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Dynamic-stochastic modeling and
four-dimensional analysis of

the meteorological fields∗

A.V. Protasov

Abstract. On the basis of the variational principle, the method of dynamic-
probabilistic numerical modeling of ensembles of independent realizations of a com-
plex of space-time stochastic fields is proposed. The ensemble of realizations satis-
fies the statistical structure of real fields, and the each realization of this ensemble
satisfies a numerical dynamic model. For the reconstruction of the meteorologi-
cal fields, on a spatial-temporal regular grid using observation data at stations, is
considered. This method is based on expansion in series of required fields in finite
number of natural orthogonal basis. The basis is determined on the ensemble of
the spatial-temporal realizations obtained with the help of the dynamic–stochastic
method with a given real statistical structure of meteorological fields. One of the
methods of fast assimilation of the given observational data is proposed. The results
of numerical experiments are presented.

1. Introduction

On the basis of variational methods of optimization, one of general proce-
dures for the dynamic-probabilistic modeling of complexes of multi-dimen-
sional fields is proposed [1, 2]. The realizations of fields satisfy the prop-
erties given in the form of autocovariance and mutual covariance matrices,
probability distributions, etc., as well as physical connections in the form
of appropriate systems of differential equations. In essence, the method of
stochastic modeling of multi-dimensional fields, generally non-gaussian, with
an optimum adjustment of stochastic and physical properties, is proposed.

In addition, a dynamic model, given by a system of differential equations,
serves as interpolator at spatial-time points of considered fields, and for
their mutual adjustment and filtration of non-physical components, and the
statistical model provides a given probability structure of the considered
process and specifies an appropriate ensemble of independent realizations
of these fields. The use of a variational method of information assimilation
allows us to optimize the process of corporation of dynamic and statistical
methods of numerical modeling.

As one of the possible applications of the proposed method, a method
of numerical modeling of climate of the atmosphere as ensemble of possible
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realizations of spatial-time hydrometeorological fields is considered [1, 2].
A necessary analysis of the statistical structure of the climatic ensemble
obtained is made, and it is shown that the model with a sufficiently high
accuracy reproduces the structure of real climatic fields.

As the proposed method allows us to construct a complete set of con-
sidered hydrometeorological fields at regular spatial-time points satisfying
climatic properties, i.e., to fill up numerically a lack of measurements of
these characteristics, it makes it possible with sufficient reliability to carry
out analysis of direct relationship and feedback coupling, the mutual influ-
ence of various processes in the atmosphere, climatic behavior of an impurity
in the atmosphere, etc. Concrete applications are also discussed.

The basic essence of this method is the following. We assume that the
statistical structure of the fields in question is known approximately. Ac-
cording to this structure, the ensemble of realizations of these fields with the
use of known approximate methods of statistical modeling is constructed.
The realizations of fields from this ensemble are used as input data for the
problem of variational assimilation of the information with the help of a
dynamic model. As a result, we obtain new ensemble, in which each real-
ization satisfies the dynamic model, and the statistical structure of the new
ensemble is close to the initial structure within the accuracy of the problem
of variational assimilation.

The given approach allows us to specify the statistical structure of the
fields under study from the standpoint of a dynamic model. Therefore, it is
rather logical to use dynamic models of physical processes for the coordina-
tion and filtering of appropriate random fields obtained using the statistical
modeling and, hence, for specification of the probability structure of real
fields.

In the given paper, one of methods of the statistical modeling is consid-
ered, which consists in the following. Let R be a multi-dimensional correla-
tion matrix. Let us present its spectral decomposition as

R = WΛW T , (1)

where W is a matrix of eigenvectors of the correlation matrix R, and Λ is a
diagonal matrix of appropriate eigenvalues. Let us note that representation
(1) is the decomposition in the so-called primary factors, and problem (1) is
the corresponding problem of definition of such primary factors. The next
step consists, in our case, in definition of a square root of a matrix R as
R1/2 = WΛ1/2W T , where Λ1/2 is a diagonal matrix, on whose diagonal are
the square roots of corresponding eigenvalues in the matrix Λ, and the index
T defines the transposition operation.

Then one of methods of statistical modeling can be defined as

~ξ
(i)
(n) = DξR

1/2 ~ψ(i)(xj , yj , pj , tj)T + ~̄ξ(xj , yj , pj , tj), i = 1, 2, . . . , (2)
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where ~ψ(i)(xj , yj , pj , tj)T , i = 1, 2, . . . , is a Gaussian stochastic vector with
individual variance and zero average, Dξ is a diagonal variance matrix,
~̄ξ(xj , yj , pj , tj) is a sampling mean of the vector simulated stochastic value
~ξ
(i)
(n). It is not difficult to see that the correlation matrix of the stochastic

vector ~ξ(i)(n) coincides in accuracy with the matrix R.
The method of variational assimilation is based on solving the problem

of minimization of the quality functional [1] with the use of the method of
gradient descent. The value of the quality functional characterizes a measure
of distinction between realization of a stochastic field and an appropriate
field after solving the system of the dynamic equations. For definition of
a gradient of the quality functional, the solutions to the basic and adjoint
problems, appropriate to the considered dynamic model, are used. In fact,
the average value of the quality functional, obviously, determines a measure
of difference in the initial statistical structure and the statistical structure
obtained by the combined modeling.

The considered method of variational assimilation of data with the help
of a mathematical model is based on the Lagrangian method [3] for the
search for extreme points of functionals with restrictions given as equalities,
the definition of the Gato differential [4] for the construction of an appropri-
ate gradient. In this case, the fundamental concept by G.I. Marchuk [5], of
using the adjoint problems, as applied to problems of hydrothermodynamics
of the atmosphere and ocean is employed.

Let us notice that for an effective use of variational assimilation, the
theoretical or numerical research into the convergence of an appropriate
Gato functional is necessary.

For the purposes of construction of a climatic ensemble of realizations it
is necessary to consider a problem of variational assimilation on the whole
time interval within the limits of predictability of an appropriate numerical
model, as using the so-called consecutive step-by-step assimilation does not
provide necessary smoothness of the solution and an appropriate trend for
further use of the field obtained in the forecast mode.

The essence of the method of variational assimilation consists in the
following. Let us consider the numerical model which is written down in the
operator form

∂~Φ
∂t

+A(~Y , ~Φ)~Φ = 0, (3)

where ~Φ is the state vector; ~Y = ~Φ|t=0 is the vector of the parameters;
A(~Y , ~Φ) [1] is the finite difference operator determined by a system of equa-
tions of the process under study and the appropriate boundary conditions
in the domain Gt = G× [0, t̂].
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System of equations (3) generates a certain set of the solutions dependent
on a vector of parameters ~Y . The problem is to find the closest among this
set of solutions to a concrete realization from (2) in the sense of some quality
functional J0, which we write down as

J0 =
1
2

∑
k

(L~Φj − ~Φk
S , L~Φ

j − ~Φk
S)DS

,

where (·, ·)Ds is the scalar product in the space of the measured data ~Φk
S , as

which appropriate values of the fields ~ξi(n) of dimension NS at the points at
the time tk from ensemble of realizations (2) are used; L is an appropriate
operator of interpolation, and ~Φj is the solution of problem (3) at the mo-
ment of time tj . Thus, it is necessary to find a minimum of the functional
J0 relative to the vector of parameters ~Y under restrictions (3).

For solving this problem the iterative method of gradient descent based
on the Lagrangian method and the solutions of the direct and adjoint prob-
lems are used. Let us notice that, generally, a minimum of the functional
J0 is not unique, that is, determined by nonlinearity of system (3) and the
degree of completeness of the assimilated data. In this case, a minimum is
determined by some initial value of a vector of appropriate iterative process.

The detailed description of the combined dynamics-stochastic model and
its characteristics are given in [1].

2. Modeling of climatic ensemble for a local area and
research on its basis of climatic rejections in the
atmosphere

Based on the above-said, the climatic ensemble of possible realizations of ap-
propriate multi-dimensional hydrometeorological fields for a chosen interval
of time and a given area [1, 2, 6–8] is considered as

{~ξi(n), i = 1, 2, . . . }, (4)

where ~ξi(n) = (~U i( ~Xj , tk), T i( ~Xj , tk), H i( ~Xj , tk), . . . )T is a vector of realiza-
tions of the fields of wind speed, temperature, geopotential, etc. at the space-
time points ( ~Xj , tk) of the considered area; n is dimension of this vector.

As compared to existing climatic numerical models based on the com-
plete equations of hydrothermodynamics, in which the result of modeling of
climate is obtained at the expense of increasing the physical complication of
the model, application of the detailed space-time resolution, inclusion of var-
ious parameterizations (moisture, flows of heat, boundary layers, etc.) and
integration for long time period up to some quasi-periodical conditions, in
this paper we propose to directly simulate independent climatic realizations
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of the meteorological fields space-time with some statistical characteristics
which are optimally close to simulate statistical characteristics of real fields.
This approach is closest to modeling of climate with the help of stochastic
models [1], thus allowing to combine properties of the deterministic numeri-
cal models of the atmosphere dynamics and stochastic models. As real data,
the reanalysis data of the temperature field for 1948–2005 at ten standard
levels for a winter season with time of discreteness 6 hours and 2.5 × 2.5
degrees in longitude and latitude, respectively, (NCEP/NCAR) were used.
The sample was carried out for the given local 10 × 10◦ area of Northern
hemisphere with the center at the point with coordinates 60.56◦ of North-
ern latitude and 77.7◦ East longitude. The problem is considered in x, y, p
system of coordinates in the area, whose bottom basis is a rectangle on the
tangential plane at this central point. For the grid construction 24×20 reso-
lution with respect to x and y with steps ∆x = 23.85 km and ∆y = 58.74 km,
respectively, was chosen.

Thus, with allowance for the external points reanalysis and two moments
of time on ten isobaric surfaces, the correlation matrix of the temperature
field was designed. The general qualitative character of this correlation
matrix corresponds to the correlation matrix, used in experiments taken
from [1,2, 6–9].

Using formulas (1), (2), ensemble of realizations (4) is under construc-
tion.

The next step for construction of a climatic-ensemble of realizations is
application of variational assimilation. To this end, for each realization from
this ensemble (4), the variational assimilation problem with the help of the
mathematical model of hydro-thermodynamics of the atmosphere is solved,
therefore the ensemble of new realizations turns out to be as follows:

{~̃ξi(n), i = 1, 2, . . . }, (5)

being different from the initial one with accuracy of the solution of the prob-
lem of variational assimilation and satisfying the properties of the mathe-
matical model.

The designed local climatic ensemble (5) includes 2000 realizations, which
has appeared quite sufficient for the corresponding statistically-valued esti-
mations.

For the numerical analysis of dynamic processes in realizations of climatic
ensemble (5), we use a problem of numerical modeling of the distribution
of a passive pollution in the atmosphere, as this process characterizes, first
of all properties of atmospheric movements, and by virtue of linearity of
the used model of pollution distribution, the character of its space-time be-
havior is completely defined by appropriate fields of the wind speed from
the climatic local ensemble. Therefore the properties of the obtained distri-
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butions also characterize appropriate properties of the climatic ensemble of
meteorological fields as it is.

As compared to existing now numerical models of distribution of pollu-
tions, in which as background fields of the wind speed or average climatic
fields, or the fields chosen according to some characteristic scenario (depen-
dent, as a rule, on subjective criteria) are used in the present work, the
whole ensemble of realizations of space-time fields of pollutions according to
the chosen ensemble of climatic realizations of the wind field are proposed.
This ensures, in a certain sense, the statistical completeness of statistical
estimations.

As climatic distribution of pollutions in a local area, we consider an
appropriate average of the obtained ensemble of realizations of fields of pol-
lutions.

For definition of the climatic trajectory concept, let us use a known
method of indicator functions and the result of averaging the ensemble of
realizations of fields of pollutions. With this purpose, consider

χ(f, l) =
{

1, f ≥ l,
0, f < l,

(6)

where f is a value of the tested function, and l is some given number. The
values of this function, equal to unit in the considered area, from an averaged
sequence of realizations from the ensemble of pollutions define the respective
climatic trajectory of distribution of pollutions at a given threshold value l.

In the numerical experiments, as an initial field of a pollution determining
an instant source of pollution, the simulated field of a pollution located in
some grid domain of 5 × 5 points at a level p = 850 mb with a maximum
equal to 1 value at the center of this domain was chosen. The value of the
size l was chosen equal to 0.05.

Let us notice that the estimation of the degree of belonging of a concrete
trajectory of distribution of a pollution to the climatic trajectory can be
determined by various ways depending on the purpose of research. For
example, the estimation of belonging as the relation of the number of points,
crossing with the climatic trajectory, to the common number of points of
this climatic trajectory. From the point of view of the research of emissions
of a pollution it is quite justified, as in our case, with a small value of
the estimation introduced to expect the increased contents of a pollution
in this vicinity. Thus, if we want to have an appropriate estimation of the
degree of a geometrical belonging of a concrete trajectory of distribution
of a pollution to the climatic trajectory, it is necessary to consider another
estimation, for example, as relation of the number of points crossing with the
climatic trajectory to the common number of points of a concrete trajectory
of distribution of a pollution. Further we will consider this estimation.
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Let us designate this size as α. As the realizations of the obtained en-
semble are a stochastic vector functions, the value of a degree of belonging
to the climatic trajectory, averaged on the time interval, is also a stochastic
function. This function is given in Figure 1a, where the appropriate num-
ber of realizations is plotted on the abscises axis. The average value of this
function equals 0.9154, and the variance estimation is 0.123. These charac-
teristics show that in the considered problem the processes of distribution
of a pollution have some prevailing direction that allows localization of the
most probable area of the given level of pollution. Figure 1b presents an
appropriate bar chart of this distribution.

Figure 1. The diagram of the stochastic value α and the bar chart of its
distribution

In Figure 2, the concrete trajectory of distribution of a pollution with a
minimum degree of a belonging to the climatic trajectory is presented. The
belonging of the climatic trajectory is 0.34, i.e., its larger part is outside
of the climatic trajectory, and in our case, it can be considered as one of
examples of ejection of a pollution. The instant source of a pollution was
given in the neighborhood of a point designated in Figure 2 by letter A.

The given numerical results show that the technique proposed can be
used for defining and analysis of direct and inverse climatic trajectories of
dynamic processes in the atmosphere and the detailed research of rejection
in the atmosphere.

In this paper, the semi-lagrangian numerical transport model was used.
When realizing this numerical model the corresponding three-dimensional
bicubic spline-interpolation was used. The corresponding graph of the func-
tion α calculated on the ensemble of fields of a pollution and the histogram
of its distribution are presented in Figure 3. The average estimation of the
function α is equal to 0.755 at a corresponding estimation of the variance
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Figure 2. The combined spatial arrangement of the climatic trajectory of
distribution of a pollution and the trajectory of a pollution of ejection (B).
The point A corresponds to the center of the subarea of a source of pollution.
Along the axes of coordinates, appropriate numbers of meshpoints are plotted

Figure 3. The graph of the stochastic function α and the histogram of its
distribution (a variant of a semi-lagrangian model)

equal to 0.162. It specifies that in the considered area, the processes of
pollution distribution have also some prevailing direction and allows the lo-
calization of the most probable area of the given level of pollution. The
numerical probability estimation of distribution of α is presented in Fig-
ure 4. Figure 5 shows a concrete trajectory averaged in time of distribution
of a pollution with minimum degree of belonging to the climatic trajectory
equal to 0.193, that is, its larger part being outside of the climatic trajec-
tory, and in our case can be considered as one of examples of ejection of a
pollution. This trajectory is designated in the figure by the letter B, and the
instant source of a pollution in this figure was set in the vicinity of a point,
designated by the letter A. As a whole, the results, obtained in the given
work, qualitatively correspond to the results from [6–8] although numerical
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Figure 4. Estimation of probability of α-distribution
(a variant of a semi-lagrangian model)

Figure 5. A combined spatial arrangement of the climatic trajectory of distri-
bution of a pollution and the trajectory of a pollution of ejection (B). The point
A corresponds to the center of the subarea of a source of pollution (a variant of
a semi-lagrangian model). Along the axes of coordinates, appropriate numbers of

meshpoints are plotted
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estimations somewhat differ from the corresponding estimations presented
there. For example, there are observed differences in the average values and
in the right part of the resulted histogram, in which a strongly pronounced
maximum is seen in the neighborhood of this average value.

Analysis of the numerical results shows that the offered technique can be
used for definition and the analysis of direct and inverse climatic trajectories
of dynamic processes in the atmosphere and researches of ejections in the
atmosphere.

3. Four-dimensional analysis of the meteorological fields

One more application of the proposed method of the dynamic-stochastic
modeling is the four-dimensional analysis of meteorological fields and the
so-called “fast” assimilation of the hydrometeorological information. Anal-
ysis and interpretation of the real information concerns a number of major
problems arising in the construction of mathematical models of physical pro-
cesses and solving problems of the weather forecast, the general circulation
of the atmosphere and ocean, the theory of climate, and, also, in studying
and estimating the influence of human activity on the environment. One of
aspects of this problem is in the development of methods of “compression”
of information and its allocation in the most informative part as sum of the
finite fourier series with a small number of terms.

In this paper, we propose methods of the four-dimensional analysis of
the data on the basis of a climatic ensemble of possible realizations of the
corresponding multivariate hydrometeorological fields for the chosen interval
of time and for the region (3) for the considered grid domain of n dimen-
sions. We use the obtained climatic ensemble (5) for solving the problem of
the four-dimensional analysis of the hydrometeorological data in the atmo-
sphere. One of algorithms of such a use offered in [10], is based on represen-
tation of the hydrometeorological field as the corresponding fourier series in
the main factors of orthogonal functions designed on the real data only for a
geopotential field for the winter period and on a sufficiently limited sample.

As ensemble (5) already contains statistically independent existential
realizations, including a full set mutually coordinated hydrometeorological
components (temperature, geopotential, wind speed), with respect to the
numerical dynamic model it seems quite natural to use this technique not
only for the analysis of separate hydrometeorological components, but also
for the four-dimensional analysis and assimilation of the corresponding real
data as a whole.

It is natural that the statistical importance of the obtained results is
completely defined by ensemble (5). This approach has a number of ad-
vantages. First, the basis of the main orthogonal functions constructed on
a sufficiently representative sample, have necessary properties of statistical
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structures of meteorological fields, that is especially important at a sparse
network of stations. Second, the number of basic functions is supposed to
be rather small, that allows us to construct an efficient computing algorithm
for its realization. In addition, from the method of constructing a natural
orthogonal basis it follows that each of its functions has the statistically
coordinated components, therefore the result of restoration with the help
of the method presented has the same degree of the coordination, as basic
functions.

For determination of basic functions of the natural orthogonal basis (the
main factors)

{~ϕi, i = 1, . . . ,m} (7)

in ensemble (5), one of modifications of the algorithm described in [11] for the
generalized covariation matrices Ra of ensemble (5) was employed. There,
the initial realizations of ensemble (5) are normalized and reduced to a
dimensionless form on the basis of appropriate factors of the full energy
integral of system (3). This provides a combined coordination of the rela-
tive numerical model of dynamics of the atmosphere of various components
(wind speed, temperature, geopo-
tential) when constructing of cor-
responding correlation matrices.
Logarithms of eigenvalues describ-
ing the information density of the
designed basic functions, are pre-
sented in Figure 6 which shows,
that 2,000 realizations in an en-
semble (50 basic functions) are
quite sufficient for the represen-
tation of the considered meteoro-
logical fields with good accuracy
(m = 50).

Figure 6. Logarithms of eigenvalues of a
correlation matrix, designed on ensemble

of realizations (1)

Thus, according to [3], we consider a vector subspace R̃m of the real
vector space RN , whose components are values of meteorological fields at
points of the regular grid Ωht ⊂ Ω. Let vector functions (7) be the basis
of the subspace R̃m. Then any vector ~ϕ ∈ R̃m can be presented as Fourier
series

~ϕ = Φ~a, (8)

where Φ is a matrix of N ×m dimension, made of the basic vectors {ϕi, i =
1, . . . ,m}, ~a = (a1, . . . , am)T is the Fourier coefficient vector. Let in the
considered area Ω, the irregular mesh grid Θ, in which the measurements
data of the investigated meteorological fields are known. We consider a
subspace of vectors G the Euclidean space, determined on the irregular grid
Θ, and as components of the vectors we take values of the fields of one
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or several meteorological elements (the same, as in R̃m). In this subspace,
introduce the scalar product

(~ϕ, ~ψ)M = (M~ϕ, ~ψ),

where ~ϕ, ~ψ ∈ G, the symbol (·, ·) designates the scalar product in the Eu-
clidean space, M is a positive definite symmetric matrix, whose choice is is
made according to the research purposes, physical dimensions of components
of vectors and a priori data about the structure of the considered fields. In
this case, a scalar product is a grid analogue to the corresponding scalar
product, determining the full energy integral for the hydrothermodynamics
model used when solving the problem of variational assimilation.

Using the given approach, the problem of restoration of meteorological
fields on a regular grid Ωht from their measured values on an irregular grid
of stations is reduced to finding the vector from the factors of the formula
(8) such that the interpolated values of the vector function ~ϕ ∈ R̃m are least
deviated from the corresponding measured values at points of the given
irregular grid.

Let ~ψmeas be the vector of measured values at points of the irregular grid
Θ ⊂ Ω, and ~ϕ is a vector from subspace R̃m which is required to construct
on the set vector ~ψmeas. Let us designate through ~ψ = L~ϕ an image of the
vector ~ϕ in the subspace G, obtained with the help of the linear interpolation
operator L from the regular grid to an irregular one. As a vector ~ϕ ∈ Rm,
as represented in (8), ~ψ = LΦ~a. We consider the functional, describing a
measure of deviation of the vector of the measured values ~ψmeas at points
of an irregular net of stations from values of the vector functions ~ϕ ∈ Rm,
interpolated to the irregular grid with the help of the linear operator L:

J = (~ψmeas − LΦ~a, ~ψmeas − LΦ~a)M . (9)

From the condition of extremum of the functional J , for definition of factors
ai, i = 1, . . . ,m, we obtain the linear inhomogeneous algebraic equation
system

(LΦ)TM LΦ~a = (LΦ)TM ~ψ. (10)

This system can be written down as

B~a = ~f, (11)

where B = (LΦ)TM LΦ is a symmetric, nonnegative definite matrix, ~f =
(LΦ)TM ~ψmeas is the vector of the right-hand side of system (11).

Let us notice, that system (11) in some cases of a relative positioning
of points of an irregular net of stations can appear to be ill-conditioned.
Therefore, for its solution the following algorithm is used. The matrix B is
presented as

B = WBΛW T
B , (12)
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where Λ is a diagonal matrix of eigenvalues, WB is the orthogonal matrix
of transformation, whose matrix columns are made of eigenvectors of the
matrix B.

Then, taking into account (12), the solution to system (11) is obtained
from the formula: ~a = WBΛ+W T

B
~f , where Λ+ = diag{λ+

i }, (i = 1,m) is a
diagonal matrix constructed by analogy with a pseudoinverse matrix, i.e.,

λ+
i =

{
1/λi, λi > ε,
0, λi ≤ ε,

ε is a sufficiently small number.
Finally, with the help of the obtained vector of the factors ~a, it is possible

to restore the vector ~ϕ on the regular grid Ωht from formula (8).
For an illustration of the efficiency of the above described technique

the temperature fields were simulated using formulas (1), (2) for the time
moments t = 0 and t = 6 hours at 10 standard levels. These data are used
as input data for the problem of variational assimilation with the help of the
numerical model and for the four-dimensional analysis by formulas (8)–(12).
In Figure 7, the corresponding comparative results of calculations for the
level of 500 mb and the moment of time t = 0 are presented, which show

Figure 7. Isolines of temperature fields
at the level of 500 mb at the moment
of time t = 0, obtained from the varia-
tional assimilation (continuous lines) of
the data set at points, designated by
the symbol * and isolines of tempera-
ture fields obtained as a result of the
four-dimensional analysis by the main
factors (dashed lines)
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a good enough qualitative agreement of corresponding isoline fields. The
maximal difference between values of these fields the measurement data
makes 0.93◦.
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