
Bull. Nov. Comp.Center, Comp. Science, 35 (2013), 85�99
c⃝ 2013 NCC Publisher

Experiments on self-applicability in the C-light

veri�cation system∗

A.V. Promsky

Abstract. Development of the C-light veri�cation system is accompanied by var-
ious case studies. We have already demonstrated the applicability of our system
to some examples from veri�cation competitions. Those programs are connected
to veri�cation-di�cult issues but, as a rule, they are represented by arti�cial or
trivial pieces of code. Now we can address the more realistic tests. The �rst se-
ries of experiments is based on fragments of the input analyzer/translator of the
C-light system. The trials include axiomatization of problematic domains in the
prover Simplify, the development of ACSL annotations and inductive reuse of al-
ready speci�ed standard library routines. Thus the �rst step to a self-applicable C
program veri�cation system has been taken.

Keywords: C-light, ACSL, Simplify, standard library, axiomatic theory, speci�ca-
tion, veri�cation.

1. Introduction

As opposed to traditional testing, the deductive veri�cation represents a
formal way to examine the program correctness. But what about correctness
of the veri�cation system itself?

The answer to this question can consist of two main parts:

1. Since the veri�cation methods are based on some mathematical con-
cepts (sets, relations, calculi, etc.), their properties can be formally
proved. For example, the proof of axiomatic semantics soundness is
quite a traditional practice [1]. However, these proofs are usually
performed by hand. The assistance of automatic theorem provers
can contribute signi�cantly to their trustworthiness. The examples
of such �mechanical� proofs are much more uncommon, though some
researchers obtained remarkable results [9, 10].

2. The program implementations of those theoretical methods should also
be checked thoroughly. And again, in addition to usual testing, formal
veri�cation here looks desirable. In particular, if the veri�cation system
is implemented in the target language, then its self-veri�cation could
be an ultimate check. Speaking about the C language, we are not
aware of such a self-applied system.

∗Partially supported by RFBR under grant 11-01-00028.

86 A.V. Promsky

In the Laboratory of Theoretical Programming (IIS) we are developing
the C-light veri�cation system. The C-light language covers the major part
of the previous standard (C99). In order to avoid the problems of Hoare's
logic for the full C, we translate the input programs in a restricted core
called C-kernel. The veri�cation condition generator for C-kernel produces
lemmas (veri�cation conditions, VCs), while the interactive prover Simplify
tries to discharge them. Taking into account the importance of correctness,
we formally proved some properties of composing parts of our approach [8].
We plan to check those proofs in the future using a higher order logics prover
(like HOL, for example).

Practical testing of a veri�cation system is related to the choice of case
studies. Previously, we demonstrated [7, 11] that our prototype system is
powerful enough to verify some programs from a recognized collection of
�veri�cation challenges� [6] or examples from veri�cation competition suite
[3]. These programs are usually very simple or arti�cial.

Now it is time for more realistic experiments, which is possible thanks to
recent studies. First, the method of formal veri�cation condition explanation
and error localization was developed for C-light [12]. Whereas VCs for simple
programs are comprehensible even for a �pen-and-paper� proof, veri�cation
of a real code requires the automatic assistance. Even so, counterexamples
given by a prover may be unexpectedly complex. The approach mentioned
above simpli�es analysis when something goes wrong. Second, the speci�-
cations written in ACSL [2] were developed for a part of the Standard C
library [13]. Every meaningful C program relies on library routines, so these
annotations are an important prerequisite.

The self-veri�cation goal has suggested a new test suite to us. The code
examples considered in this paper are fragments of the input module of
our system. This module translates a C-light program into an equivalent C-
kernel program. In fact, it is implemented in C++ using API of the compiler
Clang. Thus the complete veri�cation is unachievable; however it is rich in
code expressible in C-light, which makes our translator a good test subject.

The rest of the paper is organized as follows: Section 2 contains three
examples from the test suite with our comments attached. An overview of
veri�cation prerequisites is given in Section 3. They include ACSL annota-
tions and logical axiomatizations. The veri�cation results are summarized
in Section 4. Section 5 is a conclusion of the paper.

2. The chosen fragments of a translator

Here we present three functions from the translator source code. We also give
some explanations, so that reader could match them against annotations.
The annotations themselves will be described later in Section 3.

Experiments on self-applicability in the C-light veri�cation system 87

2.1. The function deleteSpaces

This function takes a null-terminated string as its input and erases all blank
symbols in the head and tail of the string. Those symbols include the space

character and escape sequences. The function deleteSpaces is used actively
during the speci�cation analysis. Indeed, the ACSL speci�cations takes the
form of comments and may often contain extra blank symbols between the
lexemes "/*" and "*/" and speci�cation bodies.

#include <ctype.h>

#include <string.h>

/*@ requires \valid_string(str);

assigns \nothing;

ensures \base_addr(\old(str)) <= \base_addr(str) &&

\base_addr(str) <= \base_addr(\old(str)) +

strlen(\old(str));

ensures strlen(\result) == length &&

length <= strlen(\old(str));

ensures \result == NULL ||

strncmp(\result, str, length - 1) == 0;

*/

char* deleteSpaces(char *str)

{

int length = strlen(str);

/*@ loop invariant 0 <= length < strlen(str) &&

(str[length - 1] == ' ' ||

str[length - 1] == '\f' ||

str[length - 1] == '\n' ||

str[length - 1] == '\r' ||

str[length - 1] == '\t' ||

str[length - 1] == '\v' ||

isalnum(str[length - 1) == 0);

*/

while (isspace(str[length - 1])) --length;

/*@ loop invariant 0 <= length < strlen(\old(str)) &&

\old(str) <= str < \old(str) +

strlen(\old(str));

*/

while (*str && isspace(*str))

++str, --length;

char* result = (char*)malloc(1 + length);

if (NULL != result)

{

88 A.V. Promsky

strncpy(result, str, length);

result[length] = '\0';

}

return result;

}

The implementation is quite straightforward. First, we need to calculate the
length of the resulting string. This can be done in two loops. We begin
with the input string length. During the �rst loop, we decrease the variable
length until we �nd the rightmost basic source character. Thus all tailing
blank symbols are implicitly removed from consideration. In the second
loop, we also decrease length and increase the string pointer until it points
to the leftmost basic source character. After that we allocate memory for
the resulting string and copy the speci�cation body into it.

2.2. The function replace

As an intermediate program representation in our system, we use a special
pre�x notation. Thus the veri�cation condition generator, which is a stand-
alone program, can easily parse it using a recursive descent. In the pre�x
form the type speci�ers an type quali�ers are separated by the character '_'
(unsigned_int, for example). The LLVM infrastructure and compiler Clang
allow us to obtain a string containing information about types, which uses
blank symbols as separators. So we need to replace them all with '_'.

#include <string.h>

#include <ctype.h>

/*@ requires \valid_string(str);

assigns str[0..length(str)-1];

ensures \forall int i; (0 <= i < length(str) &&

isspace(\old(str[i]))

)

==>

str[i] == '_';

*/

void replace(char* str)

{

int length = strlen(str);

int i;

/*@ loop invariant

\forall int j; (0 <= j <= i) &&

isspace(\old(str[j]))

)

Experiments on self-applicability in the C-light veri�cation system 89

==>

str[j] == '_';

for (i = 0; i < length; i++)

if (isspace(str[i])) str[i] = '_';

}

The function replace takes a string str as an input. A single loop is used to
check all characters replacing spaces with '_'. In fact, the resulting string
does not require another conversion when the pre�x form is generated.

2.3. The function getBlockID

According to the axiomatic semantics of C-kernel, every compound state-
ment should have a unique identi�er. During translation into pre�x form,
a construction of the form {A1; A2; ...; AN;}, where Ai are statements,
is transformed into block(ID, A1, A2, ..., AN), where ID is a unique
name. The automatic generation of such names is a duty of the function
getBlockID. The names have the form BLOCKn, where n ∈ [1..UINT_MAX).
The value UINT_MAX is taken from �le "limits.h".

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <limits.h>

/*@ requires 1 <= id <= UINT_MAX;

assigns id;

behavior somewhere_in_the_middle:

assumes 1<= \old(id) < UINT_MAX;

ensures id == \old(id) + 1 &&

strcmp(\result, strcat("BLOCK\0",

ltoa(\old(id)))) == 0;

behavior too_many_blocks:

assumes \old(id) == UINT_MAX;

ensures \result == NULL;

complete behaviors somewhere_in_the_middle, too_many_blocks;

disjoint behaviors somewhere_in_the_middle, too_many_blocks;

*/

char* getBlockID()

{

static unsigned int id = 1;

char* result = NULL;

if (id < UINT_MAX)

{

90 A.V. Promsky

int maxNumberLength = 11;

char* number = (char*)malloc(maxNumberLength);

if (NULL != number)

{

int blockLength = 6;

int resultLength;

int numberLength;

sprintf(number, "%u", id);

numberLength = strlen(number);

resultLength = blockLength + numberLength;

result = (char*)malloc(resultLength);

if (NULL != result)

{

char block[] = "BLOCK";

strncpy(result, block, blockLength);

strncat(result, number, numberLength);

++id;

}

free(number);

}

}

return result;

}

The function getBlockID has no parameters. A static variable id of type
unsigned int is declared and initialized to 1. Every subsequent invocation
of getBlockID increases the value of id until the upper limit UINT_MAX is
reached. The current value of id is used as a su�x n in BLOCKn. We use
the library sprintf to obtain string representations for integers, as well as
standard routines strncpy and strncat for a string copy and concatenation,
respectively. If either id == UINT_MAX or any of two memory allocations
was unsuccessful, getBlockID returns NULL. The use of the static variable
guarantees originality of block names.

3. Veri�cation prerequisites

To verify a C-light program, we need some additional information. First of
all, a program should have speci�cations. All library types and functions
addressed in the program require their own speci�cations. Finally, the con-
cepts from the current problematic domain should be axiomatized so that
the prover Simplify could process them.

Experiments on self-applicability in the C-light veri�cation system 91

3.1. ACSL annotations

We use ACSL as a speci�cation language. The paper's volume does not allow
us to give a detailed description of this language. Instead, we explain the
speci�cations of our examples. More information about ACSL can be found
in [2].

deleteSpaces. The ACSL annotations are written in special C comments
beginning with '/*@' in contrast to simple comments. The most important
ACSL concept is the function contract. The function deleteSpaces on Page
87 is preceded by such a contract.

The function pre-condition is given in the requires clause. We need a
correctly allocated string str as an input. This is exactly what the predicate
\valid_string says.

It is possible to specify that global variables do not change during the ex-
ecution of deleteSpaces. The term \nothing in the assigns clause means
that the function has no visible side-e�ects.

The function post-condition is expressed by the ensures clause. In the
presence of several clauses, it means that they are combined by conjunction.
The only reason to use many entries is the reader's convenience. The built-in
function \old is used to address the function arguments in the pre-state (i.e.
before the invocation). The function \base_addr denotes the pointer to the
string head.

So, the post-condition demands that, at the end of the function body, the
pointer str points somewhere within the limits of the original string. Also
the length of the resulting string, which is stored in the variable length, can
be shorter than the original string length. Finally, either the resulting value
is a null pointer or it points to the same substring as str does at the end.

The function body contains two loops, so two loop invariants are intro-
duced. The �rst one states that, at every iteration, the value of length

should be nonnegative and less than the current length of the string str

and also the character str[length - 1] shold be a blank symbol. Actually,
pattern matching for escape sequences in invariant is unnecessary, since it
can be deduced from speci�cations of the library function isspace. But, to
complete the picture, we made it explicit. Also, we suppose that programs
are created by a �wise� user, so we do not take into account exotic escape
sequences, like `\a' or `\b'. The second invariant claims that the length
of a new string does not exceed the length of the string str and the pointer
str is within the limits of the original string.

replace. This function is simpler than the previous one, but, in terms of
logic, it is more complex because it applies to quanti�ers.

The pre-condition on Page 88 is the same � \valid_string.

92 A.V. Promsky

However, some global objects can change during execution of replace

and this fact is re�ected in the assigns clause. Moreover, in ACSL it spec-
i�es that a function is not allowed to change memory locations other than
those explicitly listed. Also note that ACSL provides a convenient way to
specify the sets (regions) of values (objects).

The post-condition simply says that every blank symbol of the original
string is replaced by the character '_'.

Finally, the loop invariant can be expressed by a generalized form of the
post-condition.

getBlockID. As we have seen earlier, the function getBlockID can either
return a valid block name or end up with failure. Any attempt to describe
the variety of results together with the reasons can lead to a complicated
post-condition. It is possible to express that di�erently, by using ACSL's
behaviors. A function can have several behaviors in addition to a general
speci�cation. A behavior can have additional ensures clauses, but it can
also have assumes clauses which indicate when the behavior is triggered.

The shared pre-condition (Page 89) expresses the expected limits for id.
The assigns clause says that id is the only object which can change

during execution of getBlockID.
Behavior somewhere_in_the_middle corresponds to a situation when the

value of id is within capacity of the type unsigned int. Then a new value of
id is by one greater than the previous value. Note that the statement about
the resulting string required a trick. Indeed, we used the library function
names in speci�cations (like strcmp) thus turning them into logical functions.
This works well for the functions with �xed parameter lists. However, we
appealed to the function sprintf to transform an integer into its string
representation, and that function is variadic. To avoid inevitable problems,
we use the logical function ltoa for the same task. This logical name has
no direct implementation in the standard library, but it serves as an inverse
to the library function atol. One would think that the function itoa (as
a reverse to atoi) could be appropriate. But the variable id is unsigned,
so we need the type long int to avoid dangerous coercions from unsigned

int into int.
Behavior too_many_blocks models the situation when increment of id

results in integer over�ow. So, we return the NULL pointer instead.
In addition, we stipulate that this pair of behaviors is exhaustive.

To conclude this section, let us note the convenience of ACSL. Like its
ancestor, the speci�cation language JML, it is based on the idea of using
the target language syntax for its own expressions. An immediate gain is
that speci�cations become rather understandable for �ordinary� program-
mers, who, as a rule, are not eager to learn formalisms used in the veri�cation
theory.

Experiments on self-applicability in the C-light veri�cation system 93

3.2. Library speci�cations and axiomatics

Recently we developed the ACSL speci�cations for a subset of the Standard
C library. Moreover, basing on these speci�cations, several library functions
were successfully veri�ed [7]. Since our three programs are concentrated
mainly on character and string manipulations (and memory management,
sometimes), let us consider the corresponding examples.

It should be noted that speci�cations for the library are not limited to
functional contracts only. ACSL provides a way to develop logical functions
and predicates which can be used later during the proof stage.

ctype.h Here, let us restrict ourselves to the minimal locale. Then, the fol-
lowing logical predicates should be obvious, especially for the reader familiar
with the C language.

#include "limits.h"

#include "stdio.h"

// if locale = "C"

/*@ predicate ISDIGIT(int _c) = (_c >= '0' && _c <= '9');

predicate ISLOWER(int _c) = (_c >= 'a' && _c <= 'z');

predicate ISUPPER(int _c) = (_c >= 'A' && _c <= 'Z');

predicate ISALPHA(int _c) = (ISUPPER(_c) || ISLOWER(_c));

predicate ISALNUM(int _c) = (ISALPHA(_c) || ISDIGIT(_c));

...

*/

As it was said before, the ACSL language encourages the use of the C code
in its expressions. Now, having these de�nitions, we can simply specify the
standard function which checks whether a character is alphanumerical.

/*@ requires 0 <= c <= UCHAR_MAX || c == EOF;

ensures \result == ISALNUM(c);

*/

int isalnum(int c);

As a precondition, we use the comparison of a character with the standard
constants1. The postcondition states that the returning value is equal to the
value of the predicate ISALNUM. Actually, these parameter tests and predicate
de�nitions can constitute an appropriate implementation of isalnum (that
is why we omitted its body). So, its veri�cation was e�ortless indeed.

1De�ned in limits.h and stdio.h.

94 A.V. Promsky

string.h From the veri�er's point of view, this could be the best part of
the library. Indeed, the functions declared in string.h are not trivial (like
those from ctype.h, for example), but at the same time they are merely
manipulations on the arrays of characters. This means that they admit
portable implementations which do not rely on the system calls or assembly
language.

For example, the implementation of the function strcpy accompanied by
its ACSL speci�cation looks like2:

/*@ requires \valid_range(s1,0,strlen(s2)) &&

valid_string(s2);

assigns s1[0..strlen(s2)];

ensures strcmp(s1,s2) == 0 && \result == s1;

ensures \base_addr(\result) == \base_addr(s1);

*/

char *strcpy(char *restrict s1, const char *restrict s2)

{

char *os1 = s1;

//@ ghost int i = 0;

/*@ loop invariant \forall integer j;

0 <= j <= i ==> s1[j] == s2[j]; */

while (*s1++ = *s2++) { /*@ ghost i++; */ }

return (os1);

}

stdlib.h One of the most frequently used library parts is the memory man-
agement. Here we begin to face the execution environment dependance. As
a result, only a partial veri�cation is achievable. It is partial in the sense
that we rely on the hypotheses about system calls or assembly language frag-
ments which cannot be validated. However, as an exercise training we tried
to verify some arti�cial implementations with a simple memory model. One
of them is as follows:

char HEAP[HEAP_SIZE];

/*@ requires size > 0 && \valid(HEAP);

assigns next_free;

ensures next_free == \old(next_free) + size;

ensures \result ==

next_free >= HEAP_SIZE ? NULL : (HEAP + next_free);

*/

void *malloc(size_t size) {

2Here we do not demand the strings be 0-terminated.

Experiments on self-applicability in the C-light veri�cation system 95

static int next_free = 0;

next_free += size;

if (next_free >= HEAP_SIZE) return NULL;

return (HEAP + (next_free - size));

}

In this model, the heap is just an array of bytes of an appropriate length.
Every successful allocation increases the global index next_free by the size
of the allocated space. Such an implementation does not provide any heap
overhead which helps to determine the size of the region being deallocated.
Thus, the corresponding implementation of free can only be

void free(void* ptr) { return; }

4. Veri�cation

Since all veri�cation requirements are met, the rest of the process is quite
routine. Programs are translated into the C-kernel language (in the pre�x
notation), the veri�cation condition generator (VCG) produces VCs which
are passed, in turn, to the prover Simplify.

Let us consider the course of life for one of VCs, say a VC contributing
to the proof of the loop

while (*str && isspace(*str))

++str, --length;

in the function deleteSpaces.
An equivalent code in C-kernel is as follows:

while (1) {

auto int x;

if(*str) x = isspace(*str) else x = 0;

if (x) {

str += 1;

length -= 1;

}

else goto l;

}

l:;

The nature of logical AND operator3 in C together with restrictions on C-
kernel requires such a bulky rewriting. On the other hand, this intermediate

3It allows for incomplete evaluation if the �rst argument is su�cient for the whole

expression.

96 A.V. Promsky

translation step is hidden from a user. We demonstrate it only to complete
the picture.

Note that the method of assigning unique names to auxiliary variables
(like x above) during translation is similar to the generation of block identi-
�ers. Thus the veri�cation of getBlockID can be useful to us.

To verify a loop is to show that its body preserves a loop invariant. So
the VCG will take the invariant from Page 87 and the control expression (can
be omitted due to obvious reasons) as a pre-condition. The same invariant
will serve as a post-condition. There are two if-statements, so the proof tree
has four leaves � VCs. One of them after simpli�cations has the following
form:

(IMPLIES

(AND (<= 0 (select MD1 (select MeM1 length)))

(< (select MD1 (select MeM1 length))

(strlen (old (select MD1 (select MeM1 str)))))

(<= (old (select MD1 (select MeM1 str)))

(select MD1 (select MeM1 str)))

(< (select MD1 (select MeM1 str))

(+ (old (select MD1 (select MeM1 str)))

(strlen (old (select MD1 (select MeM1 str))))))

(EQ MeM (store MeM1 x |@nc0|))

(EQ MD2 (store MD1 |@nc0| |@omega|))

(EQ (select MD2 (select MD2 (select MeM str))) |@0|)

(EQ MD3 (store MD2 (select MeM x) 0))

(NEQ 0 (select MD3 (select MeM x)))

(EQ MD4 (store MD3 (select MeM str)

(+ 1 (select MD3 (select MeM str)))))

(EQ MD (store MD4 (select MeM length)

(- (select MD4 (select MeM length)) 1))))

(AND (<= 0 (select MD (select MeM length)))

(< (select MD (select MeM length))

(strlen (old (select MD (select MeM str)))))

(<= (old (select MD (select MeM str)))

(select MD (select MeM str)))

(< (select MD (select MeM str))

(+ (old (select MD (select MeM str)))

(strlen (old (select MD (select MeM str)))))))

)

As you can see, the original program variables (x, str, ...) acquire wrap-
pings built of names MeMi or MDj . These are so called meta-variables which
model the memory in our C-light abstract machine. Details can be found in
[8]; su�ce it to say that meta-variables behave like arrays or mappings. The
Simplify possesses built-in theories for arrays and uninterpreted functions.

Experiments on self-applicability in the C-light veri�cation system 97

Table. Veri�cation results

Experiment Derived VCs and
triples

Approved by
Simplify

deleteSpaces 7 VCs and 1
dummy triple

X

replace 4 VCs X
getBlockID 4 VCs X

We may also express some of the logical predicates and functions from
Section 3.2 in the LISP-notation, so that Simplify could process strings4.
They can be combined in a �le and passed to Simplify as external axioms.
After that Simplify can easily prove our VC:

Simplify-1.5.4.exe -ax user.ax vc.lisp

1: Valid.

The other VCs are validated by analogy. The summary of veri�cation
results is given in the table. The dummy triple obtained for deleteSpaces
needs some explanation. As we have just seen, the while loop in the C-kernel
program has the tautological control expression. Its negation (FALSE) will
become a pre-condition for the resting part of the function deleteSpaces

(from the loop exit point up to the end) thus making the corresponding
Hoare's triple trivially true. However, we must keep that triple in the proof
tree because the control is transferred there (goto l;). So we have to �nd
an invariant for the label l. As soon as an invariant is found, we can safely
neglect all VCs that stem from the proof sub-tree of our dummy triple.

5. Conclusion and future work

The deductive veri�cation is a way to establish formally program correct-
ness. Obviously the veri�cation method itself should be correct. Apart from
theoretical soundness, its implementation also requires validation. The sit-
uation when a veri�cation system is written in the target language gives us
an opportunity to apply it to itself. This task is of great interest in the case
of the C language.

This paper describes our �rst step towards the �veri�ed veri�er�. A series
of experiments was performed in order to verify some parts of a translator
from C-light into C-kernel. The work included the development of ACSL
annotations and axiomatic theories for problematic domains. Three of our
case studies were illustrated here.

To emphasize the actuality, let us note that studies related to this �eld
are almost unknown. In many cases researchers use di�erent languages to

4For example, a prover should be informed about the properties of strlen.

98 A.V. Promsky

implement their systems (like the functional O'Caml in WHY [5]). Others are
concentrated on veri�cation of di�erent applications (for example, Hyper-V
is the main subject of study in the VCC project [4]).

We plan to continue our work on speci�cation and veri�cation of the
components of our system. At the moment, only a restricted functionality is
expressible in a pure C. Perhaps we will return from C++ API of the Clang
compiler to the standard C in order to achieve an ultimate goal � the total
veri�cation.

In introductory section we also mentioned one more area of possible re-
search. The formal semantics for C-light and C-kernel could be embedded
in some prover based on the higher order logics. After that, some theorems
earlier proved manually could be revised with such an automatic assistance.

References

[1] Apt K.R., Olderog E.R. Veri�cation of Sequential and Concurrent Programs.
� Berlin etc.: Springer, 1991.

[2] Baudin P., Filli�atre J.C., March�e C., Monate B., Moy Y., Prevosto V.
ACSL: ANSI/ISO C Speci�cation Language. � Available at http://www.frama-
c.cea.fr/download/acsl_1.4.pdf

[3] Bormer T., Brockschmidt M., Distefano D., Ernst G., Filli�atre J.-C., Grigore
R., Huisman M., Klebanov V., March�e C., Monahan R., Mostowski W., Po-
likarpova N., Scheben C., Schellhorn G., Tofan B., Tschannen J., Ulbrich M.
The COST IC0701 veri�cation competition 2011 // Revised Selected Papers
of Int. Conf. FoVeOOS 2011. � Lect. Notes Comput. Sci. � 2011. � Vol. 7421.
� P. 3�21.

[4] Cohen E., Dahlweid M., Hillebrand M.A., Leinenbach D., Moskal M., Santen
T., Schulte W., Tobies S. VCC: A practical system for verifying concurrent
C // Proc. TPHOLs 2009. � Lect. Notes Comput. Sci. � 2009. � Vol. 5674. �
P. 23�42.

[5] Filliâtre J.C., Marché C. Multi-prover veri�cation of C programs // Proc.
ICFEM 2004. � Lect. Notes Comput. Sci. � 2004. � Vol. 3308. � P. 15�29.

[6] Jacobs B., Kiniry J.L., Warnier M. Java program veri�cation challenges //
Proc. FMCO 2002. � Lect. Notes Comput. Sci. � 2003. � Vol. 2852. � P. 202�
219.

[7] Maryasov I.V., Nepomnyaschy V.A., Promsky A.V., Kondratyev D.A. Auto-
matic C program veri�cation based on mixed axiomatic semantics // Proc.
Fourth Workshop �Program Semantics, Speci�cation and Veri�cation: Theory
and Applications�, Yekaterinburg, Russia, June 24, 2013. � P. 50�59.

[8] Nepomniaschy V.A., Anureev I.S., Mikhailov I.N., Promsky A.V. Veri�cation-
oriented language C-light // System informatics. � Novosibirsk: SB RAS

Experiments on self-applicability in the C-light veri�cation system 99

Publishing House, 2004. � Iss. 9: Formal methods and informatics models. �
P. 51�134 (In Russian).

[9] Norrish M. C formalised in HOL: Thes. doct. phylosophy (computer sci.). �
Cambridge, 1998.

[10] Oheimb D. von. Hoare logic for Java in Isabelle/HOL // Concurrency and
Computation: Practice and Experience. � 2001. � Vol. 13, N 13. � P 1173�
1214. � Available at http://isabelle.in.tum.de/Bali/papers/CPE01.html.

[11] Promsky A.V. Towards C-light program veri�cation: Overcoming the obstacles
// Proc. PU-2009, 19�23 June, Altai Mountains, Russia, 2009. � P. 53�63.

[12] Promsky A.V. A formal approach to the error localization. � 2012. � 33 p. �
(Prep. / A.P. Ershov Institute of Informatics Systems, Novosibirsk, Russia;
N 169).

[13] Promsky A.V. C program veri�cation: veri�cation condition explanation and
standard library // Automatic Control and Computer Sciences. � 2012. �
Vol. 46, N 7. � P. 394�401.

100

