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Variational methods of information
assimilation in the problem
of probabilistic modeling of
hydrometeorological fields*

A.V. Protasov, V.A. Ogorodnikov

In the paper, a new method of simulation of independent climatic realizations of
space-time fields of hydrometeorological elements with some set of statistical char-
acteristics of real fields based on the variational principle of information assimilation
is proposed. This method is allowed to combine some peculiarities of determinate
numerical models of the atmosphere dynamic and probabilistic models.

Introduction

A method of numerical modeling of ensemble of realizations of stochastic
space-time climatic fields with the use of variational methods of assimi-
lating the observational data is considered [1, 2]. This ensemble satisfies
statistical climatic characteristics in the atmosphere, and each realization of
this ensemble satisfies the hydrothermodynamic numerical model. In this
case, the numerical model determines the joint statistical structure of com-
ponents of complexes of hydrometeorological fields. If some components of
these complexes are related by linear equations, an optimization method
for the correction of their joint structure is proposed. The estimations of
the statistical characteristics of the ensemble of realizations constructed and
their agreement with real data are presented.

1. Stochastic simulation of hydrometeorological
fields

We consider the probabilistic model of hydrometeorological fields [3-6] con-
structed as a complex of random space-time fields of hydrometeorological
elements. They, in turn, are a set of related time series at Ng observa-
tion stations in a domain G. At the instant ¢z, the set of the values of
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hydrometeorological elements at the weather stations can be represented
as a N x Ng-dimensional vector &(ty) = (gf(tk),...,g;(tk))T. Its com-
ponents £:(t)) are the hydrometeorological elements (velocity, temperature,
pressure, etc.) written as deviations from the corresponding climatic values
at Ng weather stations. Here N is the number of the hydrometeorological
elements. In our case, the structure of the vector &(tx) coincides with that
of the vector & = (u,v, T, 7, H), where U = (u,v,) is a velocity vector in
the system of coordinates (z,y,p), T is the deviation of temperature from
ts standard value T; H is the deviation of the geopotential from its stan-
dard value H. The vectors £(tx) (k = 1,...,n) form the following random
sequence:

E(n) = (F(tl)v . "ET(tﬂ))T'

In this paper, we assume that this sequence is Gaussian and stationary
with zero expectation (the sought-for value is obtained by adding the corre-
sponding climatic value). Then the correlation matrix ME(n)E(Tn) = Ry is
a block Toeplitz one. It has the form

Rﬂ Rl Rn-—l
Ro= | o o T
RI, Rl, ... Ro

Here R; are blocks of the dimension N X Ng, for i # 0, in the general case,
they are non-symmetric. The matrices Ro, R1, ..., RBn-1 are, in turn, also
block matrices with blocks of dimensionality Ng. The sequences of blocks,
which have the same locations in all the matrices R;, form autocorrelation
and mutual matrix correlation functions of various meteorological elements.
The elements of these blocks are the corresponding space-time correlations.

In order to model the sequence of vectors § (t1),&(t2), - - -, &(ta) with cor-
relation matrix R(n), we employ the method of conditional expectations.

Each of the vectors &(tx) (k= 1,...,n) is calculated in the form
E(ty) = BTk - 1Jk-1)€k-1) + Ce—1) ks ' (1.1)

with the initial value E(tl) = Coff;. Here my,...,7n are independent Gaus-
sian vectors of dimensionality N X Ng with independent components, J(x)
is the block matrix of reverse permutation of the vector components E(k),
B[k) = (By[k], .- ., Bg[k])T, and B;[k] are the matrix coefficients of the re-
gression Cj is a lower triangular matrix such that CkCF = Sk, where Sy is
the corresponding residual matrix [4].

The algorithm for calculating Blk], Sk and, respectively, C in procedure
(1.1), which ensures that the condition M E(k)é'f}c) = Ryy) is satisfied at each
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step k, is given in [4]. It is based on the well-known Durbin-Robinson
algorithm. Thus, at the n-th step we obtain the Gaussian sequence &)
with the correlation matrix R(y).

When constructing the vector autoregressive process g(tl),g(tg), ... the
vector £ (n) is taken as the initial vector.

The accuracy of statistical modeling essentially depends on a priori infor-
mation concerning the statistical structure of the fields studied. Therefore,
it is quite reasonable to use the hydrodynamic models of atmospheric pro-
cesses for adjusting and filtering the corresponding random fields obtained
by statistical modeling and, hence, for refining the probabilistic structure of
the actual hydrometeorological fields.

In some simplest cases, when linear connections between some compo-
nents of the vector & are existed, it is possible some simplifications of the
matrix R(,) and algorithm (1.1). And what is more it is possible to correct
the structure of the matrix R(,) with the help of optimization procedures.

Let X = E,-(tk), Y = Ej(tk) and
Y = BX. (1.2)

Thus, the simulation process is reduced to the simplest operation (1.2) con-
sisting in the multiplying of the matrix by a vector X = Ly, where @is a
random Gaussian vector with zero expectation and unity correlation matrix,
and the matrix L satisfies the following equation:

LxL% = Rxx.

Here Ry x is the given covariance matrix of the vector X.

Let us consider an optimization problem in which the corresponding
values of variance and correlation coefficients are optimized. Let us assume
that the joint distribution of the vectors X and ¥ is also Gaussian and given
by the covariance matrices Rx x, Ryy, and Rxy. In addition, let us assume
that the variables X and Y are related by a linear dependence of the form
(1.2), where B is some n X m matrix.

Thus, we have the following mutual covariance matrix:

Rxx Rxy )
R = . 1.3
( Ryx Ryy (1.3)

Here, according to (1.2), we have
Ryy = BRxx BT, Rxy = RxxBT, Ryx = R%y. (1.4)

Note that if the information about the linear relation (1.2) is absent, it is
possible to determine uniquely the linear operator B with the help of only
the covariance matrix Rxy from (1.3).
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Consider the formulation of the optimization problem similar to those
used in papers [7, 8, 2]. Thus, we assume that the covariance matrix (1.3)
is given approximately in the following form:

o ( Rxx Bxy

Ryx Ryy
It makes it possible to construct the simulation process of Gaussian joint
vectors X (), Y (), where i is the realization number. We construct a new en-

semble of realizations {E()?},g(,f )} for which equation (1.2) is satisfied. Then
we adjust it to the ensemble of realizations of this process.
We consider the error functional in the form

Jo= (Dx(E® - X0), & _ X0 4 (Dy @ - ¥),&P -¥O), (1.5)

where Dy, Dy are some positive definite weight matrices. Also, we consider
the problem of minimization of functional (1.5) with respect to {Eg';),fg‘ )}
from this ensemble. This problem is reduced to solving the following system
of linear equations:

(DF! + BT D' B)EY,, = DX XD + BTDF'YO. (16)

Due to the linearity of equation (1.6), the covariance matrix of the optimal

values £ }:’)opt has the form

Rxx = (D;rl + BTD;IB)-I(DxRxxDX + BT DyRyxDx +
DxRxyDyB + B" Dy Ryy Dy B)(Dx' + B Dy'B) ™,

and the covariance matrix of optimal vectors E(;'Lpt is defined by the formula
Ryy = BR XX BT.

Thus, instead the original matrix R, we have the covariance matrix R that
is optimal with respect to functional (1.5). In our case, we take the matrices
Dx and Dy that are equal to the real inverse matrices of the variances
of vectors X, Y, If the matrix of real mutual correlations Rxy in the
calculations was absent, it was replaced by the approximate matrix obtained
as a result of the following transformations taking into account that (1.2) is
satisfied exactly:

Rxy = %(B+RYY + I?XXBT),

where B* is pseudoinverse matrix. Naturally, the matrix R, that was ob-
tained in this way, may not satisfy the condition of non-negative definiteness.
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Therefore, it was corrected by using spectral representation. Since we sup-
pose that equation (1.2) is satisfied, the rank of the matrix R must obviously
be equal to the maximal rank of the matrices Rxx and Ryy. Therefore,
the corresponding minimal eigenvalues in the spectral representation were
taken equal to zero.

Thus, for stochastic simulation of complexes of hydrometeorological fields
taking into account their interrelations given in the form of the mutual co-
variance matrices, or physical relations in the form of the corresponding
equations of atmospheric dynamics, it is necessary to have a procedure of
their preliminary adjustment. In this paper, a general procedure of such
type has been considered. Really, the presence of linear relations between
individual simulated fields of meteorological elements presupposes the pres-
ence of some “basic” fields as well. They are constructed by using methods
of stochastic simulation. The remaining fields are expressed in terms of
them with the help of the corresponding linear operators. The problem is
that the correlation structure of complexes constructed in this way must be
optimally similar to the available real structure of these fields. In partic-
ular, the relation between the fields of velocity and geopotential to a first
approximation may be determined with the help of geostrophic relations.
Now, we consider a more general procedure of stochastic simulation of hy-
drometeorological fields. In this procedure, the algorithms considered above
are components at the preliminary initialization step.

In this paper, we propose an approach to the realization of this problem.
At the initial stage, we estimate the correlation structure of the fields at the
weather stations by the corresponding processing of observational data for
many years. Using this information and the above procedure, we construct
an ensemble of random field realizations on the regular grid in the domain
considered and the initial network of weather stations. The field realiza-
tions at these points are used as initial data for the problem of variational
assimilation and adjustment. That is, the sequence of realizations of the
random fields §(,,) is used as real data. These are the approximations nec-
essary for the localization of the minimum in the assimilation problem and
exact reconstruction of the climatic characteristics of the considered fields
in the dynamic probabilistic model.

Thus, we consider the problem of the variation assimilation of hydrome-
teorological fields with the help of a general numerical model of atmospheric
dynamics.

2. Variational data assimilation

We write the system of finite difference equations of atmospheric pro-
cesses [2] in operator form
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2h
—— + AMYH, M =0, (2.1)
where B* = diag{1,1,1,0,0} is a diagonal operator;
& = (uh,vh,Th,Th,Hh)

is the state vector; Y* = &"|,—¢ is the vector of the parameters; AP(¥*, &)
is the nonlinear finite difference operator defined by the system of equa-
tions of hydrothermodynamic processes in the atmosphere and the corre-
sponding boundary conditions [2] in the domain G? = [0,£] x G*, where
G" = [0, X] x [0, Y] x [ps,0]. System (2.1) is solved by the component-wise
splitting method [2, 9]. In our case, the problem is to select such a solu-
tion from the entire set of solutions to the system of equations (2.1) that is
determined by the values of the parameter vector Y*. The solution differs
least from the corresponding measured values, in the sense of a quality func-
tional at the given measurement points. We consider this problem in the
finite-dimensional space of grid functions. To construct a finite-dimensional
approximation for problem (2.1), the integral identities method [9] is used.
Following [2, 9], in the domain G* we introduce inner product (", ") gn.
This product is the finite-difference analog of the functional

(5’ 5) - f/f(uu* +ov + ~L —r7* 4+ a, 77" + GHHSH»;) dG.

Here o = 1 m?2mb~2 and agy = 1 s?m~? are dimensional multipliers; v, is
the dry-adiabatic temperature gradient; + is the temperature gradient of the
standard atmosphere T = T'(p). Here the domain G is associated with the
grid domain G*. We consider the following quality functional from [2, 9]:

1 - o - =
Jo= D) Z (L9 - ¢§'? Lo gp‘.é)Ds' (2'2)
k

It determines the measure of deviation of the solution obtained by model
(2.1) and is interpolated at the measurement points from the actual data
given by the vector 5’§ of dimensionality N at the corresponding instant ¢j.
Here L is an interpolation operator, and the inner product is considered with
a weight matrix Dg that determines the extent to which the data is reliable.
Thus, we consider the problem of minimizing the quality functional Jo in
the class of vector functions &’ that satisfy the system of equations (2.1).
We seek for a minimum with respect to the parameter vector YA, If we
eliminate fractional steps in the component-wise splitting method for (2.1)
and employ the Lagrange method of multipliers, we obtain the functional
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n
J = (AMYR 1) — F1 F)on + Jp.
Jj=1
If we take the variation of this functional with respect to the parameter
vector, we obtain the expression for the gradient where the vector functions
@’ satisfy the following adjoint system of equations:

Ah*(}’}h’é‘j)éj* _ §j+1*+DGL:(L§j _é'g) _I__F’j =0, d‘;"n+1t =0.

Here the operator Dg is determined by the concrete form of the weight
matrix and the space-time location of the measurement points. The vec-
tor function FY is defined by the variations of the nonlinear terms in the
operators fih(f"h,sfj) and is calculated explicitly. Hence, to minimize the
functional Jo, we can construct the iterative process by the formula

GO (m+1) _ §o(m) _ K™, J (™), (2.3)

where m is the iteration number, and x(™) is an iterative parameter. The
iterative process (2.3) is repeated until it converges. We would like to point
out some main properties of the above algorithm for data assimilation. Since
the restrictions represented by the system of equations (2.1) of the model
considered are nonlinear, the solution to the problem of minimizing func-
tional (2.2) is not unique in the general case. This depends on the character,
completeness, and location of the measurement data as well as on the con-
crete hydrometeorological situation, whose structure is reconstructed in the
assimilation process. Since we employ the method of gradient descent (2.3)
for the solution of the problem of minimizing the quality functional, it is ob-
vious that in the general case the solution depends on the choice of the initial
value of the parameter vector Y* = 5h|¢._.g. One of the main properties of
the data assimilation algorithm considered is that we obtain consistent fields
of hydrometeorological factors, which are filtered relative to the numerical
model, the agreement of the numerical model itself with actual data being
checked simultaneously. Thus, having solved the data assimilation problem,
we have a complex of space-time hydrometeorological fields on the regular
grid. As a result of this procedure, we obtain realizations of the random
hydrometeorological field §{n)» Which are mutually consistent relative to the
mathematical model and in which the nonphysical fluctuations are filtered,
but the field structure at the observation stations is distorted slightly.

3. Numerical experiments

The results of numerical experiments on optimization of the covariance ma-
trices of vertical profiles of the temperature and “reduced” geopotential
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The results of numerical experiments on optimization of the covari-
ance matrices of temperature and “reduced” geopotential taking
into account the equation of statics

“Reduced” geopotential Temperature

Real correlation matrices
1.00 0.69 0.67 0.56 1.00 0.76 044 -049
0.69 1.00 0.89 0.85 0.76 1.00 0.53 -0.56
0.67 0.89 1.00 0.90 0.44 0.53 1.00 -0.02
0.56 0.85 0.90 1.00 |-0.49 -0.56 -0.02 1.00

Optimization of covariance matrices
taking into account the equation of statics
1.00 0.84 0.75 0.55 1.00 0.59 0.44 -0.37
0.84 1.00 0.91 0.66 0.59 1.00 0.53 —0.42
0.75 0.91 1.00 0.83 0.44 0.53 1.00 -0.06
0.55 066 0.83 1.00 |-0.37 -042 -0.06 1.00

taking into account the equation of statics are presented in the table. The
correlation matrices of the geopotential reduced to a level of 850 mb in the
table correspond to standard levels of 700, 500, 300, and 200 mb. Since
* the mutual covariance matrices are determined by the last tw® equations of
(1.4) together with the corresponding matrices from this table, we do not
present them. One can see from the table that the initial real covariance
matrices have significant changes after their mutual adjustment with respect
to the finite difference analog of the equation of statics with the help of the
optimization procedure, although they are in the admissible interval of val-
ues [10]. This is probably explained by the fact that the equation of statics
is satisfied approximately in real atmosphere, by errors of its approximation,
and by inaccurate specification of the covariance matrices. Similar correla-
tion changes after statistical adjustment procedures are presented in [8] for
the fields of temperature, pressure, and density.

In order to carry out test calculations to adjust the hydrometeorologi-
cal and probabilistic models, we used the realizations of the time sequence
of discrete three-dimensional random fields at nodes of the regular grid on
eight isobaric surfaces, assuming that the field is distributed normally. The
general correlation matrix R(,) of the field considered on the interval of
one day with step At = 1 h and with space resolution over the horizontal
Az = Ay = 300 km with the number of nodes 20 and 24 along the coordi-
nates z and y is given as the direct product of the correlation matrices in
the corresponding directions and in time. The vertical cross-correlations at
different levels p are characteristic of the North hemisphere and represented
as the 8 x 8 correlation matrix taken from [11]. The horizontal correlation
matrices are taken to be identical at each level under the assumption that
the horizontal field sections are isotropic [10, 11, 2].
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We calculated the spectrum of the correlation matrix R(,). Note that
the eigenvalues decrease rapidly enough. In order to estimate the necessary
number of the main components for representing any vector of the simulated
random process () With a given accuracy, we calculated the ratio of the
sum of the minimum eigenvalues to the sum of the maximum eigenvalues
of the correlation matrix Ry, (see [12]). In this case, it turns out that it
is sufficient to have 100 main components to achieve an accuracy of 30 per
cent.

In accordance with the above structure, we constructed an ensemble of
the Gaussian temperature fields by using the above procedure. In these
calculations, we realize the simplified modeling procedure (1.1). With al-
lowance for the specific character of the correlation matrix R(y,), this pro-
cedure reduces to a successive use of similar scalar_procedures. We used a
sample of 166 realizations of the space-time field () in the test calcula-
tion. After the process of variational assimilation of these realizations, we
performed calculations with a 10-level numerical model (2.1). The main iso-
baric levels considered were p = 1000, 850, 700, 500, 400, 300, 250, 200, 150,
and 100 mb. We obtained an ensemble of new field realizations. Besides
the temperature field, it also includes the corresponding fields of velocity,
pressure, and ground geopotential. The mean relative assimilation error is
about 30 per cent over the entire ensemble.

Using the ensemble of consistent fields, we calculated a 166 x 166 sam-
pling correlation matrix for the temperature field. For the sequence of the
main submatrices of this matrix we calculated the corresponding sequences
of eigenvalues. They converge rapidly enough and, in the limit, they are
close to the eigenvalues of the initial matrix. This indirectly points to the
convergence of the sampling correlation matrices and their asymptotic close-
ness to the initial matrix.

We also calculated the function of the vertical temperature correlations
with averaging over time and horizontal space coordinates. This function
is given in Figure la. It is seen from this figure that after variational as-
similation the character of the correlations is in good agreement with the
initial correlations given in the same figure. The corresponding correlation
function of the vertical geopotential profiles are presented in Figure 1b.

In Figures 2a and 2b, variances of the vertical profiles of the temperature
and “reduced” geopotential are presented.

Notice that increase of the sample size up to 260 realizations does not
change essentially the estimates of the sampling covariance matrices. Note
also that in our case the result of optimization of the covariance matrices
from Section 1 of this paper was more similar to the corresponding matrices
obtained with the help of variational assimilation of the realization ensemble
then to the corresponding real matrix. Besides, if we use procedure for op-
timization of covariance matrices described in Section 1, which is calculated



52 A.V. Protasov, V.A. Ogorodnikov

F P — e, -
s...__:_—r-"%j;’z:{//‘,?" e
500, ao00{~ r',f:(/’,}'n’:)“;/r’ e
;St-‘-’/@/;’_/ f -w-;f»«,/ ’
iy - ~ P
800 KA 7/;-"";4 - .}/
o T00ER" 7 A L T ;
!’( - ’_’/'.6'5, ’ .
4 I vl - Ay
700 >, (),'./ Py . _,c_?
aoo.far/Jy el L
6004 R w7 P 4
. el rd J' ’
5001 5001 d.fq,,é' YR
o : ; St S 1
v ’ R
400 ’ y vy
00 4004 a4 .'//f
J AN /
3004 / ";/',0? &t
300/ T eI et g
2004 ; '_—.’ .fl '/ e ¢ s
. L /“J R 'rI.’ .
T s A . !
100 : . ; v T . 200 . T L
100 200 300 400 500 600 700 80C 900 p 200 300 400 5{;0 600 700
a

Figure 1. The correlation function of the vertical profiles for the temperature (a)
and geopotential (b) fields: solid lines — the correlation function after variational
assimilation; dashed lines — the real correlation function [11]
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Figure 2. The variances of the vertical profiles for the temperature (a) and “re-
duced” geopotential (b): solid line is the real variances, dashed line is the variances
after variational assimilation, and dotted line is optimization of the real variances

with the help of the variational assimilation method with the approximation
of the equation of statics applied in the hydrothermodynamic model, then
this procedure conserves these matrices. In this case, the operator B is re-
constructed by the second formula of (1.4) with a high degree of accuracy. It
follows directly from the general formulation of the variational assimilation
problem.

Another important characteristic of the obtained realization ensemble is
the correlation structure of the velocity fields in the horizontal section. For
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Figure 3. The correlation coefficient fields for the zonal (daahed lines) and merid-
ional (solid lines) wind components: the left graph is the result of the stochastic
modeling; the right graph was taken from [7)

Figure 4. The correlation coefficient
fields for temperature at the level p =
850 mb: solid lines — the correlation
coefficient field after variational assim-
ilation for ¢ = 0 hour; dashed lines
with the short touches - the correla-
tion coefficient field after variational
assimilation for ¢ = 15 hour; dashed
lines with the long touches — the cor-
relation coefficient field of the initial
stochastic field for t = 0 hour

this purpose we present the contours graph of the correlation function for the
horizontal wind velocity components at the level p = 500 mb, in comparison
with the corresponding sample estimate from [7] calculated with the help of
real data. It is seen from this graph that the correlation function contours
calculated with the help of the model are in good agreement with the results
calculated by using real data (Figure 3).

For the illustration of properties of homogeneous and isotropy the isolines
of the horizontal correlation function of the temperature fields at the level
850 mb are presented (Figure 4).

Note in conclusion that we consider this paper as a preliminary step for
the construction of a numerical atmospheric climatic model. We consider



54 A.V. Protasov, V.A. Ogorodnikov

this model as an ensemble of possible realizations of random fields with the
given covariance structure [5, 6] and satisfying the system of hydrothermo-
dynamic equations.
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