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Limiting capability of cellular-neural
associative memory

S. Pudov

The problem of achieving Cellular-Neural Associative Memory (CNAM) limit-
ing capability is considered. At first a CNAM learning method based on the idea
of Perceptron Learning Rule which provides maximal ability to restore distorted
Patterns is suggested. Next, expressions for determining self-connection weight val-
ues which increase attractivity and decrease the number of oscillation states are
obtained. Finally, influence of neuron threshold on basic characteristics of CNAM
is investigated. It is shown that CNAM is capable to store more than 2¢ patterns
where ¢ is the cardinality of neuron neighborhood.

1. Introduction

Cellular-neural associative memory is the associative memory by Hopfield
[1] with connection structure like that of cellular automaton. Restriction of
connection number greatly simplifies implementation of CNAM but it ac-
cordingly decreases storing and retrieving capability of such network. There
are only three ways of influence on CNAM characteristics when connection
structure is fixed. The first is to use an appropriate learning rule, for ex-
ample [2]. This method is very complex since it requires singular matrix
decomposition. The second is to correct neurons self-connection weights [3]
which for some learning rule improves network capability to restore distor-
tions. The third is to define a threshold value for each neuron - it can be
equal to zero or not. It can be noticed that at first each of this ways does
not exclude the use of others. Secondly, the first two ways have been studied
more than the last while non-zero threshold was chosen arbitrarily in most
cases depending on learning rule used.

In this paper the results of investigation of capabilities of cellular-neural
assoclative memory are presented. After CNAM formal model presentation
(Section 2) and problem statement (Section 3) a CNAM learning method
based on the idea of Perceptron learning rule [4] is suggested in
Subsection 4.1. It increases the network capability to restore stored pat-
tern (pmtotype) distortions. This method inherits such properties as sim-
ple realization and guarantees the prototype’s individual stability. Next,
an algorithm for neuron self-connection weights calculation is suggested in
Subsection 4.2. It can be used for already learned CNAM and provides ac-
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celeration of convergence time, reduction of oscillations, and improvement
of the ability to restore distortions. Finally (Subsection 4.3), the results
obtained from investigation and comparison of properties of two CNAM
models: with zero and non-zero threshold respectively, are described. Main
accent was made on local properties of a neuron but not on a global network
behavior.

2. Formal model representation

Let us describe the associative memory model with the help of cellular-neural
network formalisms [5]. Following accepted notions CNAM is defined by a
set: N = (C,W,®), where C is a rectangular m X n array consisting of
cells (or neurons) with the states ¢;; € {-1,1}; W = {W,;} is a set of
weight vectors of the form Wi = (wy,.. ., Wy), w denotes a real number
characterizing the connection between the neuron with the coordinates (1, 5)
and its k-th neighbor; @ is the CNAM functioning rule.

For each neuron (i, 5) a set of other neurons, which communicate with it,
forms its neighborhood consisting of q pairwise different neighbors without
itself. The states of any neuron (4,7) neighbors are represented as a state
neighborhood vector Cj; = (ey,...,¢,). Further, a vector D;; = ¢;;Cij =
(dy,...,dy) called normalized state neighborhood (normalized neighborhood
for short) of neuron (4, ) will be also used. Both vectors Ci; and W;; have
¢ components each with their numeration in agreement (w; is a connection
weight with the i-th neighbor), therefore their scalar product can be defined
as (Cyj, Wij) = 35, qquy.

The rule & of CNAM operation is described by a following iterative
procedure:

Procedure. Let C(t) be an array after t-th iteration, Cy; and W;; are
neighbor states and weight vector of a neuron (¢,7), respectively. Then:

Step 1. Each neuron in C(t) computes the following function:

1 if gi; >0,

~1 otherwise,

f(Ci,Wij) = {

and its result becomes the state of this neuron (4,7) at the iteration
t+ 1.

Step 2. If C(t+1) = C(t) then C(t) = ®(C(0)) is the result of calculations
which corresponds to a stable state of CNAM.

Two models of CNAM to be investigated differ in the function gi; only,
which in general looks like 9i; = (Wi, Cy5) + B;;, where B;; is referred
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to as bias. In the neuron model called Model 1, Bij = 0. In the other
model called Model 2, B;; is non-zero. For uniformity, B;; is replaced by a
fictitious neighbor with the state equal always to +1, the connection between
neuron (i, ) and this neighbor having the weight equal to w;j = Bj;. So,
in this way Model 2 is restricted to Model 1 with g+ 1 neighbors (without
bias!).

3. Problem definition

Since it was shown how using fictitious neighbor, Model 2 can be viewed as
the Model 1, then without loss of generality further only neurons without
bias will be considered. It is also suggested that CNAM connection structure
and initial set of prototypes P°, ... PL-1 are fixed. Ideally, the synthesis of
CNAM (it consists of neuron models choosing, memory learning, and self-
connection weights correction) should provide the following characteristics:

(1) Individual stability, i.e., each prototype should be a stable state of
CNAM (®(P¥) = PK),

(2) Attractivity, i.e., for each prototype PX the basin of attraction (all
patterns retrieved by network as PX) should be maximal.

(3) Minimum of oscillations, i.e., the number of final network states like
this: ...,C,C?%,CL, C?,... (it is a cycle consisting of two patterns C!
and C?) should be as small as possible.

From this requirements the problem was defined as follows: how can
maximal CNAM attractivity be obtained ? Also an additional question ap-
pears: how many prototypes can be stored in CNAM with predefined neu-
ron neighborhood ? The first question demanded considerable theoretical
investigations is described further in this paper. The second question can
be reduced to the following one: how many linear separable prototypes [6]
exist for a chosen CNAM ? The answer was found by simulation of learn-
ing process. Prototype set contained images of symbols from English and
Russian alphabets and arabic numbers drawn in thin lines (1 pixel width).
Simulations showed that CNAM can store more than 50 prototypes when
cardinality of neuron neighborhood is equal to 24. In this case the relation
(number of prototypes) / (number of neighbors) can be more than 2, but
this network has relatively small attractivity. Particularly, the following ex-
periment was made for CNAM consisting of 20 x 20 = 400 neurons: for
each prototype 400 patterns differing from it in one neuron state were in-
" put in turn into CNAM for retrieving. The original prototype was correctly
retrieved in 60-70% cases only, i.e., distortion of one neuron state leads
retrieval process out of initial prototype in 30% cases.
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So, one more question was added to two previously put: how many pro-
totypes can be stored in CNAM so that it ability to restore 1-distortions can
be guaranteed ? Here the word “1-distortion” means a pattern differing from
the appropriate prototype in not more than one cell state at each neuron
neighborhood. It can be noticed that this two patterns can differ in states
of N/q cells. In this case the number of distortions can be sufficiently large
but they are to be placed uniformly in such way that each neuron has one
distortion in its neighborhood only. The answer on this question was found
also by simulation of CNAM storing the set of patterns mentioned above.
For CNAM in which each neuron has 24 neighbors the following result was
obtained: such a network is capable to correct all 1-distortions when there
are 10-12 prototypes stored in it, i.e., the relation L/q is approximately
equal to 1/2. In this experiment the method of learning and the algorithm
for self-connection weight calculation given in the next section was used.

4. Learning of CNAM

4.1. Method of learning. Since the connection structure is fixed, the only
way to provide the required CNAM characteristics is to determine connec-
tion weights between neurons. It concerns also two particular weights: a self-
connection and a bias one. As compared with correction of self-connection
weight or choosing neuron model, a method of CNAM learning maximally
influences the network characteristics because it defines almost all neuron
connection weights. So, the properties of learning method have a great sig-
nificance, and besides one more requirements is added to those mentioned
above:

(4) The method of learning should be cellular-neural: we require that the
learning procedure is performed by the CNAM itself, i. e., there should
be no global interactions during the learning process.

From the four requirements mentioned above the perceptron learning
rule satisfies two of them: 1 and 4, so it was chosen as basis for the new
method to be elaborated. Satisfaction of requirement 2, i.e., increasing
attractivity, was the main problem. It was solved in the following way. As
it is known (7] the greater the values

m{;' =(D ;I; ) mj)s
in learned CNAM, the better is network correction of prototype distortion.
From perceptron learning rule [4] one can see that it guarantees mff- >0
V(i,j) € M,VK =0,...,L — 1 in the case of learning process termination,
i.e., when the prototypes are individually stable [4]. During learning by this
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method the value m{f is compared with zero; that is enough for ensuring
individual stability of prototypes.

The idea of new learning method is to compare mff- not with zero. but
with some positive value ;. In this case if learning process terminates then
all m{f are greater than «;;, and a certain level of attractivity is guaranteed.
The problem of choosing such an a;; which provides the ability to restore
distorted patterns as large as possible is solved in [8]. It can be noticed that
the complexity of the method increases a little as compared with perceptron
learning rule: each neuron computes two more values than earlier.

Simulations show that the suggested method ensures good optimization
of mg when a number of learning iteration is 2-3 times more than for
perceptron learning rule termination.

4.2. Calculation of self-connection weights. So, the above learning
method satisfies all requirements except the third one, because like percep-
tron learning rule it does not define self-connection weights which stabilize
associative memory behavior. Therefore, the decision about self-connection
weights calculation after learning process is completed, was accepted. This
not only reduces the number of oscillations but also greatly increases the
attractivity of already learned CNAM. Simulations showed that the ability
of CNAM learned by proposed method to restore 1-distortions is increased
up to 10-20 times for the set of patterns mentioned above. The method of
self-connection weights calculation was described in details in [9, 10]; some
simulation results was published in [8].

4.3. Comparison of Model 1 with Model 2. Between the results of
investigation of neuron bias influence on main CNAM characteristics, the
following can be distinguished. At first, it was shown that the addition of
neuron bias to CNAM improves its abilities for data storing. Next, it was
obtained that Model 2 (with bias) has greater ability to restore distortions as
compared with Model 1. Finally, the learning method suggested in Subsec-
tion 4.1 was modified for learning Model 2, and its convergence was proved.
Some simulation were made for investigation of influence of neuron bias on
the ability to restore 1-distortion of stored patterns.

5. Conclusion

The problem of achieving CNAM limiting capability is solved in this paper.
A method of learning which provides maximal ability to restore distorted
patterns is suggested. Probability of improving of CNAM characteristic by
self-connection weights correction and neuron bias taking into account was
investigated. It was shown theoretically and by simulation that CNAM is
capable to store more than 2¢ patterns where q is the cardinality of neuron
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neighborhood. It is recommended that the relation L/q should be about
1/2 when ¢ = 16...25 for retrieving of 1-distortions of stored patterns.
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