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Generalized decomposability notions for
first-order theories

Denis Ponomaryov∗

Abstract. This paper introduces the notion of decomposability in an extension
and relative decomposability for first-order theories. We describe several basic facts
connected with these notions and formulate a criterion of relative decomposability.
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1. Introduction

The interest in studying compositional properties of first-order theories
has its roots in research on formal terminological systems and automated
reasoning. One of these properties is decomposability, which means that
a theory can be represented as a union of several signature-disjoint theo-
ries. From the applications point of view, this allows for reducing the search
space and using multiple reasoners in automated theorem proving. In the
context of formal terminological systems, e.g. ontologies, the decompos-
ability serves as a tool for component-based development and distributed
processing of large terminological knowledge bases. Both application sce-
narios were already discussed in [1] and [2].

The study of the decomposability property has been set in [10]. It has
been proved that every first-order theory has a unique decomposition into
indecomposable theories. This fact has laid the foundation for algorithmic
approach to the decomposability property and turned out to have many
valuable applications [9]. On the other hand, it appeared necessary to study
generalized notions of decomposability related to extensions and modular-
ity of terminological systems. At present, there is a large body of model-
theoretical research on this subject (see [6] for an overview) concentrated
mostly around Description Logics [2, 3, 4, 5, 7].

In this paper, we introduce the notion of decomposability in an extension
and relative decomposability for first-order theories. These definitions and
the properties proven around them are motivated by the following questions.
What happens to the decomposability property under extensions of theories?

∗The author was supported by the COMO project of Russian Foundation for Basic
Research (project No. 05-01-04003-NNIO a) and Deutsche Forschungsgemeinschaft (GZ:
436 RUS 113/829/0-1).



104 Denis Ponomaryov

Can a decomposable theory become indecomposable under extensions (or
vice versa)? These questions are natural for formal terminological systems
developed incrementally. It is not hard to demonstrate that each of the
cases is possible. However, we formulate a condition on extensions, which,
in some sense, guarantees the preservation of the decomposability property.
The next question is: given an indecomposable theory T , can we find sub-
theories in T that are decomposable? Depending on a concrete reasoning
task, it may be possible to omit one or several axioms of T in order to obtain
a decomposable theory.

For studying the new decomposability notions, we introduce in Section
2 all necessary definitions and notations; we also prove an auxiliary lemma,
which will be used to formulate examples. Section 3 contains all the basic
results of this paper. Section 4 concludes.

2. Preliminaries

Throughout this paper, we assume that all theories considered are de-
ductively closed. For theories S1 and S2 of signatures Σ1 and Σ2 we denote
by 〈S1, S2〉 the deductive closure of all sentences of S1 and S2 in the predi-
cate calculus of Σ1 ∪Σ2. A similar abbreviation will be used in examples to
denote the deductive closures of more than two theories.

Definition 1 [10]. A theory T of signature Σ is called decomposable, if
there exist theories S1 and S2 of disjoint signatures Σ1∩Σ2 = ∅, Σ1∪Σ2 = Σ
such that T = 〈S1,S2〉.

The pair [S1,S2] is called decomposition of T and the theories S1, S2

are called decomposition components of T .

This definition is based on the notion of decomposability, which has been
first formulated in [8] in connection with the study of formal ontologies.

Only non-trivial decompositions, with the components S1 and S2 having
non-empty signatures, are of interest for consideration. Therefore, we will
study decomposable theories assuming the existence of non-trivial decom-
positions, as well as their absence for the case of indecomposability. Trivial
cases will be admitted only in Theorem 3, where they are needed for gener-
ality.

To formulate several examples in Section 3, we need to give the definition
of a decomposable sentence from [10] and prove Lemma 1 below.

Definition 2 [10]. Let T be a theory. A sentence ϕ ∈ T is called decom-
posable in T if there exist sentences θ ∈ T and ψ ∈ T with the following
properties:

1. θ and ψ contain symbols only from the signature of ϕ;
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2. θ and ψ do not have signature symbols in common;

3. neither θ nor ψ is an equality formula;

4. θ, ψ ` ϕ.

If there are no these sentences in T then we call ϕ indecomposable in T .

Lemma 1. Let T be a theory of signature Σ, which has only infinite models.
Let Σ1 ⊂ Σ and Σ2 ⊂ Σ be disjoint signatures and each Σi, i = 1, 2 consist
of exactly one element.

Consider a formula Π ∈ T of the form Π = ξ1 ∨ ξ2, where ξ1 6∈ T
and ξ2 6∈ T are sentences of signatures Σ1 and Σ2, respectively. Then Π is
indecomposable in T .

Proof. Suppose that Π is decomposable in T . Then there exist sentences
ϕ ∈ T and ψ ∈ T of signatures Σ1 and Σ2, respectively, such that ϕ,ψ ` Π.
From the definition of Π, we obtain ϕ,ψ ` ¬ξ1 → ξ2 and ϕ,¬ξ1 ` ψ → ξ2.

As ϕ and ψ (as well as ξ1 and ξ2) do not have signature symbols in
common, by Craig’s interpolation theorem, there exists an equality formula
θ, for which ϕ,¬ξ1 ` θ and θ ` ψ → ξ2 hold. As T has only infinite models,
we have either θ ∈ T or ¬θ ∈ T .

If θ ∈ T then ψ, θ ` ξ2 and ξ2 ∈ T . If ¬θ ∈ T then ϕ,¬θ ` ξ1 and ξ1 ∈ T .
Both cases contradict the condition of lemma, hence Π is indecomposable
in T . ¥

In Section 3, we will use the abbreviation Π(a, b) to denote formulas of
the form ξ1 ∨ ξ2, where ξ1 and ξ2 are consistent non-tautological sentences
of disjoint signatures Σ1 = {a} and Σ2 = {b}, respectively. We will also use
the decomposability criterion from [10] formulated below.

Definition 3. Let S be a set of sentences in signature Σ.

The signature graph over S is the graph G = (Σ, I) with the incidence
relation I ⊆ Σ × Σ defined as follows: for each a ∈ Σ and b ∈ Σ we have
(a, b) ∈ I iff there exists a sentence ϕ ∈ S including the symbols a and b.

The adjoint signature graph over S is the graph G′ = (S, I ′) with
the incidence relation I ′ ⊆ S × S defined as follows: for each ϕ ∈ S and
ψ ∈ S we have (ϕ,ψ) ∈ I ′ iff the signatures of ϕ and ψ have a non-empty
intersection.

Decomposability criterion([10]) Let T be a theory and Ψ be a system of
axioms for T , with each sentence ψ ∈ Ψ indecomposable in T . Then T is
decomposable iff the signature graph over Ψ is not connected.
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The decomposability criterion together with Lemma 1 and the assump-
tion of infinite models will be used in the next section to formulate examples.

3. Generalized notions of decomposability

Definition 4. Let T and T ′ be theories of signatures Σ and Σ′, respectively.
Let T ′ be an extension of T . We call T decomposable in the extension
T ′, if there exist theories S′1 ⊆ T ′ and S′2 ⊆ T ′ of disjoint signatures Σ′1 ∪
Σ′2 ⊇ Σ, Σ′1 ∩ Σ 6= ∅ 6= Σ′2 ∩ Σ such that 〈S′1, S′2〉 ` T .

For brevity, we will often omit the word extension and say that T is
decomposable in T ′. When pointing to theories S′1 and S′2 is necessary,
we will use a longer formulation and say T is decomposable in the extension
T ′ with the components S′1 and S′2.

Remark 1. If T is a decomposable theory, then T is decomposable in any
extension T ′. On the other hand, each of the following four situations may
take place depending on T and T ′ :

Table 1. The possible cases under extensions

T is decomposable T ′ is decomposable Reference
+ + Example 1
- - Example 2
+ - Example 3
- + Example 4

Example 1. Let T = 〈Π(a, b), Π(c, d)〉 and T ′ = 〈Π(a, b), Π(c, d), Π(b, e),
Π(c, f)〉. Both theories T and T ′ are decomposable.

Example 2. Consider theories T = 〈Π(a, b), Π(b, c)〉, T ′ = 〈Π(a, b), Π(b, c),
Π(c, d)〉. The theories T and T ′ are indecomposable.

Example 3. Let T = 〈Π(a, b), Π(c, d)〉 and T ′ = 〈Π(a, b),Π(b, c), Π(c, d)〉.
The theory T is decomposable, but T ′ is not. However, T is decomposable
in T ′.

Example 4. Let T = 〈Π(a, b)〉 and let the formula Π(a, b) have the form
ξ1 ∨ ξ2, where ξ1, ξ2 are consistent non-tautological sentences of signatures
Σ1 = {a} and Σ2 = {b}. Let T ′ = 〈Π(a, b), ξ1〉. The theory T is originally
indecomposable, but decomposable in T ′. The theory T ′ is decomposable,
T ′ = 〈{ξ1}, {θ}〉, where θ is a tautological sentence of signature Σ2.
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Regarding these examples, it is important to determine the types of
extensions, under which the decomposability property is preserved. The
following theorem gives one of the conditions on extensions.

Theorem 1. Let T be a theory of signature Σ. If T ′ is a conservative
extension of T , then T is decomposable iff T is decomposable in T ′.

Proof. (⇒) is mentioned in Remark 1.
(⇐) As T is decomposable in T ′, we have theories S′1 ⊆ T ′ and S′2 ⊆ T ′ of
disjoint signatures Σ′1 ∪ Σ′2 ⊇ Σ such that 〈S′1, S′2〉 ` T . Therefore, for each
ϕ ∈ T there exist sentences ψ1 ∈ S′1 and ψ2 ∈ S′2 such that ψ1, ψ2 ` ϕ; thus,
ψ1 ` ψ2 → ϕ.

Let Σi = Σ′i ∩ Σ, i = 1, 2 be the decomposition of the signature of T .

By Craig’s interpolation theorem, there exists a sentence θ1 of signature
Σθ1 ⊆ Σ′1 ∩ (Σ′2 ∪ Σ) = Σ1, for which ψ1 ` θ1 and θ1 ` ψ2 → ϕ hold. In
particular, we have ψ2 ` θ1 → ϕ. By applying the interpolation theorem
again, we obtain a sentence θ2 of signature Σθ2 ⊆ Σ′2 ∩ (Σ1 ∪ Σ) = Σ2 such
that ψ2 ` θ2 and θ2 ` θ1 → ϕ hold; hence, θ1, θ2 ` ϕ.

Besides, we have ψ1 ∈ T ′, ψ2 ∈ T ′, ψ1 ` θ1, ψ2 ` θ2, Σθ1 ∪ Σθ2 ⊆ Σ,
and T ′ is a conservative extension of T . Therefore T ` θ1, θ2.

Let Si, i = 1, 2, denote the set of all sentences θi constructed as above
for each ϕ ∈ T (note that the sets S1, S2 are signature disjoint). Due to
the above-mentioned and the arbitrary selection of ϕ ∈ T , we obtain that
T = 〈S1, S2〉. ¥

It follows from this theorem that extensions by definitions ([11], Ch.4)
completely preserve the decomposability property of the initial theory.

Remark 2. There exists a class C of theories such that for any T ∈ C and
consistent extension T ′ of T , the theory T is indecomposable in T ′. The
class C includes all theories of signatures consisting of exactly one element.
We call the theories from C indecomposable in extensions.

Remark 3. If a theory T is indecomposable in extensions, then there exists
an extension T ′ for T such that T ′ is decomposable.

Definition 5. A theory T ′ is called relatively decomposable, if there
exists a theory T decomposable in T ′ with non-tautological components. If
no such theory exists in T ′, then we call T ′ essentially indecomposable.
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The class of essentially indecomposable theories includes all theories of
signatures consisting of exactly one element.

The property of relative decomposability can be studied by methods sim-
ilar to that applied to decomposable theories. The decomposability criterion
formulated in Section 2 shows that the key set, which determines whether a
theory T is decomposable, is a set of axioms for T that are indecomposable
in T . Here it suffices to find any two non-tautological sentences ϕ ∈ T ′ and
ψ ∈ T ′ of non-empty disjoint signatures to demonstrate that T ′ is relatively
decomposable. We show, however, that there exists a “smaller” set of sen-
tences, which determines the property of relative decomposability.

Notation For a theory T , let ∆(T ) denote the following set of sentences: if
N ⊂ T is the set of all sentences in T that are not equality formulas and are
non-tautological, then ∆(T ) ⊆ N is the set of sentences having a minimal
number of signature symbols among the sentences of N .

Theorem 2. Let T ′ be a theory of signature Σ′. Then T ′ is relatively
decomposable iff there exist two sentences ϕ ∈ ∆(T ′) and ψ ∈ ∆(T ′) having
disjoint signatures.

Proof. (⇐) is straightforward: the theory 〈{ϕ}, {ψ}〉 is decomposable in T ′.
(⇒) Let T be a theory decomposable in T ′ and S′1 ⊆ T ′, S′2 ⊆ T ′ be non-
tautological theories of disjoint signatures Σ′1∪Σ′2 ⊇ Σ, Σ′1∩Σ 6= ∅ 6= Σ′2∩Σ
such that 〈S′1, S′2〉 ` T . Let ϕ ∈ S′1 and ψ ∈ S′2 be two sentences of signatures
Σ1 ⊆ Σ′1 and Σ2 ⊆ Σ′2, respectively, such that ϕ and ψ are not equality
formulas and are non-tautological.

Consider the partial order ≤ on subsets of Σ′ defined as follows: for each
σ1 ⊆ Σ′ and σ2 ⊆ Σ′ we have σ1 ≤ σ2 iff σ1 ⊆ σ2 and there exist sentences
φ1 ∈ T ′ and φ2 ∈ T ′ of signatures σ1, σ2.

For the signatures Σ1 and Σ2 there exist minimal σ1 and σ2 such that
σ1 ≤ Σ1, σ2 ≤ Σ2, and the corresponding sentences θ1, θ2 are not equality
formulas and are non-tautological. Thus, there exist θ1 and θ2, which are a
pair of signature-disjoint sentences from ∆(T ). ¥

Criterion of relative decomposability. A theory T is relatively decom-
posable iff the adjoint signature graph over the set ∆(T ) is not complete.

Finally, we formulate an important property of decomposable theories,
which gives an insight on how they are constructed. The following theorem
is the direct consequence of the statements proved in [10]. Note that here
we admit the existence of trivial decomposition components for the sake of
generality.
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Theorem 3. Let T be a theory and Ω ⊆ P(T ) be the set of all decomposition
components of T . Consider the relation ≺⊆ Ω × Ω defined as follows: for
each S ∈ Ω and U ∈ Ω we have S ≺ U iff S is a decomposition component
of U .

Then (Ω,≺) is a boolean algebra.

Proof. It follows from Theorem 1 in [10] that T has a unique decomposition
into components that have only trivial decompositions. Let K denote the set
of these components. It is known that each decomposition component of T is
a union of some sets from K (Lemma 3 in [10]). Therefore, < Ω,∪,∩,∅, T >
is a boolean algebra.

For the rest of the proof, let us demonstrate that for each S ∈ Ω and
U ∈ Ω we have S ≺ U iff S ⊆ U .

If S ≺ U then, clearly, S ⊆ U according to Definition 1. Now assume
that S ⊆ U . Denote S ′ = U \ S. As S is a decomposition component of T ,
we have that S is a union of some sets from K. The same is true for U . This
means that S (as well as U) contains entirely some sets from K. Therefore,
S ′ is a union of some sets from K, different from that for S. As all theories
in K are signature-disjoint, we conclude that U is decomposable into S and
S ′; hence, S ≺ U . ¥

Note that the set of atoms of (Ω,≺) is exactly the set K from the proof
above. Having that some atoms can be relatively decomposable, one can
understand the structure of T as built of “nested” decomposition lattices
in which essentially indecomposable theories are elements that do not allow
further nesting.

4. Conclusion

We have formulated two generalizations for the decomposability property
of first-order theories, which has been first introduced in [8] and studied in
[10]. The two new definitions (decomposability in an extension and relative
decomposability) have been motivated by the classical notion of an extension
of theories. The definitions are much related to each other, yet serve different
purposes. The first one is connected with the question of “stability” of the
decomposability property under extensions, while the second one is aimed at
the task of identifying decomposable parts of indecomposable theories. We
have described several basic facts around these properties and formulated a
criterion of relative decomposability, which is, in some sense, similar to the
“pure” decomposability criterion. A detailed investigation of the generalized
decomposability properties is the subject of our further research.
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