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On derivation of the size distribution of cloud
droplets from the phase function∗

S.M. Prigarin, E.G. Kablukova, G.I. Zabinyako

Abstract. This paper deals with an ill-posed problem to determine the size distri-
bution for water drops in a cloud from a given scattering phase function. Numerical
experiments have shown that a method based on non-negative least squares with
additional requirements of smoothness can be used to solve the ill-posed problems.
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1. Introduction and statement of the problem

This paper concerns a challenging problem of derivation of aerosol size dis-
tributions from phase function measurements, see, for example, [7, 15–17].
The optical properties of the atmospheric clouds can be described by the ex-
tinction cross-section, single scattering albedo and a phase function [11,12].
These three characteristics depend on the light wavelength and the size dis-
tribution of particles in a cloud. The first two of them define the photon
free path length and probability of scattering for a photon in a collision,
while the phase function describes the distribution of the scattering angle
(or its cosine). Under the assumption that the clouds consist of spherical
water droplets, the optical characteristics can be computed by the Mie the-
ory [1–3]. Examples of phase functions g(µ) for spherical water droplets for
fixed sizes are presented in Figure 1. In this figure values of the scattering
angle θ are presented on X-axes, µ = cos θ, and

∫ 1
−1 g(µ) dµ = 1.

Let us assume that the light wavelength is fixed, gr(µ) is the phase
function for water droplets of radius r, and p(r) is the probability density
of droplet radii in a cloud,∫ 1

−1
gr(µ) dµ = 1,

∫ R

0
p(r) dr = 1. (1)

In this case the phase function g(µ) of the cloud is a superposition of the
phase functions gr(µ) for monodisperce media:
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Figure 1. Scattering phase functions with wavelength 0.53 µm for a monodisperse
medium containing water drops of radius 5 µm (left) and 15 µm (right)

Figure 2. Probability densities (left) of the drop radius and scattering phase
functions (right) with wavelength 0.53 µm for cloud models C1 (top) and OPAC
Cumulus Maritime (bottom). Values of the cloud droplet radii are presented on
X-axes in µm

g(µ) =

∫ R

0
gr(µ)p(r) dr. (2)

Examples of the probability density and the phase function for two cloud
models are presented in Figure 2. For these models the droplets radii are
distributed according to the modified gamma distribution:

p(r) = Crα exp(−Brγ), B =
α

γrγmod

,
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where r is the radius of drops in µm, α, γ are the distribution parameters,
and rmod is the mode radius. The cloud model C1 [3] corresponds to

α = 6, γ = 1, B = 1.5, rmod = 4,

and the OPAC Cumulus Maritime cloud model [6] has the following param-
eters

α = 4, γ = 2.34, B = 0.00713, rmod = 10.3989.

Remark. The implementation of the Mie theory is nontrivial. In mono-
graph [1] the author describes different approaches to numerically realize the
Mie formulas for accurate computation of phase functions gr(µ) for monodis-
perse media. Another problem is an accurate numerical integration accord-
ing to formula (2). In order to obtain an appropriate result the integration
step must be small enough. Figure 3 shows the result of inaccurate nu-
merical integration for the OPAC Cumulus Maritime cloud model by the
program “PolyMie” [13]. In this case, the step for integration by the trape-
zoidal rule is equal to rmod/50 and R is defined by p(R)/p(rmod) ≤ 0.005.
The program “Poly2” from [13] can be used for more exact calculations.
In many cases thousands of summands are necessary for obtaining more or
less precise results. The programs presented in [13] were developed in the
Ludwig–Maximilian University of Munich on the basis of W. Wiscombe’s
code [19]. Additional modifications of these programs for more accurate
and flexible computations were performed in the Institute of Computational
Mathematics and Mathematical Geophysics SB RAS (Novosibirsk).

Figure 3. An example of inaccurate computation of the phase function for the
OPAC Cumulus Maritime cloud model (see details in the text)

Assume now that the phase function is measured with some noise and
we know the values bi, i = 1, . . . , N , which are the values of the scattering
phase function of a cloud g(µi) at the points µi = cos θi with an additive
noise:
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bi = g(µi) + ei, µi = cos θi, i = 1, . . . , N. (3)

We want to estimate the probability density p(r) of droplet radii in the cloud
at the points rj , j = 1, . . . ,M .

To solve this inverse problem, we use the following approximation for
equation (2):

g(µ) =

∫ R

0
gr(µ)p(r) dr =

M∑
j=1

∫
Sj

gr(µ)p(r) dr ≈
M∑
j=1

p(rj)

∫
Sj

gr(µ) dr. (4)

Here rj ∈ Sj , and Sj are the disjoint intervals of length |Sj | such that⋃M
j=1 Sj = (0, R). Moreover, we make a further (problematic) simplification:∫

Sj

gr(µ) dr ≈ grj (µ)|Sj |,

and reduce the inverse problem to the following system of linear equations

Ax = b, A = [Aij ], (5)

where b = (b1, . . . , bN )T , x = (p(r1), . . . , p(rM ))T , Aij = grj (µi)|Sj | for
i = 1, . . . , N , j = 1, . . . ,M .

The main objective is to find a vector x which approximately satisfies
equation (5). In this case, the method of least squares fails. In the next
section we will try the Tikhonov variational regularization to solve the ill-
posed problem (see, for example, [8, 18]).

2. Numerical algorithm and results of computational
experiments

We reduce the ill-posed problem to the minimization of the following func-
tional

‖Ax− b‖2 + λ
M−1∑
j=2

(xj+1 − 2xj + xj−1)
2 (6)

under additional constraints

xj ≥ 0,
M∑
j=1

xj |Sj | = 1. (7)

The value λ is a parameter of the method. To solve problem (6), (7), we
used a version of the reduced gradient method. Expressing xi > 0 in terms
of other variables from the equality constraint we arrive at the problem
of minimizing the function of M − 1 variables provided non-negativity of
the variables is respected. The Newton direction is obtained by using the
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modified Cholesky factorization of the Hessian [4]. To improve the numer-
ical stability of the modified Cholesky factorization we applied symmetric
permutations of the Hessian columns and rows.

Figure 4

We have tested the performance
of the approach (5)–(7) by computa-
tional experiments. The noise ei in
(3) was simulated by the formula

ei = Cg(µi)wi, i = 1, . . . , N, (8)

where wi are independent standard
Gaussian random variables. The
value C will be called “noise inten-
sity”, and we present it in percents.

Figure 4 presents an example of the phase function for the cloud model C1
with noise intensity C = 10 %.

In Figures 5–7 we present results of the numerical experiments for the
following parameters:

i = 1, . . . , N = 181, µi = cos θi, θi = (i− 1)π/180,

j = 1, . . . ,M = 25, rj = j µm, |Sj | = 1 µm.

We took the phase functions with additive noise (3), (8) as the right-hand
side of equation (5). The noise intensity C is equal to 10 % in the numerical
experiments with C1 cloud and the OPAC Cumulus Maritime model.

Figure 7 presents results for the bimodal probability density. Distribu-
tions of this type were considered for the cloud models in [9, 14]. The noise
intensity C is equal to 5 % in this case. The table presents errors depending
on the regularization parameter λ for this numerical experiment.

Figure 5. Numerical minimization of (6) under constraints (7) for λ = 0 (left)
and λ = 500 (right). The probability density of the drop radius for the cloud model
C1 is shown by dot lines, while the results obtained by the Tikhonov variational
regularization are shown by solid lines
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Figure 6. Numerical minimization of (6) under constraints (7) for λ = 0 (left) and
λ = 500 (right). The probability density of the drop radius for the OPAC Cumulus
Maritime model is shown by dot lines, while the results obtained by the Tikhonov
variational regularization are shown by solid lines

Figure 7. Numerical minimization of (6) under constraints (7) for λ = 0 (left)
and λ = 50 (right). A bimodal probability density of the drop radius is shown by
dot lines, while the results obtained by the Tikhonov variational regularization are
shown by solid lines

Errors δ1 =
∑

j=1,...,M |xj−xexactj |, δ∞ = maxj=1,...,M |xj−xexactj | of the
Tikhonov variational regularization method depending on the parameter
λ for the bimodal probability density of the drop radius

λ δ∞ δ1 λ δ∞ δ1

0 0.0713 0.485 150 0.0221 0.234
10 0.0337 0.291 200 0.0231 0.236
50 0.0209 0.244 300 0.0247 0.242

100 0.0216 0.236 500 0.0272 0.259

Numerical experiments show that an appropriate approximation to the
required probability densities can be found by the varying parameter λ.
In the future we are planing to study several methods, like L-curve or GCV,
to choose an appropriate value for the regularization parameter λ (see, for
example, [5, 10]).
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