms €(t;) — €(tx_;). The result becomes even worse.
The GVC maximum now grows up to 41 cm/s and the error maximum is
9-10 cm/s. But for this case there is a viewable feature of the two grid point
instability in the spatial distribution of basic variables. The mean kinetic
energy (divided by density) on the 30th day is equal to 3.35 cm?/s?. If the
total velocity components were filtered using an analogue of the Shapiro 1-2-
1 filter in both i and j directions, then this value would drop to 1.93 cm?/s2.
It means that 42% of the total kinetic energy contribute to growing in the
two-grid-point instability. ‘

At this stage, it is obvious that some sort of filtering must be applied in
order to avoid the growth of unrealistic features and to avoid calculations of
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Table 3. Along-shore component of the GVC based on initial density
field, errors calculated for the FB method for days 10, 20 and, 30 and
the GVC based on day 30 density field (tests with correction applied
once per 10 days)

| Max l Mean | r.m.s. K.E.

Smoothed after run

€0 24.0221 0.9530 2.3892 2.8542
€10 — €0 6.8110 0.19707 0.46502 0.11312
€20 — €10 7.0191 0.25649 0.58259 0.16970
€30 — €20 6.6273 0.25237 0.56379 0.15893
€30 28.7620 1.0041 2.4480 2.9964
Run-time smoothing
€0 24.0221 0.9530 2.3892 2.8542
€10 — €0 6.8110 0.19707 0.46502 0.11312
€30 — €10 4.3472 0.11170 0.27552 0.03796
€30 — €20 4.6998 0.09218 0.24944 0.03111
€30 29.9252 0.94782 2.3745 2.8190

the pressure gradient correction based on them. In other words we at least
have to use the filtered density to calculate the pressure gradient correction.
Table 3 demonstrates the result of using the filter described in Appendix in
two modél runs. The first run is actually the previous one, but the GVC and
errors are estimated after the smoothing procedure was applied to the model
output density. It leads to dropping the error maximum from 8.6-10.5 cm/s
down to 6.6-7 cm/s, while the mean values remain basically the same. The
GVC maximum on the 30-th day decreases from 41 cm/s to 29 cm/s, that
is, 30% reduction. During the second run, a filter was applied to smooth two
grid point waves. It gives a substantial drop of the error maximum from 6.8
to 4.7 cm/s. The mean and the r.m.s. errors become about 2 times smaller
by the end of the run and more than 2 times smaller in the comparison with
previous run. The advantage of filtering is clear.

5.1.2. Upwelling tests. Like in the previous case, the region used for
analysis is a part of the shelf break from 200 m to 2 km close to the most
interesting upwelling regions in the Great Australian Bight (Figure 7). The
OCCAM output data [5], [6] and [7] data sets were used to set the initial
and the boundary conditions and surface heat, salt and momentum fluxes
for the austral summer season.

The interface thickness in the upwelling zones off Eyre Peninsula and
Bonny Coast is 200-240 m and o-levels deepening is 120-200 m, provid-
ing a ratio value of about 1.0-2.0. It means that even the best correction
methods will give an error about 10-15 cm/s without the averaged density
subtraction, though it is much better than 40-50 cm/s for the POM scheme.
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Figure 7. Upwelling model: Part of the Australian shelf slope zone
between 200 m and 2 km isobaths used to evaluate the pressure gradient
errors for upwelling model domain

The third and the fourth histograms (Figures 8 and 9) demonstrate the
results of the largest expected errors for the upwelling model domain with an
upwelling-like tilt and the neutral one. In the upwelling-like case (see Fig-
ure 8), the error is essentially increasing in comparison with the downwelling
cases: the best method is the one proposed here, giving an error for almost
all the points less than 9-11 cm/s. The FB method gives a number of points
with errors in the 10-20 cm/s range, while the POM scheme upper limit is
about 20 cm/s. Nevertheless, the new method continues improvement when
moving towards the neutral tilt (see Figure 9) which is a more usual case,
they have the error below 3-5 cm/s limit, while the FB and the POM scheme
give the increased number of points with errors higher than 5 cm/s.

Table 4 summarizes the results of three subsequent tests with the up-
welling model. It shows a progressing improvement from test without any
correction applied to test with the FB correction based on the initial density
distribution and finally to test with the 10-day updating correction based
on the smoothed density distribution. The maximum error during a run
reduced from 10.2-10.7 cm/s in the first test to 5.3-6.4 cm/s in the last
one, while the mean error on day 30 drops from 0.29753 to 0.0981 cm/s or
more than 3 times smaller. The same is for the r.m.s. error. Table 5 shows
the same results for the proposed method. The error, when no correction
applied, is around 12-15 cm/s, while after the correction based on the initial :
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Figure 9. Histogram of a number of points with maximum possible error in spec-
ified ranges. Upwelling model — no tilt

density distribution it reduces to 3-3.5 cm/s (2 times smaller than for the
FB test) and when correction was applied each 10 days, the maximum error
on day 30 was only 1.4 cm/s. The mean and the r.m.s. error values for this
method are about 3 times smaller than for the FB.

If one can pre-calculate the vertical interpolation coefficients, then the
pressure gradient correction could be calculated on computer much faster.
Using this correction for each model time step will reduce the accumulated
error associated with updating frequency to zero. Nevertheless, in turn we
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Table 4. Along-shore component of the GVC based on initial density
field, errors calculated for FB method for days 10, 20, and 30 and the

GVC based on day 30 density field

Max Mean r.m.s. K.E.
) 24.0882 0.35847 1.3590 0.92348
Without correction
€10 10.7438 0.28512 0.89499 0.40050
€20 10.2843 0.28639 0.87444 0.38232
€30 10.2517 0.29753 0.87870 0.38605
With day 0 correction
€10 — €0 7.2767 0.12018 0.39359 0.07746
€20 — €p 7.3433 0.13589 0.40432 0.08174
€30 — €0 7.2275 0.14796 0.40497 0.08200
€30 21.6669 0.33712 1.1831 0.69988
With correction updated each 10 days
€10 — €p 7.2767 0.12018 0.39359 0.07746
€20 — €10 5.3537 0.10842 0.32106 0.05154
€30 — €20 6.2890 0.09810 0.28026 0.03927
€30 23.0209 0.37795 1.2389 0.76743

Table 5. Along-shore component of the GVC based on initial density
field, errors calculated for proposed method for days 10, 20, and 30 and

the GVC based on day 30 density field

Max Mean r.m.s. K.E.
€0 23.3612 0.38109 1.4468 1.04660
Without correction
€10 12.0430 0.31668 1.02190 0.52216
€20 14.5043 0.34966 1.16520 0.67879
€30 15.2993 0.36772 1.23260 0.75963
With day 0 correction _
€10 — € 3.5086 0.04842 0.15399 0.01186
€20 — €0 3.3775 0.06271 0.15992 0.01279
€30 — €9 3.2031 0.07484 0.16399 0.01345
€30 21.9998 0.38632 1.3879 0.96315
With correction updated each 10 days
€10 — € 3.5086 0.04842 0.15399 0.01186
€20 — €10 1.7293 0.04221 0.11078 0.00614
€30 — €20 1.4376 0.03129 0.07604 0.00289
€30 19.4960 0.37950 1.3306 0.88524
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will have another problem. It is numerical stability. Although a pressure
gradient error is high, the POM scheme is numerically well balanced, so it
is stable. Each time step the pressure gradient correction will actually sub-
stitute new gradients instead of the POM gradients. This could destabilize
the numerical integration. For example, when we tried to make use of the
FB method at each time step without density smoothing, the model was
crashing during the first 10 days of integration.

The analysis shows that the FB method does not cooperate well with
the POM model. Right on the slope it gives a number of highs and lows
in the along-shore velocity component along with irregular temperature and
density distribution. This also leads to a high turbulence activity in this
region. We did not try a longer period integration, but it is quite likely that
the model could crash under this circumstances if such irregularities grow.

6. Conclusion

According to the analysis done of several pressure gradient correction meth-
ods we may recommend how to build a grid to correspond to the density
interface layer parameters. The interface thickness and o-levels deepening
ratio seems to be a significant criterion. In case when no average density
subtraction applied, most of the methods give an error above 10 cm /s if the
ratio is less than 2.1-2.7, while the POM scheme does so if the ratio is below
3.2. This could be substantially improved with the use of this subtraction.
But in extreme situations when, for example, the averaged density and the
local density interface layers are separated vertically, the error is like we had
with two non-interacting interfaces. Thus, the recommendation to make the
above-mentioned ratio as large as possible still persists. For both considered
downwelling and upwelling models this ratio has a too small value even for
regions of strong interest. If the grid had at least the 2 times finer resolution
in the region near to 500 m isobath, it would be much better.

Application of a subtracted density allows us to decrease an error in
a different way, so that for most of the grid points it would be less than
10 cm/s with the use of a certain appropriate method for the pressure gra-
dient correction.

During the tests it was found that the errors associated with the fre-
quency of correction updating can significantly rise if the correction is sel-
dom applied and density is not smoothed before calculating the correction.

The new approach was developed based on the vertical interpolation of
gradients instead of values. The test experiments showed that it gives more
reliable correction than any other tested. It is still not clear though, how
universal this approach is, and the numerical stability of each time-step
usage is the matter of further investigation.
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Appendix. Filter smoothing

The original Shapiro filter
- a
¢ = "2-(¢'i-1 + ¢iy1) + (1 — o)y
could be considered as a numerical scheme for the one-dimensional diffusion

$i— b . by — 2¢;i + i1

LA

At Az? ’
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where a = 2AAt/(Az?). In a more general case, when a grid spacing is not
constant, the numerical scheme is to be more complicated. We are going to
use the following one:

$i—bi_, 2 (¢i+1—¢,-_¢i—¢,-_1),

At Titl — Ti—1 \Tip1 — & T — Ti_)
or
- 2At Tivl — Zi Ty — Ti-1
$i =i+ A ( bt gy gs).
P (@i — @) (@i — ic1) \@ip1 — Ticy L Tig1 — Zq &

If we set a = 2AAL/[(ziy1 — zi)(2; — zi—1)], then the expression will be
analogous to the original one

6 = S(agi1 +bgin) + (1 - )

where _
a=221 "%  d p=o Tl
Tit1 — Ti-1 Tiy1 — Ti-
In case of a constant spacing it will give the same form known as the Shapiro
filter.

In order to avoid filtering along the constant o levels, which would lead
to additional vertical diffusion, we can use a similar technique like in the
case of the pressure gradient correction. To obtain a smoothed value of some
variable ¢ at the point (i, k) we can use instead of ¢;_; x and ¢; 1 a vertical
interpolation yielding the value ¢ at the same depth with ¢;  on the vertical
lines ¢ — 1 and i + 1. If one of them or both are below the bottom line, then
we can set these values equal to ¢;;. This means that we are applying a
zero gradient assumption when horizontal lines are crossing the bottom.



