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Numerical eddy-resolving model
of nonstationary penetrative convection
in the spring solar heating
of ice-covered lakes*

P.Yu. Pushistov, K.V. Ievlev

An eddy-resolving model of the penetrating turbulent convection in the ice-
covered large lakes in moderate altitudes in the spring radiation heating has been
constructed. A scheme of energy transformations in the simulated phenomenon is
described. A comparison of the calculation results with natural data is done.

1. Introduction

In the winter time, in deep ice-covered lakes of moderate altitudes, the water
temperature appears to be lower than the temperature of maximum density
(Om) and to increase with depth (stable stratification). In March-April,
the temperature of the ice-covered water layer (©) starts to gradually rise
at the expense of the volume heating of this layer by the solar radiation
penetrative through ice. As a result, a layer with unstable stratification is
formed. A free penetrating convection with coherent structures in the form
of thermals arises [1], whose intensity increases during a few weeks. The
mechanism of occurrence and the vertical thermal structures of this natu-
ral phenomenon have been well studied by experimental techniques [2-4].
The data on the spatial temporal structure of the fields of the vertical (w)
and the horizontal (u, v) velocity components, temperature deviations (f) in
thermals, statistical characteristics and energy contents of coherent struc-
tures are practically absent.

The penetrative convection under the ice-layer is not subject to the wind-
wave mixing. Thus, the convection under consideration is nearly an ideal
object for the direct numerical eddy-resolving simulation.

This paper presents the results of constructing the LES-model (Large
Eddy Simulation) of the convective boundary layer of the ice-covered lake
(the CBL-ice), as well as the energy transformation scheme in the phe-
nomenon under study. Based on comparison of the calculation results with
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natural data, a preliminary estimation of prospects of the eddy-resolving
simulation methodology for studying the fine structure and the spatial-
temporal evolution of hydrophysical fields of the CBL-ice of the lake has
been done.

2. The LES-model of convective boundary layer
of ice-covered lake

Analysis of natural data makes it possible to conclude that when simulating
the ice-covered convective boundary layer it is necessary to take into account,
at least, three types of processes of different space and time scales, which
are important in terms of the energy transformation:

a) the time-dependent (primarily, with the daily cycle) mean state;

b) convective energy-providing large eddies, explicitly reproducible as an
ensemble of coherent structures (thermals). The deterministic descrip-
tion of a convective ensemble is done on the basis of discrete high-
resolution analogies of the Navier-Stokes equations;

c) small-scale (subgrid) turbulent motions taken into account within the
Boussinesq gradient-diffusive approximation.

When constructing the LES-model of the CBL-ice, let us make use of the
splitting method of the original system of equations of the thermodynamics
of the lake [5] to two systems of equations, describing the deterministic
interconnected processes a) and b) [6].

At the first stage of constructing the LES-model of the CBL-ice, we in-
troduce a few assumptions to simplify things. Let us consider the mean
current velocity under the ice layer to be equal to U = V = 0. The Cori-
olis force in the equations of motion is not taken into account because of
the small horizontal scales of thermals. A fresh-water layer with intensive
penetrating convection, is only a few tens meters, the dependence of density
on pressure and mineralization not taken into account. And, finally, we will
consider the 2D problem instead of the 3D problem. None of the above sim-
plifying assumptions is strictly limiting in terms of the methodology used in
construction of the LES-models of the lake.

Thus, the LES model of the CBL-ice includes:

I. The equation of the temperature (6) of the main state a):
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where t is time, z is the vertical coordinate downwards, so that the value
z == ( corresponds to the lower ice edge, R(z,t) is a flux of the short-wave
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solar radiation absorbed by the sub-ice water layer, (...) = L~ [F(...) dz
is the averaging operator along the horizontal axis z, L is the size of the
averaging domain to be defined.

The boundary conditions for (1) are the following

00
0 =0°C" at = -— = =
. at 2=0, 6z7oatzH,
where H is depth of complete vanishing of convective motions, at which and
below which 4o = const > 0, and this corresponds to the stably stratified
hypolimnion.
The initial conditions were set as

=0, at t=0,

where ©,(z) is considered given at the preconvection period. :
I1. Equations describing the penetrative turbulent convection (process b):
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where 9"7 = % + u% + w%, v and p are coefficients of the vertical and
horizontal exchange due to the small-scale (subgrid) gradient-diffusive tur-
bulence (process c¢), A = a(© — ©,,). In the latter expression a = 2abg/po,
where g is acceleration due to gravity, pg is the characteristic value of degsity
in the mixing layer, the values a, b are taken from the Kharleman-Markovsky
formula [7].

The boundary conditions are the following;:

u=w=60=0 at 2=0, 3_u=w=@={') at z2=H.

8z 0z

On the left and the right boundaries the periodicity conditions are set.
The initial conditions are the following:

u=w=0=0 at t=t,

where ¢ = ¢ is the time of occurrence of the internal layer with the unstable
stratification (§2 < 0), at which small random values 8(z) for convection
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generation are introduced at t = t; + At (At is the time step). On the
interval (0 — tx), only equation (1) is integrated, in this case w@ = 0.

III. Equations for calculation of coefficients of the small- scale turbulent
exchange (b—¢ model):
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where b is the kinetic turbulence energy (KTE), € is the KTE dissipation

rate of the small-scale turbulent eddies, P, is the KTE generation rate at
" the expense of the buoyancy forces and the shear, c,, ¢, ¢3, 0 are empirical,
constants. The boundary conditions:

Oe de
=3, = 0 at z=0, b= 32_0 at z=H,

For calculation of u, the Smagorinsry relation is used:
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where o is the given parameter, Az is the mesh size along z.

3. Energy cycle of processes in the CBL-ice
model of the lake

To verify the correctness of the problem, formulated in Section 2, the qual-
itative analysis of physical processes of the simulated phenomenon and the
estimation of the accuracy of the numerical solution of the problem, evolu-
tionary equations for integral values of the available potential energy (APE)
of the main state and convective perturbations for two components of the ki-
netic energy (KE) of convectlve eddies, have been obtained. These equations
have the following form:

oP

5 = (F" Py +{P,P’} - {P, Do}, ©)

where P = (%%) is the APE of the main state, {F*, P} = <%(—),,-?rf
is the rate of increasing P at the expense of the volume radiative heating
of the lake, {P, P'} = <——w8@ﬂ> is the transfer of P to the APE of the

convective structures (P'), {P, Dg} = < (35? ) ) is the rate of decreasing
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P at the expense of the small-scale turbulent d;ffus:on (- = fE(.. )dz,

0, =6- O., O, = 7oz is the temperature of a standard stratified lake
before the radiative heating starts when 6, = 0;

oP'

S =~BP}-{P.K}-{P\Dn}-{P\D;} (1)

where P’ = < A 82) {P', Ky} = (A(w8)) is the rate of the transfer of P’
to the kinetic energy of the vertical convective motions (K,), {P', Dy} =

< = r/( ) > and {P', Dy} = <—p( z) > according to the diffusion rate
P’ at the expense of the vertical and horizontal turbulent heat exchange,

=tk K. )dzdz
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where K, = <¥>, {Ky,,K,} = %(p%) is the rate of the transfer of K, to

the kinetic energy of the horizontal convective motions (K,), {Ky, Dy.} =
o2 . 2
(¥(39)"), {Kw, Duz} = (n(52)");

0K,
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where K, = (g}, {Kuy Dy} = <v(g§)2>, {Ky, Dy} = (p(%f).

For convenience, when analyzing of equations (6)—(9), a diagram of the
energy cycle is described by the LES-mode! of the CBL-ice of the lake (Fig-
ure 1). Investigation of the energy of processes of the penetrative turbulent
convection in the ice-covered lake is of great interest, first of all because of
considerable daily variability of the source I = {F*, P} (in the day time
I > 0, at night I = 0) combined with the variability from day to day over
long periods (up to 1-1.5 month).

l{F-.P} |{P',Dm} T{K..,,Dw} ' 1{1{",9“1}
P {Ptpl} P’ {P’,Kw]' Kw {KlﬂvKﬂ} Ku
l{P, De} ' l{P’,Dp.} ' l{K.,.D.,.} l{K‘.,D...}

Figure 1. Diagram of the energy cycle of processes in the CBL-ice of the lake
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4. Calculation results

For the numerical solution of the formulated problem, equations (2), (3), and
(5) were written down in a standard manner in the “eddy-stream function”.
Evolution equations for the eddy of the problem and @ in (4) were approx-
imated using the monotonic scheme by A.A. Samarsky and A.V. Gulin (8]
having the accuracy O(At, Az?, Az?). The boundary conditions for the eddy
were calculated by relaxation formulas with supplementary iterative process.
The equation for the stream function was solved by the direct method of
separation of variables using the FFT (fast Fourier transform).

Taking into account the complexity of the simulated phenomenon, at the
first stage of calculations we gave up applying complex models of dynamics
and optics of snow and ice. We made use of a simple approximation R(z,t) =
—aF,e % /(cppo), F: is the solar radiation flux at z = 0 (according to the
Albreht formula), @ is the coefficient allowing us to take into account the

"increase of the radiation intensity from day to day because of the ice cover
melting calculated by the methods proposed in [9], 3 = const is the radiation
absorbing coefficient, ¢, and po are, respectively, specific heat of the water
and mean water density. At the stage of test calculations, we restricted
ourselves to the case of a priori setting the coefficients v and p.

Let us briefly describe the result of modeling of the initial stage of gener-
ation of the CBL-ice with the following values of parameters of the numerical
model: L = 120 m (Az = 0.5 m), H = 40 m, (Az = 0.5 m), the time step
3 s, the integration time is 5 days, v = p=10"* m?/s, 8 = 0.5 m~!._

Figure 2 shows the fields of the stream function at the time of the max-
imum convection evolution in the day time (15 hours Lt.) for the 1st, 3rd
and 5th days. Analysis of these fields as well as of the fields w and § allows a
conclusion of the fact that the model makes it possible to reproduce a highly
dynamic daily variability and the variability from day to day characteristic
of turbulent currents with penetrative convection. The model describes all
the stages of evolution both of individual CS (from generation in the layer
of instability to dissipation in the entrainment layer) and their “integrated”
influence on the variation in the structure of the main state. The latter is
shown in Figure 3a.

The shown profiles © qualitatively correctly describe the thermal struc-
ture of the CBL-ice of the lake [4]. A comparison of natural and calcu-
lated values of the mean heating rate of a mixed layer (according to the
data [4], this is a range of 0.0125 to 0.03°C days, according to the model -
0.02°C/days) and the mean deepening rate of the base mixed layer (1.5~
2.0 m/days - measurements, 1.8-1.9 m/days — calculations) allow us to make
a conclusion of a good potential of even a simplified LES-model according
to the quantitative description of the CBL-ice structure of the lake. The
possibility of applying the conventional gradient-diffusive K-models (this is
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Figure 2. The stream function for the 1st, 3d and 5th days, respectively
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Figure 3. Vertical distribution of: a) basic temperature; b) convective, c) com-
plete, and d) subgrid turbulent heat fluxes for the 1st, 3rd and 5th days. The
complete problem - curves 1, 2, 3, respectively; the gradient-diffusive k-model -
curves 4 (only the 5th day)
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problem (1) at wé = 0) for the description of the phenomenon of the sub-ice
tyrbulent penetrative convection, is, apparently, strongly restricted, as evi-
denced by curve 4 in Figure 3a as well as by the calculation results shown
in Figures 3b—d.

5. Conclusion

The results obtained allow us to make a conclusion about good prospects
of application of the methodology of the eddy-resolving simulation for the
research into the fine structure and the spatial-temporal evolution of hy-
drophysical fields with essentially non-stationary turbulent penetrating con-
vection of the ice-covered lake during the spring solar heating. The LES-
models can serve a good hydrodynamic basis in their combination with
hydroecological models of the transport of resolved oxygen, biogenic sub-
stances, hydrosols, the dynamics of phytogenic and zoo-planktons. The
authors encourage the collaboration aimed at the development of such mod-
els.
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