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Behaviour analysis of parametric time
Petri nets*

E. A. Pokozy

We introduce a new notion of parametric time Petri nets, an extension of time
Petri nets [10] whose transitions are labelled with parametric time restrictions. Fur-
ther, a time behaviour analysis algorithm for the real time branching time temporal
logic TCTL [1] and a one-safe parametric time Petri net is proposed. The result
of the algorithm is a set of conditions on parameter variables which is sufficient for
the property expressed as a TCTL-formula being satisfied for a given parametric
time Petri net. Some remarks about complexity of the algorithm are also given.

Introduction

The verification problem of real-time systems is one of the main research
directions of modern programming. Traditional verification methods are
suitable for checking only qualitative timing properties of the systems. How-
ever, this is unsufficient for a correctness analysis of real-time systems whose
behaviour crucially depends on quantitative properties. Several temporal
logics for quantitative analysis of systems [3] have been proposed.

Concurrent real-time systems are often modelled by using time automata
with a finite set of clocks [2], timed transition systems [4] and time process
algebras (see, for example, [8]). However, all these formalisms are based on
interleaving semantics and therefore information about concurrency is lost.
On the other hand, time Petri nets [6] have been proposed as a suitable
formalism for modelling concurrent real-time systems.

Model-checking is an effective verification tool. In [9], deductive and al-
gorithmic verification methods based on temporal language CTL were pro-
posed. In [5], a temporal logic was introduced for analysis of ‘fairness’
conditions of labelled Petri nets. However, model-checking algorithms usu-
ally require redundantly detailed specifications of systems, which can leave
a user in repetitive trial-and-error cycles to select a parameter valuation. It
should be useful to have a tool for a less-detailed specification of real-time
systems and their properties.

In this paper we introduce a behaviour analysis algorithm of real-time
systems represented as parametric time Petri nets. This kind of nets is an
extension of time Petri nets [10] by means of parametric time constraints

*This work is supported in part by the INTAS-RFBR (grant No 95-0378).
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with character strings which represent unspecified timing constants as pa-
rameter variables. We assume that the value of each parameter variable of
a parametric time Petri net does not exceed some fixed bound. Further we
restrict ourselves to one-safe parametric time Petri nets. The result of the
algorithm is a set of conditions on parameter variables which is sufficient
for the property expressed as a TCTL-formula true for the given parametric
time Petri net.

The rest of the paper is organized as follows. The basic definitions con-
cerning parametric time Petri nets are presented in Section 1. Section 2
recalls the syntax and semantics of TCTL. In Section 3 we define a notion
of a region for a time Petri net and construct the region graph in order to
get a finite representation of the net. A time behaviour analysis algorithm is
provided in Section 4. Some remarks about the complexity of the algorithm
are finally given.

1. Parametric time Petri nets

Let N be the set of natural numbers and R™ be the set of nonnegative

real numbers. Let Var be a set of parameter variables which are character

strings representing unspecified timing constants and A be an arbitrary set.
The syntax of a time predicate n over Var and A is defined as follows:

nu=z~0|mAn,

where z € AUN, 0 € Var UN, n; and 7, are time predicates over Var and
A, and ~ stands for one of the binary relations {<,<,=,>,>}. Let B{}ar be

the set of all time predicates over Var and A. For a time predicate n € B{}ar,
the notation [9]51""¥ is the result of substitution of values a1, - -, a; instead

of every occurence of y1,:-+,y; in 7.
Definition 1.1. A parametric time Petri net is a tuple
N = (P,T,F,Var,7,mg), where
o P={p1,ps,...,Pm} is a finite set of places;
o T = {ty,t3,...,t,} is a finite set of transitions (P NT = 0);
F C (P xT)U(T x P) is a flow relation;

Var = {041,0,,...,0;} is a finite set of parameter variables;

e 7:T — BT is a function that associates a time predicate from BY,
with each transition from T';

e mg C P is the initial marking.

ForteT,*t={peP|(pt) € F}and t* ={p € P| (t,p) € F} denote
the preset and postset of t, respectively. To simplify the presentation, we
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Figure 1. The parametric time Petri net N}

assume that *¢ N ¢* = B for every transition ¢. For the sake of convenience,
we fix a parametric time Petri net N' = (P, T, F, Var, T,m9) and work with
it in what follows.

The parametric time Petri net A is shown in Figure 1, where the table
contains the time predicates 7; (1 < i < 5) representing time constraints on
transitions t;.

A marking m of N is any subset of P. A transition ¢ is enabled in a
marking m if *¢ C m (all its input places have tokens in m), otherwise it is
disabled. Let enable(m) be the set of transitions enabled in m.

Let V = [T — R™* U {#}] be the set of time assignments for transitions
from T where # is a special symbol for labelling disabled transitions such
that # ~ 6 = true for each 6 € Var UN and ~€ {<,<,=,>,>}. Assume
thatVEVandé‘Elé;'. %‘henf (0 # s

vit)+0, it .

(v+d)(t) = { v(t), otherwise.

A state g of N is a pair (m,v), where m is a marking and v € V. The
initial state in NV is a pair go = (my, 1), where

e my is the initial marking in N;

0, ift e enable(my),

o VieT. py(t) = { #, otherwise.

Let S denote the set of states of V.
A parameter valuation x of N is a mapping from Var into N. Given a
time assignment v € V and a transition t € T', we use the following notations:

81, vty veort 01,08 ,
Tx(t) = [T(t)]xl(el)r’-:.,x(ek)’ T X(t) = [T(t)]le(tl),t...,ul(tn),::(@l),...,x(ek)’

NX = (P, T, F,Var, Tx,mo)
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There are two causes of state changes in N, i.e. (1) firing of transition,
and (2) time passage.

In a state ¢ = (m,v) of N, a transition t € T' is fireable, if t € enable(m)
and there exists a parameter valuation x such that 7%X(¢t) = true. In this
case, the state ¢ = (m',v') of N is obtained from q by firing t (written
g q), if

em =(m\*t)Ut*, and

0, if t' € enable(m') \ enable(m),
e V' eT. V(t) = { #, if t' € enable(m) \ enable(m’),
v(t'), otherwise.

In a state ¢ = (m,v) of N/, time § € R can pass, if for all te enable(m)
there exist ' > 4 and a parameter valuation x such that 79 -X(t) = true.
In this case, the state ¢ = (m',v') of N is obtained from q by passing &
(written ¢ 4 q), if

e m' =m, and

eV =v+4.

A g-run r of N is an infinite sequence of states ¢; € S and time values
§; € RT of the form:

8 '] é
q=q1=$q2=§...=>qn$...,

satisfying the progress condition: for each w € R™ there is n € N such that
Y 1<i<n 0i > w. We denote the expression }.,;., §; by time(r,n).

A state g is reachable if it belongs to some go-run. Let RS(A) denote
the set of all reachable states of N.

N is one-safe, if for every (m,v) € RS(N) and for every t € enable(m)
it holds that t* "m = {.

A transition t € T is time bounded if for each parameter valuation y and
for each parameter variable 8 from 7(t) there exists a constant ¢ such that
x(0) < ¢. N is time bounded if each its transition is time bounded. The set
of all such constants ¢ for the given A is denoted by C(N).

Further N will always denote a one-safe time bounded parametric time
Petri net.

2. TCTL: syntax and semantics

Timed Computation Tree Logic (TCTL) was introduced by R. Alur, C. Co-
urcoubetis, D. Dill [1] as a specification language for real time systems. We
now review the syntax and semantics of TCTL.
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Let AP be a set of atomic propositions. For our purpose, it is convenient
to take AP = P.

Definition 2.1. The formula ¢ of TCTL is inductively defined as follows:

gu=p|d1| b1 A ¢ | Vdrilocts | FI1lUnct2,

where p € AP, ¢ € N, ¢; and ¢, are formulas of TCTL, ~ stands for one
of the binary relations {<, <, =, >, >}.

Informally, 31U <.¢2 means that for some computation path there exists
an initial prefix of time length less than ¢ such that ¢, holds in the last state
of the prefix, and ¢; holds in all its intermediate states.

We define the derived connectives of the propositional calculus, such as
V and —, in terms of — and A in the usual way. In addition, some of the
commonly used abbreviations are:

o VO ¢ = Virue U..¢p,
O e = true U9,
o VO ¢ = -3O .,
o d0 ¢ = VO

The unrestricted temporal operators correspond to TCTL-operators sub-
scripted by ‘> 0. ’

Definition 2.2. Given a parameter valuation x, a TCTL-formula ¢ and
a state ¢ = (m,v) € RS(NX), we define the satisfaction relation g | ¢
inductively as follows:

qFp & pem;
q k= - & qF o
gE¢1 ¢ & qlE¢1and gl ¢y

g = 3p1U g & for some g-run r of NX, r = 1l ctho;
q b= Vdild.do for every g-run r of NX, r = ¢1lhcda.

¢

Foragrunr=(g=¢q U g2 L .) in N'X the relation r = ¢1U~¢2 holds
iff there exist k¥ and § < §; such that:

1. (6 + time(r,k)) ~ ¢;

2. (mg, v + 0) = ¢Po;

3.VI<i<kVOLH <d;. (mi,v; +6') E ¢1;
4. V0§ <d. (mp, v +8) E ¢1.

NX satisfies a TCTL-formula ¢ (written N* = ¢) iff ¢o = ¢. A TCTL-
formula ¢ is satisfiable iff there is A’X such that N'X = ¢.
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Theorem 2.1. The satisfiability question for TCTL is ¥1-hard.

Proof. Follows from Definition 2.2 and the corresponding theorem from [1].
O

A TCTL-formula containing I/-operator is said to be an U-formula.
Further we fix a TCTL-formula ¢. x is a satisfiable valuation of N for ¢ if
NX = ¢. To analyze N for ¢ means to find the set of satisfiable valuations
of N for ¢.

3. Region graph

Since a parametric time Petri net constitutes a dense time model, the number
of its states is infinite. In order to get a finite representation of the behaviour
of a parametric time Petri net, we define a notion of a region [1]. Two states
of a parametric time Petri net are in the same region iff their markings
coincide and the corresponding time assignment values agree on the integral
parts and on the ordering of the fractional parts.

We extend a parametric time Petri net with a clock tick indicator x
which is conceptually a time assignment of a transition ¢* that can not be
reset and whose actual value is of no concern. But we can test whether it is
an integer or not at any moment.

Let ¢4 be the maximal constant appearing in ¢.

Then Ky.p = max({cg} U {c | 8 € C(N)}). For any § € R* U {#},
fract(6) denotes the fractional part of §, and |d] denotes the integral part
of §. Assume that |#| = #, fract(#)=0.

Definition 3.1. Given v,/ € V, v ~, v/ iff the following conditions are
met:
e for each z € T if either v(z) < Kpr,p or v'(2) < Ky, then |v(z)] =
[/ () ];

e for each z,2’' € T U {t*}

— fract(v(z)) < fract(v(z')) iff fract(v'(z)) < fract(V'(z'));
— fract(v(z)) = 0 iff fract(v'(z)) = 0.

Given v € V, let us denote [v]y = {v/ | v/ ~4 v}. A region of N with
respect to ¢ is a pair [g]s = (m,[v]s), where (m,v) € RS(N). We denote
m((m, [V]g)) = m.

Figure 2 shows the set of regions of the parametric time Petri net Nj.
Lemma 3.1. Let (m,v),(m,v') € RS(N) with v ~4 /. For every
TCTL-formula ¢ such that Ky.y > Kp.y and a parameter valuation x
such that (m,v) € RS(NX) the following holds: (m,v') € RS(NX) and
(m,v) EyY < (m,V) =4
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v m [v]

t1 to ts ta ts
v | 11000 | 00] [00] 00 #
a1 01010 # # [0':0] tid #
vy | 01010 ) # # (01 # #
vy | 01010 | # # L1 # #*
vg [00011 # #  # # [00]
vs | 00000 | # # # # #
ve | 11000 | (01) (01) (01) # #
o | 10001 | L1 # # # #
vg { 00101 +# # [0,0] #
vo | 10001 | 00] # # # #
vy | 10001 | (0,1)  # # # #
vip | 10001 | [11] # #  # #
viz | 10001 | (1,2)  # #  #  #
v 10001 | [22] # # # #
v1s | 01100 # [0)0] [010] #
v16 | 01100 # # (0,1) [0,0] #
vir | 01100 | # #  [,1] [00] #

Figure 2. The regions of N,

Proof. Before proving the lemma, we need to show that there exist (my, 14)-
paths r and v’ in N containing (m,v) and {m,v'), respectively, which are

similar in following sense. Let us consider a (mqg,1p)-path »: (mqg,vy) L}

{mq, 1) 5o, (mg, 1) ={(m,v) U3 {Mg4+1,Ves1) - - - We show that there ex-
& : 4
ists a (mg,vp)-path ' : (myg,1}) =3 (my, 1) = ... (mg,v) = (m,v/) =

{Mg41,Vg,q) ... with the same sequence of markings as r taken at "al-
most” the same time moments. Formally, for every ¢ > 1 the following
correspondences between (v, time(r,1)) and (v}, time(r',i)) are met (writ-

ten (v, time(r, 1)) ~ (v, time(r’,))):
e the time assignments v; and v} are equivalent: v; ~ ¥/;
e the time values time(r,i) and time(r',i) agree on integer parts:
— |time(r,i}] = |time(r',1)],
— fract(time(r,i)) = 0 & fract(time(r',i)) = 0;

o the time values time(r,i) and time(r',i) are in the same order with

time assignments v(t) and +/(t), correspondingly: for each transition
t € T it holds:
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~ fract(y;(t)) < fract(time(r,i))
fract(v(t)) < fract(time(r',1)),
— fract(v;(t)) > fract(time(r,i)) &
fract(vi(t)) > fract(time(r',q)).

=

Given r, we construct the desired path ' in two steps:
1. First, we construct a prefix p' (ending in (m,2’)) of r' corresponding

to the prefix p of r: (mg, 1) & (my,11) 5 (mg,vg) = (mo,1y). Let us
construct p’ step by step from (m,v') to (m,v). Suppose that (k — i) states
of p' have already been constructed. Given 4;, we try to find 8} so that we
can extend p' with (m;_1,7;_1) so that the equivalence is maintained at the
(k — i+ 1)th step.

Let A be the set {time(r,7)}U{vi(t) | t € T}. The set A’ is defined anal-
ogously. Because of the equivalence at the (k — ¢)th step, the nessesary and
sufficient requiment of the desired &} is such that each element of A’ should
cross the same number of integer boundaries (due to the addition of §}) as
the corresponding element of A does (due to the addition of §;). The reader
can convince himself that the existence of §; meeting the constraints depends
only on the ordering of the fractional parts of the elements of A. Hence, the
existence of §; guarantees the existence of J;. Let (m,v) € RS(NX). For
each ¢ the constraint n on the time of reaching a state (m;1,744;) from the
state (m,v;) depends only on v; and contains only integer constants. Using
v; ~ v, we get |1;] = |¥/]. So, the constraint i’ on the time of obtaining a
state (miy1,7,,) from the state (m;,v]) is satisfied iff # is satisfied. Then
p' is a prefix in NX and, hence, (m,v') € RS(N'X).

2. Secondly, we consider the path ' as a concatenation of the prefix
p' and some {m,v')-path constructed step by step, starting from the state
(m, ') for a given (m,v)-path. The construction of the (m,1')-path is sim-
ilar to the construction of p'.

Now we show that the paths » and ' are similar. The base case follows
since v ~ v/ and time(r,1) = time(r',1) = 0. Suppose that we have con-
structed r’ correctly up to i steps. It is easy to see that the choice of &}
depends only on an ordering of the fractional parts of elements on A’ which
is the same as in A. Hence, the existence of d; guarantees the existence of
d! satisfying the above conditions.

We shall proceed by induction on the structure of 4. The base case and
the cases corresponding to the logical connectives follow immediately. We
will consider the case ¥ = 3p1U..p2. Suppose, (m,v) |= 9. There exists
an (m,v)-path r such that r |= ¢;1U_.¢2, i.e. there exist k and § < dy such
that:

1. (8 + time(r,k)) ~ ¢
2. (myp, v + d) ’= b2;
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3. V1<i<k V8.0 =0V0<d <) (ms,u+8) = éi;
4. VO<§ <. (my, v+ 6" E .

Let us construct an {(m,v/)-path ' as above. We have to show that v’ |=
A1lUncpa.

1. We know that (vg—1,time(r, k — 1)) =~ (v},_;, time(r’,k — 1)). Because
of the construction of »' for a given § we can find §' such that
(vk, time(r, k)) > (v, time(r', k)). Using the fact that (8 + time(r, k))
~ c, we get (§' + time(r', k)) ~ c.

2. We have (my, vt + §) = ¢2 and, by induction hypothesis, (my, v}, + §')
= ¢

3. Let ¢ < k and 0 < §' < §!. Now using the equivalence of (14, time(r, 1))
and (v}, time(r’,1)), we can find 0 < 4§ < §; such that
(Vig1, time(r,© 4+ 1)) =~ (vj,,,time(r’,i + 1)). Since (m;,v; + &) = ¢,
by induction hypothesis, we get (my,v}, +8') = ¢1;

4. Similar to item 3.

Thus, ' & ¢1ldcp2 and (m,v') = 1. O

Lemma 3.2. The number of equivalence classes of V induced by ~ is
bounded by | 7' |!- 2471 . (K4 + 1)IT.

Proof. We can represent an equivalence class [v/]4 of V induced by ~4 by a
triple of arrays (a, 3,7) as follows:

The array « is a T-indexed array associating one of the intervals from
[Oa O]: (0) 1): [1: 1]) "t [KN:¢)KN:¢]7 (Kden 00) with each transition ¢ € T
The array a represents a time assignment v iff v(t) € a(t) foreach t € T'.

Let T, be the set of transitions ¢ such that a(t) is not of the form [¢,1]
for some i < Ku.y. Thus T, is a set of transitions for which an order of
fractional parts of time assignments is essential.

The array 3 : T — {1:-+|T4|} is a permutation of T,. It gives the
ordering of fractional parts of time assignments corresponding to the tran-
sition from T, with respect to <. The array 3 represents a time assignment
v iff for each pair t;,t2 € T,, we have: if 8(t;) < B(t2), then fract(v(t;)) <
fract(v(tz)).

The array « is a boolean T,-indexed array, and is used to specify which
transition in T, has the same fractional parts of corresponding time as-
signments. For each transition ¢ € Ty, (t) tells whether or not the frac-
tional part of v(t) equals to the fractional part of its S-predecessor. The
array <y represents a time assignment v iff for each ¢; € T, it holds that
v(t1) = 0 iff there is a transition ¢ € T, such that B(t2) = B(f1) + 1 and
fract(v(t;)) = fract(v(ts)).
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It is easy to see that the number of equivalence classes of V induced by
4 is bounded by the number of triples (a, 8,7) of the desired form. The
number of ways to choose a is (Kn.¢ + 1)IT1, For a given «, the number of
ways to choose § is bounded by the number of permutations over T, which
is bounded by |T'|!, and the number of ways to choose -« is bounded by the
number of boolean arrays over T, which is bounded by 2lTl, O

Definition 3.2. The region graph of N and ¢ is defined to be a labelled
graph G(NV,¢) = (V, E,l). The set of vertices V is the set of regions of N/
with respect to ¢. The set of arcs E C V x V consists of two types of arcs:

¢ The arc ([q], [¢']) may represent firing of a transition in N: ¢ 2 q.
e The arc ([q], [¢']) may represent the passage of time:
— ¢ = q+ 6 for some § € RT;
— there are no g and seRT, 0 < 8 < & such that [g]s # [qls, [@ls #
d'l4, g+d=qg,andg+d—-d ="
The function [ labels an arc either with a transition ¢ € T (if the arc rep-
resents firing of ) or with the sign '¢’ (if the arc represents the passage of
time). For the sake of convenience, we fix a region graph G(V, ¢) = (V, E, 1)
and work with it in what follows.

Figure 3 shows the region graph of the parametric time Petri net Aj (see
Figure 1).

Lemma 3.3. The number of regions of A/ for ¢ is bounded by
| T |t 21PIH2IT]. (Kpep + 1T

Proof. Assume (m,[v]y) to be a region of . Since m is an array of the
length | P | consisting of ‘0’ and ‘1’, the number of different markings of
N is 2171, Moreover, the number of equivalence classes of time assignments
is bounded by | T |!- 227! . (K4 + 1)/T!, due to Lemma 3.2. Hence, the
number of regions of V for ¢ is | T' |!-2!P+2T]. (K., +1)T1, by Lemma 3.2.
0

For each arc ([glg, [¢']4) from E, we let £([qy, ¢']4) =T if going from ¢ to ¢’
the value of  increases from a noninteger to an integer; €([q]¢,[q']4) ={ if
going from g to ¢’ the value of & increases from an integer to a noninteger;
otherwise £([q]4,[qd']g) = 0.

Given a vertex v in V, a path starting from v (written I'V) is a sequence
of vertices (vivz...) from V, where v; = v and for every i > 1 (v;,v;11) € E
if v;4 exists. We denote by I{I'") a sequence of labels corresponding to I'”.
Then tr(I'Y) is a restriction of [(I'?) to 7. Given a transition ¢ € ¢r(I'Y} and
v',v" € I'V such that I(v',v") = ¢, we denote in(¢t,I'?) = v'.

Given v, v’ from V', we use I'’, to denote the finite path starting from v
and ending in v'. We define the time of '}, = (v = vyv2 ... vz = v) (written



Behaviour analysis of parametric time Pelri nets 69

Figure 3. The region graph of the time Petri net N}

time(T?)) as the number of arcs (vi,vi41) such that e(v;,v;41) =1 for 1 <
i < k — 1. Let Simple be the set of all simple paths in G(N, ¢) = (V, E, I).

A cycle is a finite path (vy...vy) such that m > 2 and vy = v,,. TV is
a short path if each simple cycle is traversed at most once along I'”. I'V is a
slim path if each cycle of zero time is traversed at most once along T'".

Lemma 3.4. Given two vertices v, v/ € V and d € N, there is a path from
v to v’ of time d iff there is a slim path from v to v’ of time d.

Proof follows from the fact that a path which is not slim can be reduced to
a slim one by deleting duplicate zero cycles. a

Given a simple path I'j! = (v1v2...v;) and a finite set H of simple cycles
in G(N,¢), we call (T2, H) a cactus structure iff for each Q € H there is a

Uk o .
finite sequence 1, -+ O (5 = (vjvh... v} ), 1 <4 < m) of simple cycles
in H such that
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e (0 =) and
e for each 1 < i < m thereis 1 < j < k;; such that vj-“ = vi, and

e for some 1 < ¢ < k v; = v holds.

Given a set of nonnegative integers ri,...,Tm, let ged(ri,...,rn) and
lem(ry,...,ry) be, respectively, the greatest common divisor and the least
common multiple of the nonzero elements in ry,...,ry.

Given a cactus structure (I%,{Q1,...,0m}). Let us denote
r; = time(§Y;) for each 1 < i < m. (Y,V¥) is an offset-period pair of I'y,,
where

T = time(I'y;) + Z ri+m-lem(ry,...,*m), ¥ = ged(r1,...,Tm).
1<i<m

Let Path(I');, {Q1,...,n}) be the set of paths induced by the cactus struc-
ture (I'%, {Q1,...,Qm}).

Lemma 3.5. Given v, v’ € V and d € N such that

d>_ max {Y|(Y,¥)isan offset-period pair of I'l, }.
I?,€Simple

Proof follows from the Definition of cactus structure and Lemma 3 [11]. O

There exists a path I'}, of time d iff there is ¢ > 0 and offset-period pair
(T,¥) of T'yy suchthat d=T +4- 0,

Given a cactus structure (I, H) with the offset-period pair (T, ¥). A
short path I'}, corresponds to the constraint ‘~ c’if either there exists a slim
path I'Y € Path(I'},, H) such that time(I'') < T and time(['Y) ~ ¢, or there

exists 1 > 0such that T +17-¥ ~ c.

4. Labelling algorithm

To decide a time behaviour analysis problem, we need to label a pair con-
sisted of a vertex of G(N,¢) and a TCTL-formula by a first-order-logic
formula (called a condition) with parameter variables as free variables.

Informally, a condition is a constraint on parameter variables on which
the given TCTL-formula is true on the states corresponding to the given
vertex.

Suppose, we want to analyze A with respect to ¢, i.e. to label the
initial vertex vy with a condition Lfo. We label the vertices of G(V, ¢) with
subformulas of ¢ or its negation starting from the subformulas of length
1, then of length 2, and so on; then we construct conditions L¥ for all
subformulas 1) of ¢ and for all vertices of G(N, ¢).
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Given a vertex v = (m,[v]s) of G(N,¢) and a time predicate z ~ 6,

the notation [v]4(z) ~ 6 means i(z) ~ @ for all & € [v]3. Then 7% =

t1,estn
Mlifyten). . vlotea):
A function before : BT, — BT . is inductively defined as follows:

e Case 7=z ~ 0. Then before(n) = (2 <8V~ 8);
e Case n = m A ng. Then before(n) = before(n1) A before(ns).

Given a TCTL-formula v, we define a proposition a¥ which is true on
the given vertex v iff v is labelled with 1.

Let 1 be a subformula of ¢. Assume that the vertices are already labelled
with each subformula 1’ of 4 and the condition Lf.' is already constructed
for each vertex v' € V. We shall label a vertex v with a formula 9 or its
negation and construct a condition LY. Let us consider the structure of .

Case ¥ € P. If 1 € m, then label v with 1, else with —p. LY = true.

Case ¢ = —);. If v is labeled with 11, then label it with —1), else with ).
If ¥ is a U-formula, then LY = —L¢, else LY = true.

Case ¥ = ¥; A ¢P2. If v is labelled with —); and with 13, then label it with

1), else with —.
If 1, or 1, is a U-formula, then LY = L¥1 AL¥?, else LY = true.

Case 1 = Qi1 U..c12, where @ is either an existential or universal quantifer.

A 1-path is a short path I'” for which there exists ¢ > 1 such that for all
J <1, vj is labelled with 41, v; is labelled with ¢, and Iy, corresponds
to the constraint ‘~ ¢’. The set of such v; for the given I'V is called
R(T"). The set of short paths of G(N, ¢) starting from v is denoted by
F?(¢). A vertex v should be labelled with 1 if there exists a 1)-path
I'" of G(N, @) (all T are 3-paths of G(V, ¢) depending upon Q).

Given -path I'V and a vertex ¥ from I'?,

B =LEA A BEA A POA A EET (A
v'ery, teenable(m(7)) tetr(I':, )

A A before(r™Tv)(¢)));
t'€enable(m(€(t,IY,)))

W=V (V BeM-oad) ifQ=3
TveFv(y) TER(IY)
= A (V BEIM-d) fQ=V.

TveFv(y) wER(IY)



72 E. A. Pokozy

As an example, we consider an application of the above algorithm to
the parametric time Petri net N; (see Figure 1) and a TCTL-formula ¢ =
Jtrueld>2(p4 A ps), which unformally means that the transition ¢ fires not
earlier than in time 2. Using the algorithm, we obtain the condition on the
parameter variables (61 =60} =62 =1)V(0< 0} <82 <216, =2).

Theorem 4.1. Given a TCTL-formula ¢ with Ky.y > Ky, a vertex
v = (m,[V]y) of G(N,¢) and a parameter valuation x such that (m,v) €
RS(NX). x satisfies the condition LY constructed by the above labelling
algorithm iff (m,v) = 9.

Proof. The proof is conducted by induction on the structure of 4. The base
case and the cases corresponding to the logical connectives follow immedi-
ately. We prove that x satisfies to LY iff (m,v) |= ¢, where ¢ = Ipp;Uc2.
The other case ¢ = Vip1ld.c2 is similar.

(<) Suppose, (m,v) |= ¢. This means that there is an (m,v)-path r
in NX : (m,v) = (m1,1) & (ma, vo) % ... for which r = ¢1lhocd2. This
implies that there exist k& and é < 8, such that:

1. (6 + time(r, k)) ~ ¢;

2. (mg,ve +0) = ¢

3.VI<i<k V(M =0vO0<d <6§) (m,v; +8) E ¢1;
A0S <5, (mp,vi+58) = .

For a given r in A'X we shall construct the corresponding path in G(VN, ¢).
For each i > 1 we can find a finite path T{™ ™) i1 GV, 4) in the

{mit1, [Vitale)
following way. If (m;;1,v;11) is obtained from (m;, ;) by passing d;, then
Tielae) = {ma nlg) = (ma, B8le), (ma, 14)g), s iy D)) =

{miy1, [Vir1]g)} for some j; (;N?e)re (mq, [Uit14) = suces(ms, [Vf]g) for each
mg, i)y

0 <! < j;). Otherwise P(m;+1,[u,-+1]¢) = {(mi, [¥]p), (Mit1, [Vis1)p)} (where
(mit1, [Vig1]g) = suces({mi, [14]g)) for some t € fireable((m;, [15]g))). Note
that for all 0 < ¢ < 4; there exists 0 < I < j; such that v; + §' ~4 Vé.
Let T'™ ) be a path in G(MN,¢) obtained as a concatenation of paths
(mia["l']¢)
(Mit1, [Vita]g) .
Now we show that '™ [“l¢) satisfies the formula ¢;U (@2 Ap~c), i.e. there

are k and ! < j; such that: a) FE:;[V[L";)]d’) corresponds to the constraint
ke

‘~ ¢, b) (mp,[vi]s) is labelled with ¢, and c) (mk:,[u,f,],;,) appearing in
T{™ [Me) before (mg,[vilg) is labelled with ¢1. Using the construction of

(mu, [vie]g)

(mase esls)? WE obtain that there is ! < ji such that v + § ~4 u,’c.
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a) Since [time(r k)| = time(l"<m’[ ls) ); we have § + (F(m’ 1) ) ~

. 1) (ms, [Va]g) ("(‘k Efli].»))

m, V)¢ ~ m, (V)¢

Hence tzme([‘( v oh1e) ) ~ ¢. For a cactus structure (P(mk,[V§,]¢)’H ):
either tzme(l"(m ['E]";)] ) < T, or by Lemma 3.5 there exists ¢ > 0 such

that Y +1¥ ~ ¢. Thus I‘E:'[[]")] ) corresponds to the constraint ‘~ ¢’.
k1 1Vglo

b) Using the fact that (mg,y + 6) = ¢2, we have (my,vi) = ¢2. Then
by induction hypothesis (my, [VL]4) is labelled with ¢s.

c) Let us consider (my,[vi]s) appearing in S before (mg,[vi]s) (ie
either ' < k, or (k' = k and I' < [)). By the construction of
I‘é:::;[;"['l:,)ﬂm, there is §' < & ?uch that v + &' ~4 vY,. Ther
(my, v + 8') = @1 implies (mp, L) |= ¢1 by Lemma 3.1. Hence, by
induction hypothesis {my, [u£.]¢) is labelled with ¢;.

Note that '™ [*]¢} is a slim path down to the progress condition of r. Hence,
I{m[¥le) is a 1p-path. We show that x satisfies the condition

'/’ m, [¥] ¢)((mk, ile), [{m [“]s)). Really, by induction hypothesis, x satisfies
o o) and L(m 7)) for all (m, [7]4) from T(™ ). And
using the firing rules in N X, we obtain that y satisfies the condition

A TOA N EEmA N before(r BTV @),

t€enable(m(7)) tetr(T'?,) t’Genable(m(e(t,I“;, )

the conditions L

Thus x satisfies LJ¥14~c¥2,

(=) Suppose that x satisfies L]#1%~92  Then, according to the above al-
gorithm, there is a gh-path T\™ o) {(m, [v]4) = (m, [11]g), (ma, [2lg) .. .}
in G(NV, ¢), i.e. there is n € N such that (m;, 1)) is labelled with ¢ for
each 1 < i < n, (mp, [1,]g) is labelled with ¢, and I‘EZ;EV[L’Z)]M corresponds
to the constraint ‘~ ¢’. We shall construct the corresponding (m, v)-path 7
in N: {m,v) = (m3,11) 4 (mg, ve) i?, ... such that for each ¢ > 1 there
is §; € R* for which (m;,v;) & (miy1,v; + 0;) and v; + &; € [Vi41]9. Note
that, by the construction of LE”””“”’”, r is a path in NX, Then, similar tc
the first part of the proof, we can show that (m,v) = 1. O

Theorem 4.2. Given a TCTL-formula ¢, there is a procedure of analysis
of N with respect to ¢ bounded by:

O[l ¢| ‘2|T|!.2|P|+2|Tl.(KN:¢+1)|T| ] )

Proof. From the definition of the region graph and from Lemma 3.3,
it follows that | V |= O] T |- 2PH2TI . (Kyy + 1)IT1]. For a vertex
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v of G(N, @) there are at most | T' | output edges representing the fir-
ing of transitions and an edge representing time passage. Hence | E |=
O[| T |!- 2"PHATI. (K4 + 1)7I]. The region graph G(N,¢) can be con-
structed in time O[|V | 4] E|] (written | G|). When we construct a condition
for a given formula ¢ and a vertex v of G{N, ¢), we need to consider all short
paths in G(N, ¢) begining from this vertex. The number of simple cycles is
|G |!. So, the number of short paths is (|G|!)2. The time of considering a
short path is |G| +(] G| +1)!. Then, to construct a condition for L¢, we
need the time O[|¢| -(|G|!)%]. The complexity follows from the bounds on
the size of V and FE. a

Conclusion

In this paper we introduce a notion of a parametric time Petri net and
propose a TCTL-based algorithm for behaviour analysis of it, which provides
a technique for adjustment of timing limitations with respect to the system
properties.

In future we suppose to optimize the proposed algorithm and to construct
an algorithm for behaviour analysis of parametric time Petri nets in terms of
parametric TCTL [11], an extension of TCTL obtained by using parameter
variables in U/-operators.
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