
Bull. Nov. Comp.Center, Comp. Science, 34 (2012), 105–133
c⃝ 2012 NCC Publisher

Component properties of forgetting and
progression in the situation calculus∗

Denis Ponomaryov, Mikhail Soutchanski

Abstract. In many tasks related to reasoning about consequences of a logical
theory, it is desirable to decompose the theory into a number of weakly-related
or independent components. However, a theory may represent knowledge that is
subject to change due to execution of actions that have effects on some properties
mentioned in the theory. Having once computed a decomposition of a theory, one
would like to know whether a decomposition has to be computed again in the theory
obtained from taking into account changes resulting from execution of an action.
In the paper, we address this problem in the scope of the situation calculus, where
a change of an initial theory is related to the notion of progression. We undertake
a study of the decomposability and inseparability properties known from the liter-
ature. We contribute by studying these properties wrt progression and the related
notion of forgetting. We provide negative examples and identify cases when these
properties are preserved under progression of initial theories and under forgetting
in local–effect basic action theories of the situation calculus.

Keywords: decomposition, inseparability, forgetting, progression, basic action
theory, situation calculus, reasoning about actions

1. Introduction

This paper is related to the decomposability and inseparability proper-
ties of logical theories widely known in research on modularization in the
area of knowledge representation [16, 3, 4, 12]. Both properties are con-
cerned with subdividing theories into components to facilitate reasoning.
Informally, decomposability of a theory means that it can be equivalently
represented as a union of two (or several) theories having a strictly defined
set ∆ of common signature symbols. Inseparability of theories in a logic
wrt some signature ∆ means that the theories have the same set of logical
consequences in the signature ∆. If a theory T is ∆–decomposable into ∆–
inseparable components, then (under certain restrictions on the underlying
logic) each component in decomposition contains all information from T in

∗Supported under the Grant of the President of Russian Federation (Grant No. MK-
2037.2011.9), the Russian Academy of Sciences (Grant No. 15/10), and the Siberian
Division of the Russian Academy of Sciences (Integration Project No. 3). The authors
would also like to thank the Natural Sciences and Engineering Research Council of Canada
(NSERC) and the Department of Computer Science of the Ryerson University for provid-
ing partial financial support.

106 D.K. Ponomaryov, M. Soutchanski

the corresponding subsignature. This is an ideal case of decomposition, since
in this case the problem of entailment from T can be reduced to entailment
from components which are potentially smaller than the theory T .

In the area of reasoning about actions, a logical theory represents knowl-
edge that is subject to change due to effects of actions on some of the prop-
erties mentioned in the theory. It can be updated with new information,
while some other knowledge should be forgotten as no longer true in the
new situation. We consider two types of updates: forgetting in arbitrary
theories and progression of theories in the situation calculus. Forgetting is a
well-known operation on theories first introduced by Fangzhen Lin and Ray
Reiter in their seminal paper [7]. Forgetting a signature σ in a theory T
means obtaining a theory indistinguishable from T in the rest of signature
symbols sig (T) \ σ. In this sense, forgetting a signature is close to the
well-known notion of uniform interpolation. Forgetting a ground atom P (t̄)
in a theory T gives a theory which implies all consequences of T “modulo”
the truth value of P (t̄). The operation of forgetting is closely related to
progression in basic action theories in the situation calculus.

The situation calculus [17] is a knowledge representation formalism based
on first-order logic which has been designed for axiomatization of problems
in planning and high-level program execution. The idea is to axiomatize a
set of initial states (as some initial theory), preconditions when actions can
be performed, and the effects of actions on properties which are situation-
dependent. Then, one can reason about consequences of sequences of ac-
tions, to check whether properties of interest hold in a chosen situation and
whether a certain sequence of actions is executable. In the situation calcu-
lus, the so-called basic action theories represent such axiomatizations. Each
basic action theory contains the initial theory which represents incomplete
knowledge about the initial situation. In a special case, when there is com-
plete knowledge about a finite number of individuals represented as unique
names, the initial theory can be implemented as a relational database [17].
An update of the initial theory after execution of an action is called pro-
gression of the initial theory wrt an action. Informally, a basic action theory
D is a union of some initial theory DS0 and some theory T which defines
transitions from one situation to another, plus some “canonical” axioms as-
sumed to be true for all planning problems represented in situation calculus.
Then progression of DS0 wrt some action α is a logical consequence of D
which contains all information from D about the situation resulting from
execution of α in S0. Ideally, it is computed as an update of DS0 with some
logical consequences of T after forgetting some information in DS0 which is
no longer true wrt the resulting situation. Note the intuitive relation with
the operation of forgetting.

Historically, the situation calculus (earlier known as situational logic) is
the earliest logical framework developed in artificial intelligence (AI). It is

Component properties of forgetting and progression in the situation calculus 107

still one of the most popular logical frameworks for reasoning about actions,
e.g., it is presented in most well-known textbooks on AI. It has been devel-
oped in the 1960s by John McCarthy and his colleagues [13, 14, 1]. It is
worth mentioning that there are both conceptual and technical differences
between the situation calculus, which is designed for reasoning about arbi-
trary actions, and the Floyd–Hoare logic, Dijkstra’s predicate transformers,
dynamic logic (and other related formalisms), which are designed for rea-
soning about the correctness of computer programs. For example, the latter
formalisms would consider the operator assigning a new value to a variable
in a program as a primitive action, while the former would consider as prim-
itive the actions on higher level of abstraction, e.g., such as moving a book
from its current location to the table. For this reason, the situation calculus
is chosen as foundation for high-level programming languages in cognitive
robotics [6]. In our paper, when we talk about the situation calculus, we
follow the axiomatic approach and notation developed by R.Reiter [17] who
developed a general approach to axiomatizing direct effects and non-effects
of actions. It has been observed for a long time that in practical applica-
tions real world actions have no effect on most properties. However, it was
Reiter who first proposed an elegant axiomatization that represents com-
pactly non-effects of actions. The cited book covers several extensions of
the situation calculus to reasoning about concurrent actions, instantaneous
actions, processes extended in time, interaction between action and knowl-
edge, stochastic actions, as well as high-level programming languages based
on the situation calculus. In our paper, we concentrate on the case when ac-
tions are sequential, atemporal, and deterministic. Despite this focus of our
paper, our results can be subsequently adapted to characterize more general
classes of actions. The main limitation of our work is in concentrating on
direct effects only. Side effects of actions remain to be considered in future
work.

We are interested in having an initial theory decomposable into insepa-
rable components, and preserving decomposition and inseparability of com-
ponents because the operation of progression can be computationally costly
in practice. If an executed action has effects only on one part of the initial
theory, then we would like to be able to compute progression using only this
part instead of the whole initial theory. This leads to the question whether
the decomposability and inseparability properties are preserved under pro-
gression and under forgetting. Ideally, we would like to avoid computing
a decomposition of an updated initial theory again after executing an ac-
tion. Moreover, we would like to know whether the components remain
inseparable after progression. If yes, then it would suffice to compute a
decomposition of the initial theory once, and this decomposition remains
“stable” after progression wrt any arbitrary sequence of actions. In general,
it is very hard to guarantee preservation of decomposability and inseparabil-

108 D.K. Ponomaryov, M. Soutchanski

ity, because there is a certain conceptual distance between these notions on
one hand, and forgetting and progression on the other – we provide examples
witnessing this. Nevertheless, we identify important cases when preservation
holds and it turns out that some of them have a nice-looking formulation.

We start with some model-theoretic remarks useful in this paper, then
introduce the basics of situation calculus and proceed to the component
properties of forgetting in Section 3 and progression in Section 4. The last
section contains a summary of the obtained results. An extended version of
the paper containing all proofs can be found at
https://docs.google.com/open?id=0Bx3LCrAhU9Q3bjRHcFhOSGRRcDQ

2. Background

2.1. Model-theoretic definitions

Let L be a logic (possibly many-sorted) which is a fragment of second-
order logic (either by syntax or by translation of formulas) and has the
standard model-theoretic Tarskian semantics. We call signature a subset of
non-logical symbols of L. If M1 and M2 are two many–sorted structures
and ∆ is a signature then we say that M1 and M2 agree on ∆ if they have
the same domains for each sort and the same interpretation of every symbol
from ∆. If M is a structure and σ is a subset of predicate and function
symbols from M, then we denote by M |σ the reduct of M to σ, i.e. the
structure with predicate and function names from σ, where every symbol of
σ names the same entity as in M. The structure M is called expansion of
M |σ. For a set of formulas T in L, we denote by sig (T) the signature of
T , i.e. the set of all non-logical symbols which occur in T . We will use the
same notation sig (φ) for the signature of a formula φ in L. If t is a term
in the language of second–order logic then the same notation sig (t) will be
used for the signature of t, i.e. the set of all non-logical symbols occurring
in t. Throughout this paper, we use the notion of theory as a synonym for a
set of formulas in L which are sentences when translated into second-order
logic. Whenever we mention a set of formulas, it is assumed that this set is
in L, if the context is not specified. For two theories T1 and T2, the notation
T1 ≡ T2 will be the abbreviation for T1 |= T2 and T2 |= T1, i.e. the symbol
≡ will mean semantic equivalence. If T is a set of formulas in L and ∆ is a
signature then Cons (T ,∆) will denote the set of (semantic) consequences of
T (in L) in the signature ∆, i.e. the set {φ ∈ L | T |= φ and sig (φ) ⊆ ∆}.
We emphasize that this is a notation for a set of formulas in L, because T
may semantically entail formulas which are in second-order logic, but outside
of L.

Let us recall some basic model-theoretic facts that are important for
understanding the results of this paper.

Component properties of forgetting and progression in the situation calculus 109

Fact 1. If T is a theory in L and ∆ is a signature, then some models of
Cons (T ,∆) may not have expansion to a model of T .

Indeed, let L be first-order logic and {P, f} be a signature, where P is
a unary predicate and f is a unary function. Let T be a theory saying that
f is a bijection between the interpretation of P and its complement. Thus,
T axiomatizes the class of models, where the interpretation of P and its
complement are of the same cardinality. Then, by the Löwenheim–Skolem
theorem, there is a model M of Cons (T , {P}) in which the interpretation
of P is a countable set, but the complement is uncountable. This model has
no expansion to a model of T .

Fact 2. If T is a theory in L and ∆ is a signature, then Cons (T ,∆) may
not be finitely axiomatizable in L.

Let T be the first-order theory axiomatized by the following two axioms:
∀x[A(x) → B(x)]
∀x[B(x) → ∃yR(x, y) ∧B(y)],

where A and B are unary predicates, R is a binary predicate. Define the
signature ∆ = {A,R}. Then Cons (T ,∆) is the following infinite set of
formulas

∀x A(x) → ∃yR(x, y),
∀x A(x) → [∃y∃uR(x, y) ∧R(y, u)],
∀x A(x) → [∃y∃u∃vR(x, y) ∧R(y, u) ∧R(u, v)],
...

By compactness, this theory is not finitely axiomatizable in first-order logic.

There are plenty of known examples similar to the above mentioned, but
we believe we have given the simplest ones. The example from Fact 2 is
widely known in the literature on Description Logics (e.g., see Section 3.2
in [11]).

The well-known property of logics related to signature decompositions
of theories is the Parallel Interpolation Property first considered in a partial
case in [5] and studied later in a more general form in [3]:

Definition 1 Parallel Interpolation Property. The logic L is said to have
the parallel interpolation property (PIP) if for any theories T1, T2 in L with
sig (T1) ∩ sig (T2) = ∆ and any formula φ in L, the condition T1 ∪ T2 |= φ
yields the existence of sets of formulas T ′

1 and T ′
2 in L such that:

• Ti |= T ′
i for i = 1, 2, and T ′

1 ∪ T ′
2 |= φ;

• sig (T ′
i) \∆ ⊆ (sig (Ti) ∩ sig (φ)) \∆.

Next, we formulate two component properties of theories studied in this
paper.

110 D.K. Ponomaryov, M. Soutchanski

Definition 2 ∆–inseparability. Theories T1 and T2 are called ∆–inseparable
for a signature ∆, if Cons (T1,∆) = Cons (T2,∆).

That is, no formula in the signature ∆ “witnesses” any distinction be-
tween T1 and T2.

The notion of inseparability in the scope of entailment has been inten-
sively studied in Description Logics [4].

Definition 3 ∆–decomposability property. Let T be a theory in L and
∆ ⊆ sig (T) be a subsignature. We call T ∆–decomposable, if there are
theories T1 and T2 in L such that

• sig (T1) ∩ sig (T2) = ∆, but sig (T1) ̸= ∆ ̸= sig (T2);
• sig (T1) ∪ sig (T2) = sig (T);

• T ≡ T1 ∪ T2.

The pair ⟨T1, T2⟩ is called ∆–decomposition of T and the theories T1 and
T2 are called ∆–decomposition components of T . We will sometimes omit
the word “decomposition” and call the sets T1 and T2 simply components of
T , when the signature ∆ is clear from the context. The sets sig (T1) \ ∆
and sig (T2) \∆ are called signature (∆–decomposition) components of T .

The notion of ∆–decomposition is defined above using a pair of theories,
but easily extended to the case of a family of theories. It is important to
realize that T1 and T2 need not be subsets of T in the above definition.
Clearly, if L satisfies compactness and T is a finite ∆–decomposable theory
in L for a signature ∆, then there is a ∆–decomposition ⟨T1, T2⟩ of T , where
T1 and T2 are finite. Although, by definition, the union T1∪T2 must entail all
consequences of T in the signature ∆, the components T1 and T2 may not be
∆–inseparable, if we demand them to be finite. The set of ∆–consequences
of T2 may not be finitely axiomatizable in L by formulas in the signature
sig (T1). This easily follows from Fact 2 which in fact notes that this effect is
already possible in such weak languages as the sub-boolean description logic
EL. On the other hand, ∆–inseparability of decompositions can always be
obtained if the underlying logic L has uniform interpolation (cf. Proposition
2 in [16]).

It is easy to note that, in presence of PIP, decomposing a set T of formu-
las into inseparable components wrt a signature ∆ gives a family of theories
that imply all the consequences of T in the corresponding signatures.

Fact 3. Let L have PIP, T be a theory in L, and ∆ be a signature. Let
⟨T1, T2⟩ be a ∆–decomposition of T with T1 and T2 being ∆–inseparable.
Then for any formula φ with sig (φ) ⊆ sig (Ti), for some i = 1, 2, we have
T |= φ iff Ti |= φ.

Component properties of forgetting and progression in the situation calculus 111

In other words, inseparable decomposition components can be used in-
stead of the original theory for checking entailment of formulas in the corre-
sponding signatures. This is the reason of our interest in the inseparability
property in connection with decompositions.

2.2. Basics of the situation calculus

The language of the situation calculus Lsc has the first-order syntax
over three sorts action, situation, object and is provided with the standard
model-theoretic semantics. It is defined over the countably infinite alphabet
Asc = {do,≼, S0, Poss} ∪ A ∪ F ∪ O ∪ P, where do is a binary function
symbol of sort situation, ≼ is a binary relation on situations, S0 is the
constant of sort situation, Poss(a, s) is a binary predicate (saying whether
a is possible in s) with the first argument of sort action and the second
one of sort situation, A is a set of action functions with arguments of sort
object, F is a set of so-called fluents, i.e. predicates having as arguments
a tuple (vector) of sort object and one last argument of sort situation, O
is a set of constants of sort object, and P is a set of static predicates and
functions, i.e. those that only have objects as arguments. A symbol v ∈ Asc

(predicate or function) is called situation-independent if v ∈ Asc ∪ O ∪ P.
A ground term is of sort situation iff it is either the constant S0 or a term
do(A(t̄), S), where A(t) is a ground action term and S is a ground situation
term. For instance, a term do(A2(t̄2), do(A1(t̄1), S0)) denotes the situation
resulting from executing actions A1(t̄1) and A2(t̄2) consecutively from the
initial situation S0. Informally, static predicates specify object properties
that do not change over time and fluents describe those object properties
that are situation–dependent. The language of the situation calculus is used
to formulate basic action theories (BAT s). For example, they may serve as
formal specifications of planning problems. Every BAT consists of a set
of foundational axioms Σ which specify constraints on how the function
do and fluents must be understood, a theory Duna stating the unique name
assumption for action functions and objects, an initial theory DS0 describing
knowledge in the initial situation S0, a theory Dap specifying preconditions
of action execution, and a theory Dss (the set of successor-state axioms,
SSAs for short) which contains definitions of fluents in the next situation in
terms of static predicates and the values of fluents in the previous situation.
More precisely, in every basic action theory D over a signature σ ⊆ Asc,
the theory Σ is the set of the following axioms (note the axiom schema for
induction):

∀ a1, a2, s1, s2 [do(a1, s2) = do(a2, s2) → a1 = a2 ∧ s1 = s2]
∀ s ¬(s ≼ S0 ∧ s ̸= S0)
∀ s1, s2 [s1 ≼ s2 ↔ ∃a (do(a, s1) ≼ s2) ∨ s1 = s2]
∀P P (S0) ∧ ∀a, s[P (s) → P (do(a, s))] → ∀sP (s)

112 D.K. Ponomaryov, M. Soutchanski

For every pair of distinct action functions {A,A′} ⊆ σ and every pair ⟨a, b⟩
of distinct object constants from σ, a theory Duna contains axioms of the
form:

a ̸= b

∀ x̄, ȳ A(x̄) ̸= A′(ȳ)

∀ x̄, ȳ A(x1, . . . , xn) = A(y1, . . . , yn) → x1 = y1 ∧ . . .∧xn = yn if A is n–ary,

and no other axioms are in Duna. To define the remaining subtheories of

BAT , we need to introduce the following syntactic notion.

Definition 4. A formula φ in a language Lsc is called uniform in a situa-
tion term s if:

1. it does not contain quantifiers over variables of sort situation;

2. it does not contain equalities between situation terms;

3. the predicates Poss,≼ do not occur in φ: {Poss,≼} ∩ sig (φ) = ∅;

4. for every fluent F ∈ sig (φ), the term in the situation argument of F
is s.

A set T of formulas in Lsc is called uniform in a situation term s if every
formula of T is uniform in s.

By definition, a set T of formulas uniform in a situation term S either
does not contain any situation terms (and hence, fluents), or the only situ-
ation term is S which occurs as the situation argument of each fluent from
sig (T). If T is a set of sentences uniform in situation term S (i.e., T has no
free variables) and S occurs in formulas of T , then by items (1), (2) of the
definition, S must be ground and thus, it must either be the constant S0, or
have the form do(A(t̄), S′), where S′ is a ground situation term. Note that if
the constant S0 or the binary function symbol do is present in sig (T) and
T is uniform in S, then necessarily S0 ∈ sig (S), or do ∈ sig (S), respec-
tively. By items (1) and (2), T does not restrict the interpretation of the
term S and the cardinality of the sort situation, so the observations above
lead to the following property of uniform theories, which informally can be
summarized by saying that, in sentences of a theory T uniform in a ground
situation term S, we can understand this situation term as playing a role of
an index that can remain implicit. Whenever we change the interpretation
of S (e.g., by choosing a different interpretation for do and S0) in a model of
T , it suffices to “move” interpretations of fluents to this new point to obtain
again a model for T .

Component properties of forgetting and progression in the situation calculus 113

Lemma 1. Let T be a set of sentences uniform in a ground situation term
S. Let M = ⟨Act ∪ Sit ∪ Obj, do,S0,F1, . . . ,Fn, I ⟩ be a model of T ,
where Act, Sit, and Obj are domains for the corresponding sorts action,
situation, and object, do and S0 are the interpretations of the function do
and constant S0, respectively, F1, . . . ,Fn, n 6 ω, are the interpretations of
fluents from sig (T), and I is the interpretation of the rest of symbols from
sig (T). For example, Fi is a set of tuples ⟨u1, . . . , um−1,S⟩, where S is the
interpretation of the ground term S in M.

Consider the structure M′ = ⟨Act∪Sit′∪Obj, do′,S0
′,F1

′, . . . ,Fn
′, I ⟩,

where Sit′ is an arbitrary set, the domain for sort situation, do′ and S0
′ are

arbitrary interpretations of do and S0 on Sit
′, respectively, and for i 6 n, Fi

′

denotes the interpretation of a fluent Fi as a set of tuples ⟨u1, . . . , um−1,S
′⟩,

with S′ being the interpretation of the term S in M′ and ⟨u1, . . . , um−1,S⟩ ∈
Fi.

Then, M′ is a model of T . By definition, the interpretation of situation–
independent predicates and functions is the same in M′ and M.

If S and S′ are two situation terms and T is a set of formulas uniform
in S, then we denote by T (S/S′) the set of formulas obtained from T by
replacing every occurrence of S with S′. This notation will be extensively
used in Section 4. Obviously, T (S/S′) is uniform in S′.

The initial theory DS0 of D is defined as an arbitrary set of sentences in
the signature σ that are uniform in the situation constant S0. Throughout
the paper, we assume that DS0 can be a theory in (any fragment of) second-
order logic which can be translated into a set of sentences of first-order logic
uniform in S0. In particular, DS0 can include both an ABox and a TBox in
an appropriate Description Logic, as argued in [2, 19].

Next, for every n-ary action function A ∈ σ, a theory Dap includes an
axiom of the form

∀ x̄, s [Poss(A(x̄), s) ↔ ΠA(x̄, s)],

where ΠA(x̄, s) is a formula uniform in s with free variables among x̄ and s.
Informally, ΠA(x̄, s) characterizes preconditions for executing the action A
in the situation s. No other formulas are in Dap.

Finally, for every fluent F ∈ σ, a theory Dss contains an axiom of the form

∀ x̄, a, s [F (x̄, do(a, s)) ↔ γ+F (x̄, a, s) ∨ F (x̄, s) ∧ ¬γ−F (x̄, a, s)].

Here γ+F is a disjunction of formulas of the form [∃ȳ](a = A+(t̄)∧ϕ+(x̄, ȳ, s)),
where A+ is an action function, t̄ is a (possibly empty) vector of object terms
with variables at most among x̄ and ȳ, and ϕ+ is a formula uniform in s

114 D.K. Ponomaryov, M. Soutchanski

with variables at most among x̄, ȳ, and s. We write [∃ȳ] to show that ∃ȳ
is optional; it is present only if t̄ includes ȳ or if ϕ has an occurrence of ȳ.
The formula ϕ+ is called a (positive) context condition meaning that A+(t̄)
makes the fluent F true if this context condition holds in s, but otherwise,
A+(t̄) has no effect on F . Similarly, γ−F is a disjunction of formulas of the
form [∃z̄](a = A−(t̄′) ∧ ϕ−(x̄, z̄, s)), where A− is an action function, t̄′ is
a (possibly empty) vector of object terms with variables at most among x̄
and z̄, and ϕ− is a formula uniform in s with variables at most among x̄,
z̄, and s. The formula ϕ− is called a (negative) context condition meaning
that A−(t̄) makes the fluent F false if this context condition holds in s, but
otherwise, A−(t̄) has no effect on F . In the definition above, we assume that
the empty disjunction is equal to false. No other formulas are in Dss. This
completes the definition of Dss.

Definition 5 SSA and active position of an action. The axioms of Dss in
the form above are called successor state axioms (SSAs) of a basic action
theory D.

An action function f is said to be in active position of some SSA φ ∈ Dss

if f occurs either as A+, or A− in the definition of Dss above.

We say that φ ∈ Dss is SSA for a fluent F if F is the fluent from the
left-hand side of φ.

Following the original consistency requirement on SSAs by Reiter (see
Proposition 3.2.6 in [17]), we require that in case an action function A+

occurs in active position in some disjunct of γ+, then it must not occur in
active position in γ−. Analogously, if A− occurs in active position in γ−,
then it must not be in active position in γ+. Informally, this means that
an action cannot have both positive and negative effects on F .

Each SSA for a fluent F completely defines the truth value of F in the
situation do(a, s) in terms of what holds in the situation s. Also, SSA
compactly represents non-effects by quantifying ∀a over variables of sort
action. Only action terms that occur explicitly on the right hand side of
SSA for a fluent F have effects on this fluent, while all other actions have
no effect.

We note that the original version of Reiter’s situation calculus admits
functional fluents, e.g. functions having a vector of arguments of sort object
and one last argument of sort situation. Reiter defines the notion of SSA
for functional fluents in an appropriate form. We omit functional fluents in
our version of the situation calculus.

Proposition 1 Theorem 1 in [15]. A basic action theory Σ∪Duna ∪DS0 ∪
Dap ∪Dss is satisfiable iff Duna ∪DS0 is satisfiable.

Component properties of forgetting and progression in the situation calculus 115

Suppose α1, · · · , αn is a sequence of ground action terms, and φ(s) is
a formula with one free variable s of sort situation which is uniform in s.
One of the most important reasoning tasks in the situation calculus is the
projection problem, that is, to determine whether

D |= φ(do(αn, do(αn−1, do(· · · , do(α1, S0))))).
Informally, φ represents some property of interest and entailment holds iff
this property is true in the situation resulting from performing the sequence
of actions α1, · · · , αn starting from S0.

Another basic reasoning task is the executability problem. Let
executable(do(αn, do(αn−1, do(· · · , do(α1, S0)))))

be an abbreviation of the formula
Poss(α1, S0) ∧

∧n
i=2 Poss(αi, do(α1, do(· · · , do(αi−1, S0))).

Then, the executability problem is to determine whether
D |= executable(do(αn, do(αn−1, do(· · · , do(α1, S0))))),

i.e. whether it is possible to perform the sequence of actions starting from
S0.

Planning and high-level program execution are two important settings,
where the executability and projection problems arise naturally. Regression
is a central computational mechanism that forms the basis for automated
solution to the executability and projection tasks in the situation calculus
([17]). Regression requires reasoning backwards: a given formula

φ(do(αn, do(αn−1, do(· · · , do(α1, S0)))))
is recursively transformed into a logically equivalent formula by using SSAs
until the resulting formula has only occurrences of the situation term S0.
It is easy to see that regression becomes computationally intractable if the
sequence of actions grows indefinitely [2]. In this case, an alternative to
regression is progression, which provides forward style reasoning. The initial
theory DS0 is updated to take into account effects of an executed action.
Computing progression of a given theory DS0 requires forgetting the facts in
DS0 which are no longer true after executing an action. The closely related
notions of progression and forgetting are discussed in the next sections of
our paper.

Definition 6 local-effect SSA and BAT . SSA φ ∈ Dss for the fluent F is
called local-effect if the set of arguments of every action function in active
position of φ contains all object variables from F . A basic action theory is
said to be local-effect if every axiom of Dss is a local-effect SSA.

Local-effect BAT s are a well-known class of theories for which the oper-
ation of progression (Section 4) can be computed effectively, even indepen-
dently of decidability of the underlying theory itself. They are special in
the sense that the truth value of each fluent defined by a local-effect SSA
can change only for a finite set of objects after performing an action. Thus,

116 D.K. Ponomaryov, M. Soutchanski

each action has only some local effect on fluents. This allows for employing
forgetting, the operation considered in Section 3.

Finally, as an illustration we provide an example of a local-effect basic
action theory in Situation Calculus describing the well-known Blocks World.

Example 1 Example of BAT : The Blocks World. The blocks world con-
sists of a table and a finite set of blocks located either somewhere on a table
or on top of each other. Any number of blocks can be on the table, but only
one block can be on top of another block. In addition, there is a manipu-
lator that can move a block from one location to another. In particular, it
can move a block from the table on top of another block, or it can move
a block from its current location to the table provided this block is not on
the table already and there is nothing on the top of this block. In this ex-
ample, we also make two common assumptions. First, all moving actions
are deterministic, i.e., whenever the manipulator moves a block, it always
succeeds: in the result of the action, the block will be at its destination,
but not somewhere else. Second, there are no other agents (people, robots,
manipulators, etc), who can move blocks.

We use the following action functions and fluents to axiomatize the blocks
worlds in Situation Calculus:

Actions

• move(x, y, z): Move block x from block y onto block z, provided both
x and z are clear.

• moveToTable(x, y): Move block x from block y onto the table, pro-
vided x is clear and is not on the table.

• moveFromTable(x, y): Move block x from the table onto y, provided
y is clear.

Fluents

• On(x, z, s): Block x is on block z in situation s.

• Clear(x, s): Block x has no other blocks on top of it in situation s.

• Ontable(x, s): Block x is on the table in situation s.

The subtheories of the corresponding basic action theory are defined as
follows (all free variables are assumed to be universally quantified):

Component properties of forgetting and progression in the situation calculus 117

Successor state axioms (theory Dss)
On(x, z, do(a, s)) ↔ ∃y(a=move(x, y, z)) ∨ a=moveFromTable(x, z)∨

On(x, z, s) ∧ a ̸=moveToTable(x, z) ∧ ¬∃y(a=move(x, z, y)).
Ontable(x, do(a, s)) ↔ ∃y(a=moveToTable(x, y))∨

Ontable(x, s) ∧ ¬∃y(a=moveFromTable(x, y)).
Clear(x, do(a, s)) ↔ ∃y, z.On(y, x, s)∧

(a = move(y, x, z) ∨ a = moveToTable(y, x))∨
Clear(x, s) ∧ ¬∃w, y(a=move(w, y, x) ∨ a=moveFromTable(y, x)).

Action precondition axioms (theory Dap)
Poss(move(x, y, z), s) ↔ Clear(x, s) ∧ Clear(z, s) ∧ x ̸= z.

Poss(moveToTable(x, y), s) ↔ Clear(x, s) ∧ ¬Ontable(x, s).
Poss(moveFromTable(x, y), s) ↔ Clear(x, s) ∧ Clear(y, s) ∧ x ̸= y∧

¬Ontable(x, s).
Initial Theory (DS0) defined using the set of object constants {A,B,C}:
Clear(A,S0), On(A,B, S0), Clear(C,S0), Clear(x, S0) → ¬Ontable(x, S0),
On(x, y, S0) → ¬Clear(y, S0).
Unique names axioms for actions and objects (theory Duna)
is the set of unique-name axioms for all pairs of object constants and action
functions used above.

Then Σ∪Duna ∪Dap ∪Dss ∪DS0 is the resulting local-effect basic action
theory.

3. Properties of forgetting

As progression is closely related to forgetting, we take a look at some
properties of this operation first. Let us define a relation on structures as
follows. Let σ be a signature or a ground atom and M, M′ be two many–
sorted structures. Then we set M ∼σ M′ if:

• M and M′ have the same domain for each sort;

• M and M′ interpret all symbols which are not in σ identically;

• if σ is a ground atom P (t̄) then M and M′ agree on interpretation
ū of t̄ and for every variable assignment θ with θ(x̄) ̸= ū, we have
M, θ |= P (x̄) iff M′, θ |= P (x̄).

Obviously, ∼σ is an equivalence relation.

Definition 7 Forgetting an atom or a signature. Let T be a theory in L
and σ be either a signature, or some ground atom. A set T ′ of formulas
in a fragment of second-order logic is called the result of forgetting σ in T
(denoted by forget (T , σ)) if for any structure M′, we have M′ |= T ′ iff
there is a model M |= T such that M ∼σ M′.

118 D.K. Ponomaryov, M. Soutchanski

It is known that forget (T , σ) is always second–order definable for a
finite set of formulas T in L and a signature or a ground atom σ ([7], or Sec-
tion 2.1 in [9]). On the other hand, the definition yields T |= forget (T , σ),
thus forget (T , σ) is a set of consequences of T which suggests that it may
not always be definable in the logic where T is formulated and it may not
be finitely axiomatizable in this logic, even if so is T .

Fact 4 Basic properties of forgetting. If σ and π are signatures or ground
atoms and T , T ′ are theories in L then:

• forget (T , σ ∪ π) ≡ forget (forget (T , σ), π) (if σ and π are signa-
tures)

• forget (forget (T , σ), π) ≡ forget (forget (T , π), σ)
• forget (forget (T , σ), σ) ≡ forget (T , σ)
• forget (T , σ) ≡ T (if σ is a signature with σ ∩ sig (T) = ∅, or a

ground atom with predicate not contained in sig (T))

• forget (T ∪ T ′, σ) ̸≡ forget (T , σ) ∧ forget (T ′, σ) (see Example 3)

• forget (φ ∨ ψ, σ) ≡ forget (φ, σ) ∨ forget (ψ, σ) (if φ and ψ are
formulas in L).

Proposition 2 Signature of forget(T ,σ). Let T be a theory in L and σ
a signature (or a ground atom, respectively); let forget (T , σ) be a set of
formulas in a language L′, a fragment of second-order logic with PIP. Then
forget (T , σ) is logically equivalent in L′ to a set of formulas in the signature
sig (T) \ σ (sig (T), respectively).

Corollary 1. Let T be a theory in L having PIP and σ be a signature. Then
T ≡ forget (T , σ) iff T is equivalent to a set of formulas in the signature
sig (T) \ σ.

We note that the similar statement does not hold when σ is a ground
atom. It follows from Proposition 2 that in case σ is a signature, forget (T , σ)
axiomatizes the class of reducts of models of T onto the signature sig (T)\σ.
Clearly, if T is a theory in L, then forget (T , σ) may not be in L, however
it is always expressible in second-order logic if T is finitely axiomatizable
(note that second-order logic has PIP). For the case when σ is a signature,
forget (T , σ) is known as sig (T)\σ–uniform interpolant of T wrt the pair
(L, second-order logic), see Definition 13 in [4] and Lemma 39 in [12] for a
justification. In other words, T and forget (T , σ) semantically entail the
same second-order formulas in the signature T \ σ.

If σ is a ground atom P (t̄) then, by definition, for any model M |= T ,
forget (T , σ) must have two “copies” of M: a model with the value of P (t̄)

Component properties of forgetting and progression in the situation calculus 119

false and a model where this value is true. Let L be first-order logic. In
contrast to forgetting a signature, for any recursively axiomatizable theory T
in L and a ground atom σ, one can effectively construct the set of formulas
forget (T , σ) in L such that forget (T , σ) is finitely axiomatizable iff T
is. This follows from Theorem 4 in [7], where it is shown that forgetting
a ground atom P (t̄) in a theory T can be computed by simple syntactic
manipulations:

• for an axiom φ ∈ T , denote by φ[P (t̄)] the result of replacing every
occurrence of atom P (t̄′) (with t̄′ a term) by the formula [t̄ = t̄′ ∧
P (t̄)] ∨ [t̄ ̸= t̄′ ∧ P (t̄′)]

• denote by φ+[P (t̄)] the formula φ[P (t̄)] with every occurrence of the
ground atom P (t̄) replaced with true and similarly, denote by φ−[P (t̄)]
the formula φ[P (t̄)] with P (t̄) replaced with false

• then forget (T , P (t̄)) is equivalent to
(
∧

φ∈T φ
+[P (t̄)])

∨
(
∧

φ∈T φ
−[P (t̄)]).

The disjunction corresponds to the union of two classes of models ob-
tained from models of T : with the ground atom P (t̄) interpreted as true
and false, respectively. This fact is important for effective computation of
progression for local-effect BAT s mentioned in Section 4. Note that if the
theory T is finitely axiomatizable, computing forget (T , P (t̄)) in the way
above doubles the size of the theory in the worst case. It is sometimes
necessary to consider forgetting of some set S of ground atoms in a theory
T . This is equivalent to iterative computation of forgetting of atoms from
S starting from the theory T (the order on atoms can be chosen arbitrary
as noted in Fact 4). However, it is important to note that the size of the
resulting theory is O(2|S| × |T |), where |S| is the number of atoms in S and
|T | is the size of T .

Proposition 3 Interplay of forgetting and entailment. Let T and T1 be two
sets of formulas in L with T |= T1 and σ be a signature or a ground atom.
Then the following holds:

Proposition 4 Preservation of consequences under forgetting. Let T be a
theory in L and σ be either a signature or a ground atom. Let φ be a formula
such that either sig (φ) ∩ σ = ∅ (in case σ is a signature), or which does
not contain the predicate from σ (if σ is a ground atom). Then T |= φ iff
forget (T , σ) |= φ.

120 D.K. Ponomaryov, M. Soutchanski

Now we provide results on preservation of inseparability under forgetting.
By Proposition 4, when studying preservation of ∆–inseparability of two sets
of formulas for a signature ∆, it is sufficient to consider the case of forgetting
a subset of ∆ or a ground atom with the predicate from ∆, respectively.

Proposition 5 Preservation of ∆–insep. under signature forgetting. Let
L have PIP and T1 and T2 be two ∆–inseparable sets of formulas in L
with sig (T1) ∩ sig (T2) = ∆ for a signature ∆. Let σ be a subsignature
of ∆ and forget (T1, σ) and forget (T2, σ) be sets of formulas of L. Then
forget (T1, σ) and forget (T2, σ) are ∆–inseparable.

The following example demonstrates that a similar result does not hold
under forgetting a ground atom with the predicate from ∆.

Example 2 ∆–inseparability lost under forgetting a ground atom. We
give an example of a logic L, sets of formulas T1, T2 in L, and a sig-
nature ∆ = sig (T1) ∩ sig (T2) such that T1 and T2 are ∆–inseparable,
but forget (T1, P (c, c)) and forget (T2, P (c, c)) are not, for a ground atom
P (c, c) with a predicate P ∈ ∆. Let L be Description Logic ELO⊥, i.e. the
sub-boolean logic EL augmented with nominals and the bottom concept ⊥.
Let Σ = {P, a, c} be the signature, where P is a role name (binary predi-
cate) and a, c are nominals (i.e. constants). Define the set of formulas T1
in the signature Σ as {{a} ⊓ {c} ⊑ ⊥, {c} ⊑ ∃P.{a}, ⊤ ⊑ ∃P.⊤}. Set
∆ = {P, c} and consider the set of formulas T2 = {⊤ ⊑ ∃P.⊤, Taut(c)},
where Taut(c) is a tautology with a nominal c (for instance, the formula
{c} ⊑ ⊤). We have sig (T1) ∩ sig (T2) = ∆ and it is easy to check that
T2 is equivalent to Cons (T1,∆) in the logic ELO⊥; thus, T1 and T2 are ∆–
inseparable. Now consider forget (T1, P (c, c)) and forget (T2, P (c, c)) as
sets of formulas in second-order logic (we assume the standard translation
of formulas of ELO⊥ into the language of second-order logic). We verify
that they are not ∆–inseparable and the formula ⊤ ⊑ ∃P.⊤ is the evidence
for this. By definition of T1, we have forget (T1, P (c, c)) |= T1, since any
model of T1 with a changed truth value of the predicate P on the pair ⟨c, c⟩
is still a model of T1. On the other hand, forget (T2, P (c, c)) ̸|= ⊤ ⊑ ∃P.⊤,
because T2 has the one–element model M, where P is reflexive (on the
sole element corresponding to c). Hence, by definition of forgetting, the
one–element model M′ with P false on the pair ⟨c, c⟩ must be a model of
forget (T2, P (c, c)), but obviously, M′ ̸|= ⊤ ⊑ ∃P.⊤.

It turns out that preservation of inseparability under forgetting a ground
atom requires rather strong model–theoretic conditions like (*) in Proposi-
tion 6 below. Specialists might notice that (*) is equivalent to semantic ∆–
inseparability of the initial sets of formulas (see Definition 11 in [4]) which
is far from being decided effectively from the computational point of view

Component properties of forgetting and progression in the situation calculus 121

(see Theorem 3 in [10], Lemma 40 in [12]). Semantic ∆–inseparability is
strictly stronger than (syntactic) inseparability from Definition 2. On the
other hand, Proposition 6 says that whenever there is a chance to satisfy
(*) for two given sets of formulas, one does not need to check it again after
forgetting something in their common signature. To compare condition (*)
with Example 2, note that the mentioned one–element model of T2 does not
expand to a model of T1 ∪ T2.

Proposition 6 Preservation of ∆–inseparability under forgetting. Let T1
and T2 be two sets of formulas in L with sig (T1) ∩ sig (T2) = ∆ for a
signature ∆ which satisfy the following condition (*): for i = 1, 2, any
model of Ti can be expanded to a model of T1 ∪ T2. Then:

• T1 and T2 are ∆–inseparable;

• for σ, a signature or a ground atom, forget (T1, σ) and forget (T2, σ)
satisfy (*) as well.

Let T1 and T2 be two sets of formulas in L with sig (T1) ∩ sig (T2) = ∆
for a signature ∆ and let σ be either a subsignature of ∆ or a ground
atom with the predicate from ∆. It is known that, in general, forgetting σ
may not be distributive over the union of sets of formulas. The entailment
forget (T1 ∪ T2, σ) |= forget (T1, σ) ∪ forget (T2, σ) holds by Proposition
3, but Example 3 below easily shows that even strong semantic conditions
related to modularity do not guarantee the reverse entailment. On the other
hand, forgetting something outside of the common signature of T1 and T2 is
distributive over union, as formulated in Corollary 2 which is a consequence
of the criterion in Proposition 7.

Example 3 Failure of componentwise forgetting in ∆. Let L be first-order
logic and ∆ = {P, c} be the signature consisting of a unary predicate P
and a constant c. Define theories T1 and T2 as: T1 = {A → P (c)}, T2 =
{P (c) → B}, where A,B are nullary predicate symbols. We have sig (T1)∩
sig (T2) = ∆ and for i = 1, 2, any model of Ti can be expanded to a
model of T1 ∪ T2. Clearly, T1 and T2 are ∆–inseparable and for i = 1, 2,
Cons (Ti,∆) is the set of tautologies in ∆. By definition of forgetting, for
i = 1, 2, forget (Ti, P (c)) is a set of tautologies and thus, forget (T1, P (c))∪
forget (T2, P (c)) ̸|= forget (T1∪T2, P (c)), because forget (T1∪T2, P (c)) |=
A → B (by Proposition 4). For the case of forgetting a signature, say a
nullary predicate P , it suffices to consider ∆ = {P} and theories T1 =
{A→ P}, T2 = {P → B}, where A,B are nullary predicates.

Proposition 7 A criterion for componentwise forgetting. Let T1 and T2 be
two sets of formulas and σ be either a signature or a ground atom. Then
the following statements are equivalent:

122 D.K. Ponomaryov, M. Soutchanski

• forget (T1, σ) ∪ forget (T2, σ) |= forget (T1 ∪ T2, σ)
• for any two models M1 |= T1 and M2 |= T2, with M1 ∼σ M2, there

exists a model M |= T1 ∪ T2 such that M ∼σ Mi for some i = 1, 2.

To compare this criterion with Example 3, observe that there exist mod-
els M1 |= T1 and M2 |= T2 with a common domain such that M1 |=
A ∧ P (c) ∧ ¬B and M2 |= A ∧ ¬P (c) ∧ ¬B. Thus, M1 ∼P (c) M2, however,
there does not exist a model M of T1 ∪ T2 such that M ∼P (c) Mi for some
i = 1, 2. Neither M1, nor M2 is a model for T1 ∪ T2.

Corollary 2 Forgetting in the scope of one component. Let T1 and T2 be
two sets of formulas with sig (T1) ∩ sig (T2) = ∆ for a signature ∆ and σ
be either a subsignature of sig (T1) \∆ or a ground atom with the predicate
from sig (T1)\∆. Then forget (T1∪T2, σ) is equivalent to forget (T1, σ)∪
forget (T2, σ). Moreover, if T1 and T2 are ∆–inseparable, then so are
forget (T1, σ) and forget (T2, σ).

In general, the results of this section prove that the operation of forget-
ting does not behave well wrt syntactic modularity properties of the input.
Stronger model-theoretic conditions on the input are needed due to the
model-theoretic nature of forgetting.

4. Properties of progression

We have considered some component properties of forgetting. It turns
out that the operation of progression is closely related to forgetting in initial
theories. However, in case of progression, we can not restrict ourselves to
working with initial theories only; we need also to take into account informa-
tion from successor state axioms. The aim of this section is to demonstrate
some component properties of progression wrt different forms of SSAs and
common signatures ∆’s (deltas) of components of initial theories. We will
consider local-effect SSAs discussed in [9] and deltas, which do not contain
fluents.

We use the following notations further in this paper. For a ground ac-
tion term α in the language of the situation calculus, we denote by Sα the
situation term do(α, S0).

To define progression, let us introduce an equivalence relation on many-
sorted structures in the situation calculus signature. For two structures M,
M′ and a ground action α, we set M ∼Sα M′ if:

• M and M′ have the same sorts for action and object;

Component properties of forgetting and progression in the situation calculus 123

• M and M′ interpret all situation-independent predicate and function
symbols identically;

• M and M′ agree on interpretation of all fluents at Sα, i.e. for every
fluent F and every variable assignment θ, we have M, θ |= F (x̄, Sα)
iff M′, θ |= F (x̄, Sα).

Definition 8. Let D be a basic action theory with unique name axioms
Duna and the initial theory DS0 and let α be a ground action term. A set
DSα of formulas in a fragment of second-order logic is called progression of
DS0 wrt α if it is uniform in the situation term Sα and for any structure
M, M is a model of Duna ∪ DSα iff there is a model M′ of D such that
M ∼Sα M′.

Below, we use DSα to denote progression of the initial theory wrt the
action term α, if the context of BAT is clear. We sometimes abuse termi-
nology and call progression not only the theory DSα , but also the operation
of computing this theory (when existence of an effective operation is implic-
itly assumed).

For any BAT D, we have D |= DSα and, similarly to the operation of
forgetting, it is possible to provide an example (see Definition 2, Conjecture
1, and Theorem 2 in [18]), when the progression DSα is not definable (even
by an infinite set of formulas) in the logic in which D is formulated. On
the other hand, it can be seen (Theorem 2.10 in [9]) that progression is
always second-order definable and is finitely axiomatizable in second-order
logic if the signature of BAT is finite and the initial theory DS0 is finitely
axiomatizable.

To understand the notion of progression intuitively, note the following.
The progression DSα is a set of consequences of BAT which are uniform in
the situation term Sα, thus informally, DSα is information about the situa-
tion Sα implied by BAT . Moreover, it contains all information from BAT
about the situation Sα, as guaranteed by the model-theoretic property with
relation∼Sα in the definition. Recall that the initial theory of BAT describes
information in the initial situation S0 and SSAs are essentially the rules for
obtaining new definitions of fluents after performing actions. Thus, pro-
gression DSα can be viewed as “modification” of the initial theory obtained
after executing the action α. In particular, the initial theory of BAT can be
replaced with DSα(Sα/S0) (recall the notation from Section 2.2) which gives
a new BAT , with Sα as the initial situation. To check whether a certain
property, a formula φ(s) uniform in a situation variable s, holds in the situa-
tion Sα wrt BAT D, one may try to compute the progression DSα and check
whether Duna∪DSα |= φ(Sα) (or equivalently, Duna∪DSα(Sα/S0) |= φ(S0))
holds. By Proposition 1, this is equivalent to D |= φ(Sα).

124 D.K. Ponomaryov, M. Soutchanski

Of interest are cases when progression can be computed effectively as a
theory in the same logic which is used to formulate underlying DS0 , inde-
pendently of the fact whether satisfiability in this logic is decidable. The
well-known approach is to consider the local-effect BAT s (recall Definition
6) in which progression can be obtained by just a syntactic modification
of the initial theory DS0 with respect to SSAs. The approach is based on
effective forgetting of a certain set of ground atoms (extracted from SSAs)
in the initial theory of BAT . Recall the well–known observation from Sec-
tion 3 that, given a theory T (in an appropriate logic L), forgetting a set
of ground atoms in T can be computed effectively by straightforward syn-
tactic manipulations with the axioms of T . Thus, the essence of computing
progression in the local-effect case is to extract effectively the set of ground
atoms from SSAs that need to be forgotten. Subsequently, in DSα , they
are replaced with new values of fluents; the new values are computed from
SSAs. An interested reader may consult the whole paper [9], while here we
only introduce necessary notations from Definition 3.4 of [9] which will be
used in Theorem 2.

Let D be a BAT with a set Dss of SSAs, an initial theory DS0 , and a
unique name assumption theory Duna, and let α be a ground action term.
Denote
∆F = {t̄ | x̄ = t̄ appears in γ+F (x̄, α, s) or γ

−
F (x̄, α, s) from an SSA

φ ∈ Dssinstantiated with α and equivalently rewritten wrt Duna},
Ω(s) = {F (t̄, s) | t̄ ∈ ∆F }
Note that Ω(S0) is a finite set of ground actions to be forgotten. According
to Fact 4, forgetting several ground atoms can be accomplished consecutively
in any order.

An instantiation of Dss wrt Ω(S0), denoted by Dss[Ω(S0)], is the set of
formulas of the form:

F (t̄, do(α, S0)) ↔ γ+F (t̄, α, S0) ∨ F (t̄, S0) ∧ ¬γ−F (t̄, α, S0).

Observe that Dss[Ω(S0)] effectively defines new values for those fluents which
are affected by the action α. However, these definitions use fluents wrt S0,
which may include fluents to be forgotten. For this reason, forgetting should
be performed not only in DS0 , but in Dss[Ω(S0)] as well.

Proposition 8 Theorem 3.6 in [9]. In the notations above, the following is
a progression of DS0 wrt α in the sense of Definition 8:

DSα = [forget(Dss[Ω(S0)] ∪ DS0 , Ω(S0))](S0/Sα).

Thus, computing a progression in a local-effect BAT is an effective syn-
tactic transformation of the initial theory, which leads to the unique form

Component properties of forgetting and progression in the situation calculus 125

of the updated theory DSα . This fact will be used in Theorem 2. It is im-
portant to realize that this transformation can lead to exponential blow-up
of the initial theory, as noted after Theorem 3.6 in [9], due to the possible
exponential blow-up after forgetting a set of ground atoms. This is not a
surprise, because even in propositional logic, forgetting a symbol in a for-
mula is essentially elimination of a “middle term” (introduced by Boole),
which results in the disjunction of two instances of the input formula [8].
As a consequence, forgetting may result in a formula that is roughly twice
as long as the input formula. It is important to realize that the exponential
blowup is not inevitable in the case of progression. As shown in [9], there are
practical classes of the initial theories for which there is no blow-up and the
size of progressed theory is actually linear wrt the size of the initial theory.

Now we are ready to formulate the results on component properties of
progression in terms of decomposability and inseparability. We start with
negative examples in which every BAT is local-effect and the initial theories
are formulated in the language of situation calculus, i.e. in first-order logic.
All free variables in axioms of BAT s are assumed to be universally quanti-
fied. As the progression DSα is a set of formulas uniform in some situation
term Sα which may occur in every formula of DSα (thus potentially spoiling
decomposability), we consider the mentioned component properties for the
theory DSα(Sα/S0) instead of DSα . Otherwise, in every result we would
have to speak of ∆∪sig (Sα)–decomposability of progression instead of just
∆–decomposability.

Consider a BAT D with ∆–decomposable initial theory DS0 for some
signature ∆. The general definition of a successor state axiom gives enough
freedom to design examples showing loss or gain of the decomposability
property of DS0 or inseparability of its components. As SSA may contain
symbols that are even not present in sig (DS0), or symbols from both com-
ponents of DS0 (if decomposition exists), this should not be a surprise for the
reader. Therefore, it makes sense to restrict our study to those BAT s, where
SSAs have one of the well-studied forms, for instance, to local-effect theo-
ries. It turns out that this form is still powerful enough to easily formulate
negative results when the mentioned properties are not preserved.

First, we provide a trivial example showing that the decomposability
property of the initial theory can be easily lost under progression. The ex-
ample is given rather as a simple illustration of progression for readers new
to this notion. Next, we show that ∆–inseparability of components of the
initial theory DS0 can be easily lost when fluents are present in ∆ (Example
5). The third observation is that even if there are no fluents in ∆, some com-
ponents of DS0 can split after progression into theories which are no longer
inseparable (Example 6). All observations hold already for local-effect BAT s
and follow from the simple fact that after progression some new information

126 D.K. Ponomaryov, M. Soutchanski

from SSAs can be added to the initial theory which spoils its component
properties. We only need to provide a combination of an initial theory with
a set of SSAs appropriate for this purpose. The aim of Theorem 1 following
these negative examples is to prove that if ∆ does not contain fluents and
the components of DS0 do not split after progression, then ∆–inseparability
is preserved after progression under a slight stipulation which is caused only
by generality of the theorem and non-uniqueness of progression in the gen-
eral case. This stipulation is avoided in Theorem 2, where we consider the
class of local-effect BAT s.

Example 4 Decomposability lost under progression. Consider a basic ac-
tion theory D with {F,A, c1, c2} ⊆ sig (D), where F is a ternary fluent, A
is a unary action function, and c1, c2 are object constants. Let the theory
Dss consist of the single axiom

F (x, y, do(a, s)) ↔ a = A(x, y) ∨ F (x, y, s)
and let the initial theory DS0 consist of two formulas Taut(c1) and Taut(c2)
uniform in S0, which are tautological sentences in signatures {c1} and {c2},
respectively. Clearly, DS0 is ∅–decomposable theory.

On the other hand, the progression DSα of DS0 wrt the action α =
A(c1, c2) is equivalent to the theory consisting of the ground atom

F (c1, c2, do(α, S0)).
This can be verified following Definition 8 directly, or by Proposition 8, since
D is local-effect. Anyway, it is easy to check that DSα(Sα/S0) (and DSα , as
well) is not a ∆–decomposable theory (for any ∆).

For a signature ∆, with S0 ∈ ∆, and a unary action A(c), we now give an
example of a local-effect basic action theory D with DS0 , an initial theory ∆–
decomposable into finite ∆–inseparable components, such that progression
DSα(Sα/S0) of DS0 wrt A(c) (with term Sα substituted with S0) is finitely
axiomatizable and ∆–decomposable, but the decomposition components are
no longer ∆–inseparable, unless we allow them to be infinite.

Example 5 ∆–inseparability is lost when fluents are in ∆. Consider a
basic action theory D with {F, P,Q,R,A, b, c, d} ⊆ sig (D), where F is a
binary fluent, P,Q are unary predicates, R is a binary predicate, A is a
unary action function, and b, c, d are object constants. Let ∆ = {F,R, S0}
and define subtheories of D as follows:

• Dss = {F (x, do(a, s)) ≡ (a = A(x)) ∧ P (x) ∧Q(d) ∨ F (x, s)};
• DS0 = D1 ∪ D2, where

– D1 consists of a tautological formula in the signature {F,R, b, S0}
which is uniform in S0,

Component properties of forgetting and progression in the situation calculus 127

– D2 = {P (x) → ∃y(R(x, y) ∧ P (y)), ¬F (x, S0)}.

By the syntactic form, DS0 is ∆–decomposable: we have DS0 = D1∪D2,
sig (D1) ∩ sig (D2) = ∆, sig (D1) \∆ = {b}, and sig (D2) \∆ = {P}.

Note that Dss |= F (x, do(A(c), S0)) ≡ (x = c) ∧ P (c) ∧Q(d) ∨ F (x, S0),
the result of substitution of the ground action α = A(c) and the situa-
tion constant S0 into SSA. As D2 |= ¬F (x, S0), we have Dss ∪ DS0 |=
F (c, do(A(c), S0)) ≡ P (c) ∧Q(d); denote the last formula by φ.

By Proposition 8 it is easy to verify that the union of sets D1 and D′
2 =

(D2∪{φ})\{¬F (x, S0)}, with every occurrence of S0 in D1 substituted with
Sα = do(A(c), S0), is a progression (DSα) of DS0 wrt A(c).

By the syntactic form, DSα(Sα/S0) ∆–decomposable theory. On the
other hand, we have φ |= F (c, do(A(c), S0)) → P (c) and thus, D′

2(Sα/S0) |=
{F (c, S0) → ∃yR(c, y), F (c, S0) → [∃y∃zR(c, y) ∧ R(y, z)], . . .}. It follows
from Fact 2 that this theory is not finitely axiomatizable by formulas of
first order logic in the signature ∆ and it is not hard to verify that the ob-
tained theory DSα(Sα/S0) can not have a decomposition into ∆–inseparable
components.

We note that in the example above, the initial theory DS0 is in fact
∅–decomposable with one signature component equal to {b} and the other
component containing the rest of the symbols. It is easy to see that pro-
gression of DS0 wrt A(c) is ∅–decomposable as well. We use tautologies in
the example just to illustrate the idea that information from SSA can prop-
agate to the initial theory after progression, thus making the components
lose the inseparability property. There is a plenty of freedom to formulate
similar examples with the help of non-tautological formulas which syntac-
tically “bind” symbols F,R, b, S0 in the theory D1. We appeal to a similar
observation in Example 6.

Example 6 Split of a component and loss ∆–inseparability. Consider BAT
D with {F1, F2, D,B,R,A, c} ⊆ sig (D), where F1, F2 are binary fluents,
D,B are unary predicates, R is a binary predicate, A is a unary action
function, and c is an object constant. Let ∆ = {D,R, S0} and define the
subtheories of D as follows:

• Dss = {F1(x, do(a, s)) ≡ F1(x, s) ∧ ¬(a = A(x)), F2(x, do(a, s)) ≡
F2(x, s)}

• DS0 = D1 ∪ D2, where D1 is the set of formulas:

– D(x) ∨R(x, y) → F1(c, S0)

– D(x) → P (x)

– P (x) → ∃y(R(x, y) ∧ P (y))

128 D.K. Ponomaryov, M. Soutchanski

and D2 consists of the following three:

– D(x) → B(x)

– B(x) → ∃y(R(x, y) ∧B(y))

– Taut(F2, S0), a tautology in the signature {F2, S0} which is uni-
form in S0.

By definition, DS0 is ∆–decomposable into ∆–inseparable components
D1 and D2. Note that Dss |= ¬F1(c, do(A(c), S0)), the result of substitution
of the ground action A(c), situation constant S0, and object constant c in
SSA.

Consider progression of DS0 wrt the action α = A(c). By Proposition 8,
it is equivalent to the theory DSα = D′

1 ∪ D′′
1 ∪ D′

2, where D′
1 is the set of

the following formulas:

• ¬F1(c, do(A(c), S0))

• Taut(D,R), a tautological formula in the signature {D,R} which is
uniform in Sα

D′′
1 is the set of formulas:

• D(x) → P (x)

• P (x) → ∃y(R(x, y) ∧ P (y))
• Taut(F2, Sα), a tautological formula in the signature {F2, do, A, c, S0}

which is uniform in Sα

and D′
2 is the theory D2 with every occurrence of S0 substituted with Sα.

Clearly, DSα(Sα/S0) is ∆–decomposable, but the components D′
1(Sα/S0)

andD′′
1(Sα/S0) are not ∆–inseparable (similarly, D′

1(Sα/S0) andD′
2(Sα/S0)).

Moreover, by Fact 2, they can not be made ∆–inseparable while remaining
finitely axiomatizable.

To formulate the theorems below, we let D denote a BAT with an ini-
tial theory DS0 , a set of successor state axioms Dss, and a unique name
assumption theory Duna.

Definition 9 Fluent–free signature. A signature ∆ is called fluent–free if
no fluent (from the alphabet of situation calculus) is contained in ∆.

Theorem 1 is provided as a general theoretical result on preservation of
inseparability of components of the initial theory after progression. As we
have already seen in Example 5, the initial theory and progression may differ
in consequences involving symbols of fluents. Thus in general, preservation

Component properties of forgetting and progression in the situation calculus 129

of ∆–inseparability can be guaranteed only for fluent-free signatures ∆. Be-
sides, by the model–theoretic Definition 8, progression is not uniquely de-
fined. There is no restriction on occurrences of the unique–name–assumption
formulas in progression which may easily lead to loss of inseparability of the
components. In other words, progression may logically imply unique–name–
assumption formulas even if the initial theory did not imply them. Some
decomposition components of progression may imply such formulas, while
the others may not. For this reason, we have to speak of inseparability
“modulo” theory Duna in the theorem below. In particular, we have to
make the assumption that not only the components {Di}i∈I⊆ω of the initial
theory are pairwise ∆–inseparable, but so are the theories {Duna∪Di}i∈I . In
the theorem, we do not specify how the progression was obtained (cf. The-
orem 2) and the only condition that relates the components of progression
with those of the initial theory says about containment of ∆–consequences.
Thereby, we formulate the idea that components of progression do not split
∆–consequences of the components of the initial theory (cf. Example 6).

Theorem 1 Preservation of ∆-insep. for fluent-free ∆. Let L have PIP and
D be BAT in which DS0 and Duna are theories in L. Let σ ⊆ sig (DS0) be a
fluent–free signature and denote ∆ = sig (Duna)∪σ. Suppose the following:

• DS0 is σ–decomposable with some components {Di}i∈I⊆ω such that the
theories from {Duna ∪Di}i∈I are pairwise ∆–inseparable;

• DSα(Sα/S0) is equivalent to the union of theories {D′
j}j∈J⊆ω such that

for every j ∈ J and some i ∈ I, Cons (Duna ∪D′
j ,∆) ⊇ Cons (Duna ∪

Di,∆).

Then the theories from {Duna ∪D′
j}j∈J⊆ω are pairwise ∆–inseparable.

The next theorem provides a result on local-effect BAT s with initial the-
ories in first-order logic for which progression becomes more concrete, since
it can be computed by syntactic manipulations. In contrast to Theorem
1, this allows us to judge about inseparability without the theory Duna in
background. Essentially, the conditions of the theorem are defined to guar-
antee componentwise computation of progression for a decomposable initial
theory. For the reader’s convenience, we stress that in the formulation of the
theorem, the indices i and j vary over components of Dss and DS0 , respec-
tively. The signatures ∆1 and ∆2 are the sets of allowed common symbols
between the components of Dss and DS0 , respectively. We recall that F
denotes the set of fluents from the alphabet of the language of situation
calculus.

Theorem 2 Preservation of components in local-effect BAT s. Let D be a
local-effect BAT with DS0, an initial theory in first-order logic. Let ∆1, ∆2

130 D.K. Ponomaryov, M. Soutchanski

be fluent-free signatures and α = A(c1, . . . , ck), k ∈ ω, be a ground action
term. Denote ∆ = ∆1 ∪∆2 ∪ {c1, . . . , ck} and suppose the following:

• sig (Dss) ∩ F ⊆ sig (DS0);

• Dss is the union of theories {Di}i∈I⊆ω, with sig (Dn)∩sig (Dm) ⊆ ∆1

for all n,m ∈ I, n ̸= m;

• DS0 is ∆2–decomposable with components {D′
j}j∈J⊆ω uniform in S0;

• for every i ∈ I, there is j ∈ J such that sig (Di) ∩ sig (DS0) ⊆
sig (D′

j).

Then DSα(Sα/S0) is ∆–decomposable. If the components {D′
j}j∈J are pair-

wise ∆–inseparable, then so are the components of DSα(Sα/S0) (in the cor-
responding decomposition).

We note that a result similar to Theorem 2 can be proved in the general
case, for progression of not necessarily local-effect BAT s, by considering
progression as a set of consequences of Duna ∪ Dss ∪ DS0 uniform in Sα.

5. Conclusion

We have considered the influence of the theory update operations, such
as forgetting and progression, on preserving the component properties of
theories, such as decomposability and inseparability. The results of the
paper are in a certain sense expected. Forgetting and progression have
semantic nature, since the input and the output of these transformations
are related to each other by using restrictions on the classes of models. On
the contrary, the decomposability and inseparability properties are defined
using entailment in a logic. Therefore, they have rather a syntactic origin,
because logics (weaker than second-order) may not distinguish the needed
classes of models. As a consequence, the conceptual “distance” between
these two kinds of notions is potentially immense. It can be somewhat
bridged by the choice of either an appropriate logic, or appropriate theories
in the input. We have identified conditions that should be imposed on the
components of input theories to match these notions more closely. Also, the
Parallel Interpolation Property (PIP) turned out to be a relevant property
of logics in our investigations. The results can be briefly summarized in
the tables below. For brevity, we use σ to denote a signature or a ground
atom. We slightly abuse notation and consider σ as a set of symbols even
in the case of a ground atom implying that in the latter case σ consists of
the single predicate symbol from the atom. We assume that the input of
operations of forgetting and progression is a union of theories T1 and T2 with
sig (T1) ∩ sig (T2) = ∆, for a signature ∆.

Component properties of forgetting and progression in the situation calculus 131

Property Condition Result Reference

Preservation of ∆–
inseparability of T1

and T2 under forget-
ting σ

σ ∩∆ = ∅ YES Corollary 2

σ ⊆ ∆ and σ is a
ground atom NO

Example 2

σ ⊆ ∆ and σ is a signa-
ture

YES,
if logic has PIP

Proposition 5

σ ⊆ ∆ and T1, T2

are semantically insep-
arable

YES

Proposition 6

Distributivity of for-
getting σ over union
of T1 and T2

σ ∩∆ = ∅ YES Corollary 2

σ ⊆ ∆

NO,
even if T1 and T2 are
semantically insepa-
rable

Example 3

T1 and T2 are semanti-
cally inseparable “mod-
ulo σ”

YES

Proposition 7

Property Condition Preservation Reference

∆–inseparability of
components of initial
theory under pro-
gression

at least one fluent is
present in ∆ NO

Example 5

∆ is fluent-free and some
components of initial the-
ory split under progression

NO

Example 6

∆ is fluent-free and com-
ponents of initial theory do
not split under progression

YES,
modulo the unique
name assumption
theory

Theorem 1

∆–decomposability
and preservation of
signature compo-
nents of an initial
theory under pro-
gression wrt an
action term α

Unconditionally, in partic-
ular for local-effect BAT s NO

Example 4

BAT is local–effect, ∆
is fluent-free, and compo-
nents of DS0 are aligned
with components of Dss

YES,
modulo constants in
term α

Theorem 2

References

[1] Cordell Green C. Application of theorem proving to problem solving // Proc.
IJCAI. – 1969. – P. 219–240.

[2] Gu Y., Soutchanski M. A description logic based situation calculus // Ann.
Math. Artif. Intell. – 2010. – Vol. 58: 1–2. P. 3–83.

[3] Konev B., Lutz C., Ponomaryov D., Wolter F. Decomposing description logic
ontologies // Proc. Twelfth International Conference on the Principles of
Knowledge Representation and Reasoning, 2010.

132 D.K. Ponomaryov, M. Soutchanski

[4] Konev B., Lutz C., Walther D., Wolter F. Formal properties of modularization
// Modular Ontologies / H. Stuckenschmidt C. Parent, S. Spaccapietra (eds.).
– Lect. Notes Comput. Sci. – Springer Verlag, 2009. – Vol. 5445. – P. 25–66.

[5] Kourousias G., Makinson D. Parallel interpolation, splitting, and relevance in
belief change // J. of Symbolic Logic. – Vol. 72:3. – P. 994–1002.

[6] Levesque H., Lakemeyer G. Cognitive Robotics // Handbook of Knowledge
Representation / Frank van Harmelen, V. Lifschitz, and B. Porter (eds.). –
Elsevier, 2007.

[7] Lin F., Reiter R. Forget it! // Proc. of the AAAI Fall Symposium on Relevance.
– 1994. – P. 154–159.

[8] Lin F. On strongest necessary and weakest sufficient conditions // Artif. Intell.
– 2001. – Vol. 128:1-2. P. 143–159.

[9] Liu Y., Lakemeyer G. On first-order definability and computability of progres-
sion for local-effect actions and beyond // Proc. 21st International Jont Con-
ference on Artifical Intelligence. – Morgan Kaufmann Publishers Inc., 2009. –
P 860–866.

[10] Lutz C., Walther D., Wolter F. Conservative extensions in expressive descrip-
tion logics // Proc. of the 20th Int. Joint Conf. on Artificial Intelligence IJCAI-
07. – AAAI Press, 2007. – P. 453–458.

[11] Lutz C., Wolter F. Mathematical logic for life science ontologies // Proc. of
the 16th International Workshop on Logic, Language, Information and Com-
putation. – Lect. Notes Comput. Sci. –Springer Verlag, 2009. – Vol. 5514. – P.
37–47.

[12] Lutz C., Wolter F. Deciding inseparability and conservative extensions in the
description logic EL // J. of Symbolic Computation. – 2010. – Vol. 45:2. – P.
194–228.

[13] McCarthy J. Situations, Actions and Causal Laws. – Memo 2, Stanford Uni-
versity, Department of Computer Science, 1963. – Reprinted in“Semantic In-
formation Processing”/ M. Minsky, (ed.). – The MIT Press, Cambridge (MA),
1968. – P. 410–417.

[14] McCarthy J., Hayes P. Some philosophical problems from the standpoint of
artificial intelligence // Machine Intelligence / B. Meltzer and D. Michie (eds.).
– Edinburgh University Press, 1969. – Vol. 4. – P. 463–502.

[15] Pirri F., Reiter R. Some contributions to the metatheory of the situation cal-
culus // J. of the ACM. – 1999. – Vol. 46:3. – P. 325–361.

[16] Ponomaryov D. On decomposibility in logical calculi // Bull. Novosibirsk
Comp. Center. Ser. Computer Science. – Novosibirsk, 2008. – IIS Special Iss.
28. – P. 111–120.

Component properties of forgetting and progression in the situation calculus 133

[17] Reiter R. Knowledge in Action: Logical Foundations for Describing and Im-
plementing Dynamical Systems. – The MIT Press, 2001.

[18] Vassos S., Levesque H. On the progression of situation calculus basic action
theories: resolving a 10-year-old conjecture // Proc. of the 23rd National Con-
ference on Artificial intelligence (AAAI’08). – AAAI Press, 2008. – Vol. 2. – P.
1004–1009.

[19] Yehia W., Lippmann M., Liu H., Baader F., Soutchanski M. Experimental
results on solving the projection problem in action formalisms based on de-
scription logics // Proc. of the 25th Intern. Workshop on Description Logics,
2012.

134

