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Direct simulation Monte Carlo method
for stationary nonlinear
Boltzmann equation*

S.V. Rogasinsky

A new version of the direct Monte Carlo method for solving boundary value
problems for the Boltzmann equation is presented. In contrast to the conventional
approach, we do not solve the problem via stabilization in time; when evaluating
functionals of the solution to the Boltzmann equation, the random trajectories are
stopped with probability one after a finite number of transitions.

1. Stationary boundary value problem
for the Boltzmann equation

The main issue of the present study is the construction of justification of a
new Monte Carlo method for numerical solution to boundary value problems
for the nonlinear Boltzmann equation in the stationary formulation. This
class of problems is of practical interest because many physical processes are
governed by stationary boundary value problems [1, 2].

Let Gr and Gy be bounded 3D domains with piecewise smooth bound-
aries I' and + respectively. We assume for simplicity that Gy C Gr. We
denote G = Gr \ Gy. Let np = n(r), n, = n,(r) be external normal
vectors to Gr and G+, respectively.

The problem is formulated as follows: find a nonnegative function f(r,v),
continuous in G x R?, satisfying in G the equation

vaf(a‘l:: ‘v) =fk(‘v',‘v'1 — ""’1)[f(""”')f(r,v'l)—f(r,v)f(r,vl)] dv’dv'ldvl,

and the boundary conditions:
f(r,v) = fo(r,v) if (npv) <0,

whilst for r € «, satisfies the integral relation:

(nyv)f(r,v) = _v/(’n <o k_:q,(‘v' = v;7)(n ') f(r,v")dv' if (n,v) >0,

where
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Here o(|v' — v}|,Q) is differential cross-section of scattering of two parti-
cles, § is characterizing the relative velocity vectors of the particles after
the scattering. It is assumed that the nonnegative functions fr(r,v) and
ky(v' — w;r) are given, and they are positive on the surfaces I' and 7,
respectively, and

/ky(v'—)v;r)d*t}:l if r €.

In addition, the function f(r,v) should satisfy the condition
f(l + v f(r,v)dvdr < o

for an integer a > 1, where the integration is taken over the whole domain
of velocity and spatial variables.

Here we deal with the problem of construction of the numerical Monte
Carlo method, and therefore we assume that there exists a unique solution
to the formulated problem.

It will be convenient to give an equivalent formulation of the problem.
To this end, we include the boundary conditions on 7 into the Boltzmann
equation.

Let us introduce the notation

St(f, f] = [k(v':'vi — v,v1)[f(r, V) f(r,v}) — f(r,v)f(r,v1)] dv’ dv] dvy,
_ (nv), (nv) <0, _ [ (nv), (nv)>0,
) = {6 ()so (o) = o™ <o,

dc(r) is the generalized function (a simple layer) whose support is con-
centrated on the surface T, §,(r) is the simple layer on v, and ¢(r,v) =

{~(nv) " }r(r, v)éc(r).

Then the boundary value problem for the Boltzmann equation is refor-
mulated as follows: find a nonnegative function f(r,v), continuous in G xIR®
and satisfying the equation

v 2 f(r,0) = SULL+ [lafe' 50| D){=(n0) Y ), dv' (1)
for » € G and boundary conditions

(nrv)” f(r,v) = (nrv)” fe(ryv), 7€l )
(n79)+f(rav) =0, TEY. (3)
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The boundary condition (2) on the surface I' make it impossible to use
the N-particle Kolmogorov equation with a fixed number of particles to con-
struct the direct Monte Carlo method, as in the homogeneous case [3]; in our
case the number of particles varies and this should be properly taking into
account. It is possible to do this approximately, by solving nonstationary
boundary value problems and using the conventional splitting (over physical
processes) technique and the stabilization method [1, 4]. To this end, one
solves the inhomogeneous N-particle equation with a constant number of
particles in each time step At of the splitting process; the boundary condi-
tions are taken into account in the stage of spatial movement of particles [4].
This approach assumes that the stabilization method is applicable to solve
the stationary boundary value problem for the Boltzmann equation (1)-(3).
In this paper we do not use this conventional approach.

2. An auxiliary system of N-particle equations

In [6], we suggested a system of N-particle equations which properly takes
account of the change of particles caused by a flux of particles into the
domain G, without affecting the probabilistic character of these equations.
This is a crucial point in the use of the N-particle equations for solving the
nonlinear Boltzmann equations [5).

According to the approach presented in (3], we formulate a system of N-
particle equations which is a basis for constructing the direct Monte Carlo
method for solving problem (1-3).

Let Ry = (r1,...,7x), Vy = (v1,...,05), RE={v: v e R3, v, <
|v] < v*} be the domain of velocity variables. The constants v, and v*
satisfy the condition 0 < v, < v*.

We write Ry € G and say that Ry liesin G ¢ R® if r; € G for all
it =1,...,N. Analogously, we write V' € R? and say that V', lies in R?
ifv;eR:foralli=1,...,N.

Denote by R}, the spatial coordinates of a system of N particles if there
is at least one particle r; belonging to I'. In this case we say that R, belongs
to the boundary I'. Analogously, by R}, we denote the spatial coordinates
of a system of N particles if these is at least one particle r; belonging to +.
In this case we say that Ry belongs to the boundary 7. '

Let us define the indicator of the event that Ry belongs to the boundary
-+ as follows:

1, Ry= R?:i:
0, Ry # R}.
We define K(V), — Vv | Ry) as a function which determines a pair

interaction in a system of N-particles in the domain G. It satisfies the
conditions

I’Y(RN) = { (4)
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K(Vy = Vn|Ry)=K(Vy— Vy|Ry),
K(Vy—+Vy|Ry)=0, K(Vy—Vy|R}) =0,
K(Vi—= V| Ry =0.
Let
ARy, V) = [ K(Vy = Vi | R)aVy, 5)

The function K.(V), — Vy | Ry) is defined as a probability density
function of velocities in the N-particle system after an interaction, being
in a state (Ry,V",). This function has the same support as the function
K(V', = V| Ry) and they are related by the equality

K(Vy = Vx| Ry)=(1-I,(Ry) ARy, V) K.(Viy = Vi | Ry).
The function K,(V'y, = Vx| Ry) describes the interaction of a system

of N-particles with the boundary ~:

N
Ky(Vy = Vi | Ry) = L(Ry) [] ky(v} = vi | r3),

i=1

where e )
v S ur), TE-7,
k(v wv|r)=¢ ! ’
WV = vr) {J(v——v’), req.
It satisfies the conditions
f&,(vN SV | RV, = 1. (6)

Let
S'[p(N - 1,z1,...,2x1)q(zN)]

N
1
= R}T ZP(N - 1:931: ey i1, Ti41, - - ia:N)Q(mi)

=1

be the symmetrization operator introduced in [6] for making the particles
undistinguishable for N > 2 (if N = 1 is zero by definition). The function
K,(V', = V5 | Ry) is related to the symmetrization operator by

S'[p(N —1,Ry_1,Vy.i)g(rw, 'UN)]
= [ arw 0PN = 1, R, Vi )KLV = Vi | Ra) AV,

It can be represented as

K,(Vly > Vi | Ry) = (1— aN,l)S[{ﬁlé(vi - o) }ow - o) ()

i=1
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Let us introduce an auxiliary system of N-particle equations which we
treat as a system govermng the kinetic process in a model N particle system.
Let T € GU~, v, €RE, Iy = [g(r,v) drdv. Then

d
‘vl'a-;:?(l, r1,v1)

= [ Ky{oh = w1 | r2){~(my{r1)04) Yo (r1)p(0, 1,04 -
Iop(1,71,v1),
(ne(r1)vy) " p(1, 71, v1) = (no(r1)vl) " fe(ry,v1),  r €T,
(nqy(r1)v1) (1, 71,01) =0, rLEY.

For2< N<N* Ry€G,VyeR?

X 8
ﬁzzvig"_ip(N’ Ry, V)
= [K(Vy = Vi | Rup(N, R, Vi)aVy = A(Ry, Vi )p(N, R, Vi) +

fK, (V', = V| Ry) Z{ — (1 (r})04)" Yoy (r;)p(NV, Ry, V')AV, +
ji=1

S[P(N - LRy, Vi_i)alry,von)] - (1 - 5N.N‘)IOP(N: Ry, Vy). (8)

The boundary conditions to each equation in system (8), implying that
there is no flux into the domain, can be written in the form (for N > 2):

(nr(r,-)v,-)_p(N, r1,01,.-- eravN) = 01 r; € I\? (9)
(nv(ri)vi)+p(N1 r1,71,... ;va'vN) =0, r €Y.

The rest of the space, the domain R*\ G, is filled with a totally absorbing
medium. This means that if a particle goes out of G, it never comes back,
and it does not affect the kinetic process inside of G.

Formally, the number of model particles in the domain G can be infinite.
The reason of the increase of the number of particles in such a system
is the generating operator S[] [6] in the right-hand side of (8). It causes
difficulties in the numerical implementations. Therefore, of practical interest
are model systems where the number of particles varies but is always finite.
We introduce a parameter N*, the maximal number of particles generating
the operator S[-] in (8). The equa.tmn governing the last state of the system
should be consistent with the property that the system cannot go out of this
state, i.e.,
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g[p(N*, L1y ’xN')Q(zN‘+1)] =0.

Hence we deal with a system of equations which governs an abstract
kinetic process in the domain G. By construction, the number of particles
in the domain is not larger than N*.

The boundary value problem (8), (9) can be transformed into an integral
form.

We use the notations:

Ay(Ry,Vy) = Z{_("v("i)”i)—}‘s'r("i);
i=1

By(Ry,Vy)=(1—- L,,(RN))[(I — O )0 + ARy, Vi)l
B(Ry,V y) = Bo(Ry, V) + I,(Ry)Ay (RN, Vn);

®(N, RN,VN) = B(Ry,V n)p(N, Ry, V)i

LI+ ARy, Vy))™', 1ISNSN* -1,
Q(RN;VN) - {0, N =N";
®va=-{; 1SN SN -1,
SR V) =\ (1 - L (Ra)) (o + AR, V)™, N =N

Kl(N’,ij.,Vjv. -+ N,R,,Vy)
= (1 - L(R)[(1 - (R, Vip )b Ke(Viy = Vi | Ry) +
(R, Vi Yow i als ' q(rh, V) Ko (Vi = Vi | BY)| +
L (R )on wEy(Viy = Vi | RY);
K2(R), > Ry | Vy)
= [.m B(R), +pVn,Vi)e I3 Bo(By+7V .V arae'
§(Ry — Ry — pV y) dp;

K(N', R\, V' = N, Ry, V)
:(I—Q(R;v;, ’N;))KI(N’, L;,V;:-—)N,RZV,VN)X
K3(Ry = Ry | Vn);

F(N, Ry, V) = bn. fG 4(R.,V,)Ky(R, > R, | V,)dR,.
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The integral equation in this notation is rewritten as

N.

&(N, Ry, Vy) = 2]3/ K(N', R\, V', = N, Ry, V) x

N'—1 R, JG
@(N') ;\r': :v')dR;vdV;s'+

F(N,Ry, V). (10)

3. General direct simulation scheme and
evaluation of functionals

The state of the system is defined by the quantities (N, Ry, V y). Simulation
consists in the construction of trajectories, i.e., in simulating the sequence
of states of the system (N, Ry, Vy)o, ..., (N, Ry, V )y, where v is the last
state before the trajectory stops.

The transition from the state (N', R},,, V',,) to (N, Ry, V y) is governed
by the kernel of the above integral equation (10). Since the kernel of this
equation is represented as a product of two functions, the transition is sim-
ulated in two steps: fist, according to K(...), then according to Ks(...).

Calculation of functionals of the solution which are represented in the
form

-
==Y [ [ HN Ry, V&N, Ry, V) dRy V.,
N=1 .

can be carried out using standard unbiased Monte Carlo estimators (7], in
particular,

v
£=Y H(X;),
i=0
where v is the last state. The variance of the direct simulation estimator is
finite [7].
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