
Bull. Nov.Comp.Center, Comp.Science, 14 (2001), 65{77c 2001 NCC PublisherA method for learning of �rst-ordercellular neural networks�Sergey G. PudovIn this paper, the �rst-order Cellular Neural Networks (CNN) with homoge-neous weight structure are investigated and an approach to learn them is suggested.It is shown that all CNN weight templates are classi�ed according to properties ofpossible stable states. As the result, the proposed learning method is based on theideas of Perceptron learning rule. It allows to �nd parameters of a CNN connec-tion template which provides the formation of patterns with preset properties. Themethod was applied to the 1D and the 2D CNN learning with symmetric templatesand was veri�ed by simulation.1. IntroductionCNN were introduced in [1] and investigated as a �ne-grained parallel modelof computation for simulation of nonlinear phenomena both by means of con-ventional and special purpose CNN processor [2]. CNN can be viewed as ahybrid of Cellular Automaton (CA) and Arti�cial Neural Network (ANN).Like CA it consists of a huge number of simple processing elements (cells),usually placed in the nodes of an orthogonal or hexagonal grid, each cellbeing connected to a set of nearest neighbors. Like in the ANN's the con-nections are weighted, and each cell computes its output as a nonlinearfunction of its internal state, which is updated depending on the sum ofweighted outputs of its neighbors. The evolution of a CNN is representedby a cell equation given either in the form of partial di�erential equationof reaction-di�usion type, or in its �nite-di�erence form, when all cells cal-culate their next states in parallel, i.e., iteratively and synchronously. Thecomputation starts when all cells are set in an initial state, and stops ata stable state, when no cells change their output states any more. Such astate represents a pattern in the form of the set of output cell states.Investigation of stable states in CNN is motivated by the possibilityto simulate and to study the processes of dissipative structures arising inactive media in physics, chemistry, biology. In [3], the instances of CNN aregiven which form the patterns like those which occur in nature in the formof the markings on animals, marine life, insects, etc. The basic direction of�Supported by the Russian Foundation for Basic Research under Grant 00-01-00026and partially under Grant of Federal Program \Integration" ü 274.



66 S.G. Pudovcurrent CNN investigation is obtaining patterns formed by a given CNN andstudying their properties relative to its template parameters. Particularly, in[4] the pattern formation by one- and two-dimensional CNNs is investigated,and their properties are studied for various connection templates for initialcell states randomly taken closely to zero. In some cases, the features offormed patterns were completely described, for example, for one-dimensionalCNN with simplest connection template consisting of three neighbors, andfor mosaic patterns in two-dimensional case with connection template called\square cross". In the latter case, the properties of CNN stable states aredetermined in the form of possible cell neighborhood states. For connectiontemplates of larger size this problem has not been solved in the same way.Here an attempt is made to �nd a method to solve the following task:given a pattern which is to be a CNN stable state { the template parametersof the CNN should be found. This task may not have analytical solution,so, like in all neural systems a learning method is the most appropriate.Because of the similarity of the CNN learning task to that of Cellular NeuralAssociative Memory (CNAM), the approach suggested in [5] and based onperceptron learning rule is used. This method was chosen according to theresults of comparative analysis of the existing methods of CNAM learningand synthesis because it results in CNAM with the best capabilities to storeinformation [6].In this paper, autonomous CNN are considered, where next cell state de-pends on weighted sum of it neighbor's output state only. In Section 2 theformal model presentation and problem de�nition are given. In Section 3,features of possible stable states in the 1D and the 2D CNN are presented.Next, in Section 4, the main idea of learning approach and formal presen-tation of learning method are discussed. In Section 5, some experimentalresults for the 1D and the 2D CNN are given.2. Formal problem de�nitionNotions in this paper are based on those suggested in [7]. We suppose thatCNN consists of N cells which are enumerated in some way, for example,from 1 to N , i.e., each cell has a unique identi�er or, in other words, a name.This numeration seems to be the most universal because it is applicableto two- and tree-dimensional CNN not only with orthogonal greed. As itwas mentioned above, each cell in a CNN has weighted connections to itsneighbors. Connection structure in a CNN is characterized by a connectiontemplate T , which for each cell i consists of the set of its neighbor names,i.e., T (i) = fj1; : : : ; jqg, where q is the cardinality of the cell neighborhood.It can be noted that we study CNN with spatially homogeneous connectionstructure, where the relative positions of cell neighbors are one and the same



A method for learning of �rst-order cellular neural networks 67for all cells. A real number ak denotes the weight value of the connectionbetween a cell named i and its neighbor jk 2 T (i), the set of all neighborsweights forms a weight template A = fa1; : : : ; aqg. Here we consider onlyspace invariant templates that are symmetric. It is known [1] that in thiscase the CNN is stable, i.e., it always comes to a stable state. For each cellthe set of its neighbors states forms a neighborhood state Xi = fx1; : : : ; xqg,where xk is the state of the neighbor jk of the cell i. In this paper, withoutloss of generality we suppose that the �rst neighbor of the cell i correspondsto the cell itself, i.e., x1 denotes the state of the central cell i. The outputstate yi of the cell i is a nonlinear function from the state xi, i.e., yi = f(xi).In this work, we use the following piece-wise function:f(x) = 12(jx+ 1j � jx� 1j): (1)Thus, the cell output state is always bounded: jyij � 1. A cell i with�1 � xi � 1 is called a linear cell and is represented by a gray square ora gray pixel in the �gures. Otherwise it is called a saturated cell and isrepresented by a black square if yi = 1 or a white one if yi = �1. FurtherYi = f(Xi) denotes the neighborhood output state of the cell i. With theabove notations a weighted sum of neighbors output states can be writtenas follows: A
 Yi =Xj2T ajyj : (2)Depending of this sum the cell changes its state xi in time according to theequation, given by dxidt (t) = �xi(t) +A 
 Yi(t); (3)in a continuous CNN, or according to the following synchronous updatingrule: xi(t+ 1) = xi(t) + �(�xi(t) +A
 Yi(t)) (4)in a discrete time CNN, where � is a time discretization parameter. Compu-tation stops at a stable state, when no cell output state changes in time anymore, i.e., CNN forms a pattern which is the set of all cell's output statesfyi; i = 1; : : : ; Ng. In both models (discrete and continuous), a given stateis stable if and only if for all cells the following set of linear equalities andinequalities holds [4]: y1�Xj2T ajyj� > 0 if jx1j > 1;Xj2T ajyj = x1 if jx1j � 1: (5)



68 S.G. PudovNow we can de�ne the problem of CNN learning formally: given a pat-tern Y = fy1; : : : ; yNg { a weight template A should be found such thatconditions (5) be satis�ed. It should be noted that (5) determines a set ofstable states with one and the same property: stability conditions dependon the state of the cell neighborhood but do not depend on its place.3. Properties of stable statesIn this section, properties of stable states, generated by one- and two-dimen-sional CNN are presented. Many of these results are from [3, 4] and are usedin Section 5 for the choice of patterns which are input for CNN learning,and for veri�cation of obtained weight templates.3.1. One-dimensional CNNAt �rst, let us look at the known results for the 1D CNN with a weighttemplate A = [s; p; s]. For this case in [4] the properties of stable states arestudied for any combination of s and p, using the following parameter:� = p� 12jsj ; (6)which determines the relation between p and the maximal inuence of allneighbors (jsy2 + sy3j � 2jsj, as jy1j � 1). Depending on the value of thisparameter, three following cases are distinguished: 1) � < �1: the zerostate (xi = 0, 8 i = 1 : : :N) is the only equilibrium, and is therefore stable;2) � > 1: any bipolar sequence (jyij = 1, 8 i = 1 : : :N) corresponds to anequilibrium of the CNN; 3) j�j < 1: there is always one and only one integerB � 0, for which any value that � can take (except a set of measure zero)can be bounded: � cos �B + 2 < � < � cos �B + 1 : (7)We assume that: 1) s > 0, since s = 0 is a degenerate case, and for s < 0 theresults are easily transposed by reversing the sign of the state of every cell ofeven index; 2) the boundary conditions are either periodic or saturated cells(with jy0j = jyN+1j = 1). Then, for this CNN with j�j < 1 and N > B cells,where B is given by (7), all possible stable states can be described in thefollowing way [4, Theorem 1]: i) any linear cell belongs to a string of B linearcells surrounded by two saturated cells of opposite signs; ii) any saturatedcell is bordered by at least one saturated cell of the same sign; iii) twoconsecutive saturated cells of opposite signs are separated by a boundarystring of B linear cells.Thus, any stable pattern is a succession of black and white strings of atleast two cells long, separated by boundaries of B gray cells with B given



A method for learning of �rst-order cellular neural networks 69Figure 1. Example of time evolution of the 1D CNN consistingof 200 cells. Initial cells states are taken closely to zeroby (7). In Figure 1, the typical time evolution obtained by simulation of the1D CNN with B = 5 is presented. In the obtained pattern, all boundariesbetween black and white cells must have the same length 5.3.2. Two-dimensional CNNFor the 2D CNN with a simplest connection template of the formA = 24 0 s 0s p s0 s 0 35 (8)which is called \square cross", all possible stable states have been obtainedin [4] for mosaic patterns only, i.e., for those patterns, where the outputstate of each cell is from f�1; 0; 1g. Like in the 1D case the parameter k isintroduced which is an integer number satisfying the inequalitiesp� 1 + (k + 1)s > 0; p� 1 + ks < 0: (9)In [4], all possible mosaic neighborhood states are obtained with 8 di�erentvalues of k from �5 to 4, representing all classes of mosaic patterns of aCNN. In this paper, we are not restricted by mosaic equilibrium states, weinvestigate CNN with output cell states from [�1; 1]. Hence, to show therelation between the template parameters and formed patterns, we present adiagram obtained by simulation, where one can see the typical stable statesin the 2D CNNs with \square cross" connection template depending on thevalues of parameters p and s (Figure 2). The values p and s vary from �8 to5 and from �2:5 to 2.5, respectively. At any restricted area on the diagrama pattern corresponds to that formed by the CNN with the weight templateparameters p and s equal to the coordinates of the diagram.3.3. Three groups of weight templatesFrom (5) it follows that there are an in�nite set of weight templates whichprovide the stability of a given pattern C. It can be shown in the followingway. Let A be the template which satis�es the conditions (5) for the pattern



70 S.G. Pudov
Figure 2. Diagram of possible stable states in the 2D CNN with \squarecross" connection template. It consists of 400 by 500 cells, the values p ands vary from �8 to 5 and from �2:5 to 2.5 respectively. Initial cell stateshave been taken as random values closely to zeroC with a central cell c1. If we multiply A by a constant b > 0, then theseconditions may not hold for all cells. Particularly, for a linear cell i its statec1 6= b(A
 Ci) = bc1 when b 6= 1: (10)In order to satisfy (10) it is enough to add the value (1� b) to the selfcon-nection weight in bA (the obtained template is further denoted as A(b)):(A(b)
 Ci) = bc1 + (1� b)c1 = c1: (11)It is easy to show that the template A(b), b > 0 satis�es (5) for all saturatedcells. Moreover, the selfconnection weight value in it is calculated by thefollowing formula: p(b) = pb + (1 � b) = 1 + b(p � 1). As b > 0, then ifthe value p in A is greater than 1, then p(b) can have any value above the1 and vice versa, if p < 1, then p(b) < 1. Consequently, we have only threedi�erent groups of weight templates: 1) with p < 1; 2) with p > 1; and3) with p = 1.This result is useful for investigation of stable states in homogeneousCNN because it reduces the amount of independent weight parameters.



A method for learning of �rst-order cellular neural networks 714. CNN learning4.1. CNN learning approachThe proposed approach to CNN learning is based on the cellular modi�-cation of Perceptron Learning Rule (PLR) [8], which has been applied toCellular Neural Associative Memory (CNAM) with bipolar stable states.This method was chosen for CNN learning because it is local, it guaranteesthe individual stability of prototypes, and, besides, the number L of storedpatterns can be greater than the number q of cell connections. Moreover, allthe existing methods of CNAM learning have been investigated and com-pared [6]. One of the main results is that the learning methods based on theperceptron learning rule result in CNAM with the best capabilities to storeinformation. In order to modify CNAM learning method to that of CNN,the following should be done:� At �rst, we de�ne the set of prototypes for learning a weight templatein homogeneous structure.� After that, the PLR is modi�ed for gray-scale prototypes.At �rst, it is assumed that we have only one pattern C which is to bea stable state in CNN, and this pattern can be formed by a CNN with theconnection template T of known size. The problem is to �nd the set ofprototypes such that after learning process termination the obtained weighttemplate A should satisfy the stability conditions (5) which are to be metfor all cells. It is obvious, that we should use as prototypes, denoted asCi, i = 1; : : : ; N , the set of neighborhood states of all cells (with the sizeof T ) in the pattern C. Without loss of generality we suppose that the �rst Lneighborhood states are pairwise di�erent, and each one from the otherN�Lstates is equal to one of them. So, it is enough to use C1; : : : ; CL instead ofall N prototypes. In Figure 3, the example of pairwise di�erent prototypeset in the 1D CNN is presented for the connection template consisting ofthree cells.a)Figure 3. The example of pairwise di�erent prototypes (b)in the 1D CNN (a) for connection template consisting of threecells b)Now we can present the algorithm of CNN learning. Let C be the pat-tern, which is to be stable in CNN. The problem to �nd the weight templateA satisfying the conditions (5) may be solved as follows:



72 S.G. PudovStep 1. Choose the simplest initial connection template T .Step 2. Extract a set of prototypes C1; : : : ; CL with the size of T from thepattern C.Step 3. Apply the algorithm from Section 4.2 for learning the weight tem-plate A.Step 4. If learning process does not terminate, then increase the size ofconnection template, and go to Step 2.4.2. PLR for gray-scale prototypesAt last we present PLR for learning a weight template A using gray-scalepatterns. If a central cell c1 in a prototype Ci is saturated then to obtain(5) we should provide c1(A 
 Ci) > 1, which can be done with PLR byanalogy to bipolar patterns. The case when the central cell is linear is morecomplicated. It is obvious that after �nite number of learning iterationswe cannot obtain the exact equality A 
 Ci = c1, for example, due todigital arithmetic inaccuracy. So, we should provide it approximately, i.e.,jA 
 Ci � c1j < " for a small value " > 0. For this we can use PLR withcoe�cients [8], where instead of ct1Cti , the vector msct1Cti is added to At; thecoe�cients ms, s = 1; 2; : : : , being chosen in the following way: 0 < ms < 1,ms+1 � ms, ms ! 0 with s ! 1 (in order to make the modi�cation ofweight template more and more exact).Now we can present the formal description of PLR for gray-scale proto-types. Let C1; : : : ; CL be the prototypes obtained in Step 2 from Section 4.1.As in the standard PLR, an in�nite sequence obtained by their recycling isorganized, and a through numbering is introduced, ct1 denotes the central cellfor a prototype Ct; initial value of A0 is chosen arbitrarily. After that, theweight template is updated according to the following iterative procedure,where " > 0 is the required accuracy, s is a number of the macroiteration,ms is a learning coe�cient:8>>>>>>>>>><>>>>>>>>>>: case jct1j = 1 :At+1 = At if ct1(A
 Ct) > 1;At+1 = At �msct1Ct otherwise;case jct1j < 1 :At+1 = At if jA
 Ct � ct1j < ";At+1 = At �msCt if A
 Ct < ct1;At+1 = At 	msCt if A
 Ct > ct1; (12)where Ati � ct1Cti is the sum of two vectors, but the �rst weight in Ati isnot changed, i.e., at+1j = atj + ctictj ; 8 j = 2; : : : ; q; 	 is de�ned by analogyto �. Calculation stops if the weight template does not change during one



A method for learning of �rst-order cellular neural networks 73macroiteration (it is the learning period during which L prototypes are inputto the CNN).Note, that the learning coe�cient is one and the same during eachmacroiteration s, and Psms = 1 (for example, ms = 1=s), because oth-erwise (if Psms = G1 < 1) all possible weight templates A� obtained bythis algorithm would lie near to the initial A0, i.e., kA��A0k < G for somevalue of G > 0:kA� � A0k � � 1Xs=1ms�� LXt=1 kCtk� � G1� LXt=1 kCtk� < G; (13)where k � k is the norm of a vector.4.3. Special features of the weight template learning1. The main feature of using PLR is as follows: the weight p of the centralcell (it is also called the selfconnection weight) does not change during thelearning process. It means that, for example, in the 1D CNN with a con-nection template consisting of three cells we �x the sign of a parameter �for the obtained weight template, or in the 2D CNN with a \square cross"connection template we �x a vertical line on the diagram in Figure 2. Itfollows that because we do not know in advance what value of p is neededfor the formation of the given pattern C, we should perform several learningprocesses for one set of prototypes but with di�erent values of the selfcon-nection weight. Because all weight templates are divided into three groups(Section 3.3), we should perform three learning processes for one set of pro-totypes but di�erent values of selfconnection weight (less, greater, and equalto 1).2. If the amount of prototypes is very large then the learning process cantake too much time. Sometimes it is possible to reduce the number ofprototypes su�ciently (consequently, accelerate the learning) by analyzingthe prototypes with a gray central cell: they should satisfy the followingsystem of equalities Xj2T ajcj = c1 if jc1j � 1: (14)Let Ci = (c1; : : : ; cq) be the prototype used for weight template learning, andjc1j < 1 is its central cell. It is assumed that the amount of such prototypes,which can be considered as elements of a vector space with the dimensionq, is equal to M > q. It is obvious that there exist not more than q linearlyindependent ones among them (let them be numerated from 1 to q1 � q),and all others are their linear combinations, i.e.,



74 S.G. PudovCk = q1Xj=1Cj�j where k > q1: (15)Then, instead of M prototypes with a gray central cell it is enough touse only q1 ones, becauseA 
 Ck = A 
 � q1Xj=1Cj�j� = q1Xj=1 cj�j = ck: (16)3. First experiments of CNN learning showed that the obtained weight tem-plate A� is non-symmetric in more than a half of the experiments. This isnot consistent with the model under investigation, because a CNN withnon-symmetric weight template may not come to a stable state. So, it wasdecided to perform the symmetrization of the weight template during thelearning process, particularly after each macroiteration. It is obvious thatit does not inuence the termination of the learning process. For example,in the 1D CNN with a connection template consisting of three cells, aftereach macroiteration the weights s1 and s2 in weight template A = [s1; p; s2]are replaced by s = (s1 + s2)=2.It can be noted that sometimes CNN with a non-symmetric weight tem-plate may also come to a stable state. In [9], the su�cient conditions fornon-autonomous CNNs with non-symmetric weight templates are found, un-der which they come to the single stable state independently of the initialconditions. In our case of autonomous CNN, this stable state can only bezero, because otherwise there exist at least two stable states which di�er inthe sign of cell states only. So, this case is out of our interest, therefore theobtained weight template must be symmetric.5. Simulation results5.1. The goal of the experimentsAll experiments are made using the system WinALT [10], specially devel-oped for �ne-grained structures simulation. The goal of simulation is toapply the learning procedure for obtaining weight template A�, using as aninput a stable state obtained by a known CNN with connection template A,and to compare the result with it. All experiments are performed by oneand the same scheme.Step 1. Using the CNN with a present weight template A a stable stateC is obtained for the initial cell states randomly taken closely tozero.



A method for learning of �rst-order cellular neural networks 75Step 2. The size of the connection template T equal to that used in Step 1for obtaining the stable state is chosen. From the pattern C allpairwise di�erent prototypes C1; : : : ; CL are extracted.Step 3. The weight template A� is learned according to the proposed algo-rithm with symmetrization, using the set of prototypes from theprevious step.Step 4. After that, the obtained weight template is compared with theinitial one A and is applied to the pattern C, which should notchanged.5.2. Simulation results for 1D CNNHere we present the results of some experiments for one-dimensional circularCNN (N = 50 cells) with the weight template A3 consisting of three cells.At Step 1, a stable state is obtained with a boundary of B gray cells, B varyfrom 1 to 5 with s both greater and less than zero. In Table 1, the basicsimulation parameters and results are shown: the parameter � of the initialweight template A, the learning time t in macroiterations, the obtainedvalues for coe�cient s� from the obtained weight template A� = [s�; 0; s�],and the obtained parameter ��; the accuracy of learning " is equal to 10�4.It should be noted, that the initial weight template A has the weight p < 1whereas in obtained template it is equal to zero.Table 1. Experimental results for 1D CNN with weight template A3B � s� t �� � s� t ��1 �0:3(6) 1:25 4 �0:4 �0:3(6) �1:5 2 �0:(3)2 �0:55 0:90917 1491 �0:5499 �0:55 �0:90913 3314 �0:54993 �0:75 0:66662 3059 �0:7500 �0:75 �0:66670 456 �0:74994 �0:82 0:60977 501 �0:8199 �0:82 �0:60974 948 �0:82005 �0:88 0:56814 339 �0:8800 �0:88 �0:56820 1293 �0:8799Main results of this experiment can be formulated as follows. For theinitial and obtained weight templates the parameters � and �� determinestable states with the same properties, conditioned by the value of B. More-over, if B > 1 then the obtained value �� coincides with the initial �. It canbe explained by the fact that for B > 1 the value of � determines not onlythe width of gray cells but also their states.5.3. Simulation results for 2D CNNFor the 2D CNNs the experiments are similar to that of the 1D CNNs.We study the CNN, consisting of (N = 50 � 50 cells) with the \square-cross" weight template A5. At Step 1, a stable state is obtained for di�erent



76 S.G. Pudovvalues of the parameter k, which vary from 0 to 3 (in all experiments weare interested in patterns with gray cells) with s both greater and less thanzero. In the table the basic simulation parameters and results are shown:the parameter k and the parameters s and p of the initial weight template A,learning time t in macroiterations, the obtained values for the coe�cient s�(the value of selfconnection is chosen equal to zero); the accuracy of learning" is equal to 10�4.From Table 2 one can see that for k � 1 the obtained weight templatecoincide with the initial one in correspondence with part 1 of Section 4.4.Table 2. Experimental results for2D CNN with weight template A5k s p s� t0 1:1 0 1:25 20 2:1 0 1:25 20 6:1 0 2:00 21 0:7 0 0:7 100001 2:0 �2 0:667 502 1:2 �2 0:4 1083 0:9 �2 0:299 81
For example, if in initial weight tem-plate A the selfconnection weightp is equal to �2 and in the ob-tained A� = A(b) the selfconnec-tion weight is taken equal to zero(p� = 0), then from (11) the valueb should be equal to 1=3, because0 = p(b) = 1 + b(p� 1) = 1� 3b. Itis easy to see that the obtained pa-rameter s� is equal to a third fromthe initial s, so A� = A(1=3).6. ConclusionIn this paper, the approach to homogeneous CNN learning with gray-scalestates is suggested. It is based on the PLR with scale coe�cients, whichallows to use gray-scale patterns. It is shown by simulation for the 1D andthe 2D CNN that using this approach we can �nd a weight template ofCNN which has a given stable state. The application of learning approachto patterns obtained by numerical simulation of PDE is under investigationnow.References[1] Chua L.O., Yang L. Cellular neural networks: theory and application // IEEETrans. Circuits and Systems. { 1988. { Vol. CAS-35. { P. 1257{1290.[2] Roska T., Chua L.O. The CNN universal machine: an analogic array com-puter // IEEE Trans. on Circuits and Systems. Part II. { 1993. { Vol. 40. {P. 163{173.[3] Chua L.O. CNN: a Paradigm for Complexity / Series on Nonlinear Science. {World Scienti�c, 1998. { Vol. 31.
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