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Gradient filters based on the fast wavelet
transform for quasi-identical noisy images

S.M. Prigarin

Abstract. The paper deals with a family of nonlinear gradient filters that can be
applied to one noisy image or several quasi-identical patterns (i.e., several images of
the same object with independent noise). Such filters are based on a specific wavelet
decomposition and a preliminary statistical analysis of quasi-identical patterns.
Results of numerical experiments have shown that the developed gradient filters
reduce noise and preserve image boundaries.

Introduction

A multiple image denoising method (MID) was proposed in [1] for the noise
reduction in medical x-ray imaging based on two quasi-identical patterns.
The main idea underlying the method is to make several x-ray images of the
same object and produce a resulting image of a better quality by specialized
filtering along with minimizing the total dose of radiation [2]. The MID al-
gorithm is based on the fast wavelet transform described in [3]. The authors
of [1] demonstrate the availability of the MID method by several examples
and mention a negative effect: random low-contrast blotches can appear in
the resulting image.

The main goal of this paper is to improve the original MID algorithm
eliminating appearance of blotches. As a result, a family of gradient fil-
ters was developed and enhanced modifications of the MID algorithms were
proposed.

1. Wavelet transform and MID algorithm

The MID algorithm described in [1, 4] is based on the fast wavelet transform
from [3]. This fast wavelet transform is presented below.

Let I = I0 be a grey N ×N -image, I = [I(n,m)]n,m=1,...,N . The wavelet
transform of the image I0 can be written down in the form

W
(1)
j+1 = Ij ∗ (Gj , D), W

(2)
j+1 = Ij ∗ (D,Gj), Ij+1 = Ij ∗ (Hj , Hj), (1)

j = 0, . . . , J − 1.
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The inverse wavelet transform (the reconstruction algorithm) is the following

Ij−1 = W
(1)
j ∗ (Kj−1, Lj−1) +W

(2)
j ∗ (Lj−1,Kj−1) + Ij ∗ (H̃j−1, H̃j−1), (2)

j = J, . . . , 1.

Here A ∗ (R,C) denotes a separable convolution of rows and columns of the
image A with 1D filters R and C, respectively. The 1D filtersH0, G0, K0, L0,
D are given in Table 1. The discrete filters obtained by setting 2j − 1 zeros
between each of the coefficients of the filters H0, G0, K0, L0 are denoted
by Hj , Gj , Kj , Lj , respectively. The filter H̃j is the filter whose transfer
function is a complex conjugate of the transfer function of the filter Hj .

Table 1. Finite impulse response of the filters H0, G0, K0, L0, and D

n H0 G0 K0 L0 D

−3 0.0078125 0.0078125
−2 0.0546850 0.0468750
−1 0.125 0.1718750 0.1171875

0 0.375 −2 −0.1718750 0.6562500 1
−1 0.375 2 −0.0546850 0.1171875
−2 0.125 −0.0078125 0.0468750
−3 0.0078125

In what follows, the transfer function of a filter will be denoted with
asterisk:

H∗(ω) =
∑

n

exp(−iωn)H(n).

The transfer functions are 2π periodic functions satisfying the following
relations:

H∗0 (ω) = eiω/2[cos(ω/2)]3, G∗0(ω) = 4ieiω/2 sin(ω/2),

G∗0(ω)K∗0 (ω) + |H∗0 (ω)|2 = 1, L∗0(ω) =
1 + |H∗0 (ω)|2

2
,

H∗j (ω) = H∗0 (2jω), G∗j (ω) = G∗0(2jω),

K∗j (ω) = K∗0 (2jω), L∗j (ω) = L∗0(2jω),

H̃∗j (ω) = H∗j (ω).

The filters correspond to a quadratic spline wavelet (with the cubic spline
derivative, [3, 5]). Border problems are treated by making a symmetry of
an image with respect to each of its borders and periodization. The sepa-
rable convolutions are performed with allowance for this border procedure.
At each scale 2j , algorithm (1) decomposes Ij into Ij+1, W (1)

j+1, and W
(2)
j+1,
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while the inverse wavelet transform (2) reconstructs Ij−1 from Ij , W
(1)
j , and

W
(2)
j . The two-dimensional fields Wj = (W (1)

j ,W
(2)
j ) will be called gradient

fields of level j. The complexity of the direct and the inverse transforms is
O(N2 logN).

Using the previous notation, the MID method from [1] for the noise
reduction in medical x-ray images based on two quasi-identical patterns can
be described in the following way. Let I[1] = I0[1] and I[2] = I0[2] be two
noisy realizations of the same image I. Consider wavelet transform (1) for
these two images:

W
(1)
j+1[k] = Ij [k] ∗ (Gj , D), W

(2)
j+1[k] = Ij [k] ∗ (D,Gj),

Ij+1[k] = Ij [k] ∗ (Hj , Hj), j = 0, . . . , J − 1, k = 1, 2.

This is the first (decomposition) stage of the MID method: generation of
the “smoothed” fields IJ [1], IJ [2] of level J and the gradient fields

Wj [1] = (W (1)
j [1],W (2)

j [1]), Wj [2] = (W (1)
j [2],W (2)

j [2]) (3)

of levels j = 1, . . . , J for both quasi-identical images.
The second (reconstruction) stage of the MID method can be divided

into several steps:

Step 1. Pixel-wise averaging of the two smoothed images of level J ,

I(J) = (IJ [1] + IJ [2])/2.

Set j = J .

Step 2. Computing the new gradient fields W (1)
j , W (2)

j by the following
assignments:

Step 2a. Averaging of the gradient fields

W ′j(n,m) =
Wj [1](n,m) +Wj [2](n,m)

2
.

Here (n,m) denotes a pixel with the indices n, m.

Step 2b. Multiplication of the average gradient field by the weights

W ′′j (n,m) = W ′j(n,m) ∗ Pj(n,m),
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where the weights Pj(n,m) are computed for every pixel by the formulas

Pj(n,m) =
s

s1s2
,

s = W
(1)
j [1](n,m)W (1)

j [2](n,m) +W
(2)
j [1](n,m)W (2)

j [2](n,m),

s2k =
(
W

(1)
j [k](n,m)

)2 +
(
W

(2)
j [k](n,m)

)2
, k = 1, 2,

for s > 0, and Pj(n,m) = 0, otherwise. Here s is a scalar product of the
two-dimensional gradient vectors W [1](n,m) and W [2](n,m) at pixel (n,m),
while sk are the Euclidean norms for the gradient vectors W [k](n,m):

s = 〈Wj [1](n,m),Wj [2](n,m)〉, sk = |Wj [k](n,m))|, k = 1, 2.

Step 2c. Renormalization of the gradient field

Wj = (W (1)
j ,W

(2)
j ) = CW ′′j ,

C =
‖U ′j‖2

〈U ′j , U ′′j 〉
. (4)

Here
U ′j = W

′(1)
j ∗ (Kj−1, Lj−1) +W

′(2)
j ∗ (Lj−1,Kj−1),

U ′′j = W
′′(1)
j ∗ (Kj−1, Lj−1) +W

′′(2)
j ∗ (Lj−1,Kj−1),

〈U ′, U ′′〉 =
∑
n,m

U ′(n,m)U ′′(n,m), ‖U‖2 = 〈U,U〉.

Formula (4) is used only for j > 1 and 〈U ′j , U ′′j 〉 larger than 0, otherwise
C = 1.

Step 3.

Ij−1 = W
(1)
j ∗ (Kj−1, Lj−1) +W

(2)
j ∗ (Lj−1,Kj−1) + Ij ∗ (H̃j−1, H̃j−1).

Step 4. Cycling: j = j − 1, and if j > 1, then go to Step 2.

The reconstruction stage of the MID method generates the sequence

IJ , WJ , IJ−1, WJ−1, . . . , I1, W1, I0

from the “smoothed” fields IJ [1], IJ [2] and the gradient fields Wj [1],Wj [2],
j = 1, . . . , J . The image I0 is the final reconstruction of the image I.
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Remark. Renormalization of Step 2c was proposed by one of the authors
of paper [1]. But the analysis of filtering results showed that with this step
instead of denoising, the noise intensity can be even increased in spite of
illusion of a better contrast. Particularly, for the first test described below
in Section 3, the empirical variance after the MID filtering with Step 2c is
approximately twice as larger as that of the noisy input images. That is the
reason why in further considerations Step 2c will be eliminated. Formally it
will be assumed that C = 1 for Step 2c of the MID algorithm (all the results
presented in Section 3 were obtained under this assumption).

2. Gradient filters and modifications of the MID

Image filters with the same general scheme as for the MID algorithm but
with a nonlinear filter NLF

Wj = NLF (Wj [1],Wj [2]) (5)

instead of Step 2 will be called gradient filters because the basis of such a
filter is a nonlinear transformation (5) of gradient fields (3).

Several gradient filters were considered as a modification of the MID
method to eliminate the blotch effect and to improve reduction of noise.
One of them (it will be denoted as MID2) is presented below.

Step 2 of MID2 modification. Step 2a is the same as for MID:

W ′j(n,m) =
Wj [1](n,m) +Wj [2](n,m)

2
.

Step 2b. The notation W /s,t/ will be used for /s, t/-shift of the gradient
field W :

W /s,t/(n,m) = W (n+ s,m+ t).

For all eight shifts /s, t/ from the set

{/0, 1/, /0,−1/, /1, 0/, /− 1, 0/, /1, 1/, /− 1, 1/, /1,−1/, /− 1,−1/}

the following weights are pixel-wise computed by the formula

P
/s,t/
j (n,m) =

〈Wj(n,m),W /s,t/
j (n,m)〉

|Wj(n,m)| |W /s,t/
j (n,m)|

if 〈Wj(n,m),W /s,t/
j (n,m)〉 > 0, and P /s,t/

j (n,m) = 0, otherwise. The result
of this step of the algorithm is a smoothed gradient field
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W ′′j (n,m) = W ′j(n,m)
1
8

∑
/s,t/

P
/s,t/
j (n,m),

where summation is performed over eight shifts /s, t/.

Step 2c. Renormalization of the gradient field Wj = CW ′′j , where

C =
maxn,m |W ′j(n,m)|
maxn,m |W ′′j (n,m)|

,

for j > 1 and max
n,m
|W ′′j (n,m)| > 0, otherwise C = 1.

The idea underlying the next modification MID3 of the gradient filter is
to estimate the noise intensity from a difference between two quasi-identical
realizations.

Step 2 for MID3 contains the same Steps 2a, 2b, 2c as for MID2 and an
additional Step 2b* between Steps 2b and 2c.

Step 2b* for MID3. First, the empirical variances

v(1) =
1
N2

∑
n,m

(
W

(1)
j [1](n,m)−W (1)

j [2](n,m)
)2
≈ V(W (1)

j [1]−W (1)
j [2]),

v(2) =
1
N2

∑
n,m

(
W

(2)
j [1](n,m)−W (2)

j [2](n,m)
)2
≈ V(W (2)

j [1]−W (2)
j [2])

should be computed. Here it is important that the two images are quasi-
identical, because in this case the differences W (1)

j [1]−W (1)
j [2] and W (2)

j [1]−
W

(2)
j [2] are homogeneous random fields with zero mean (under assumption

that the noise is statistically homogeneous with the same properties for both
images). Then we set

W
′′(1)
j (n,m) = 0 if |W ′(1)

j (n,m)| <
√
C0v(1),

and
W
′′(2)
j (n,m) = 0 if |W ′(2)

j (n,m)| <
√
C0v(2).

In other words, we set gradient values to zero if the values are in agreement
with noise intensity. A disadvantage of this additional Step 2b* is that a
constant C0 must be defined. But most probably, the value of this constant
is more or less universal and can be fixed in an appropriate way for most of
medical images.
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Remarks. 1. Gradient filters can be combined with additional filtering.
The tests have shown that the median filtering can be effective, for in-
stance, after applying the MID3 method (see Figure 7 in the next section).
The following regularization of gradient fields seems to be reasonable at ev-
ery level j. One pixel will be called ’co-directed’ with another one if the angle
between gradients for these pixels is less than 90 degrees. For every pixel we
count its number of co-directed pixels among the nearest eight neighbors. If
the number of co-directed neighbors does not exceed a parameter K (typical
values are K = 0, 1, 2), then for that pixel we take a new value of the gra-
dient, computed as an average of gradients for non co-directed neighboring
pixels.

2. Obviously, algorithms MID2 and MID3 can be applied to several
quasi-identical patterns as well as to a unique image. A specific feature
of these modifications in comparison with the original MID method is a
nonlinear smoothing of gradient fields over the nearest 8-pixel neighborhood.

3. Test results and conclusion

In the first test the images I[1], I[2] are independent (250×250)-realizations
of the Gaussian white noise with zero mean and unit variance. The empir-
ical mean values and variances for the origin images and after filtering are
presented in Table 2.

Table 2. Results for testing of two white noise images

Image Empirical mean Empirical variance
Square root of

empirical variance

I[1] 0.00050 1.0042 1.002
I[2] 0.00050 1.0071 1.0035
MID 0.00046 0.2320 0.482
MID2 0.00056 0.0773 0.278
MID3, C0 = 0.5 0.00056 0.0359 0.189

For the second test, a true image
was an image of size 200×200 pixels
with constant values along one axis
and with the profile shown in Fig-
ure 1 along another axis. Two quasi-
identical patterns were simulated by
adding two independent realizations
of the Gaussian white noise with
zero mean and unit variance (Fig-
ures 2, 3). Results for the corre-
sponding profiles and different filters
are presented in Figures 4–7. Figure 1. Profile of a true image
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Figure 2. Two profiles of the first quasi-identical pattern I[1]

Figure 3. Two profiles of the second quasi-identical pattern I[2]

Figure 4. The two profiles after the MID filtering

Several other tests were performed with filtering quasi-identical patterns
including medical x-ray images. The following conclusion can be formulated
according to the tests results: (1) gradient filters based on the fast wavelet
transform give a challenging tool for the boundary preserving smoothing,
(2) modifications MID2 and MID3 essentially improve the original MID
algorithm enabling diminishing the noise intensity and eliminate the blotch
effect.
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Figure 5. The two profiles after the MID2 filtering

Figure 6. The two profiles after the MID3 filtering, C0 = 0.5

Figure 7. The two profiles after MID3 filtering, C0 = 2, and subsequent 5-point
cross median filtering
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