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Mixed spline approximation*

A.l. Rozhenko

The given paper studies the mixed spline approximation problem

Al&a =z,

cvrlch:"ru,ll2 + ||A26a — 22|* — min.
Here the operator A; gives the interpolation conditions, smoothing is carried out using
the operator Az, and T is the energy operator. The necessary and sufficient conditions

of the unique solvability for this problem are obtained. Incorrectness of D™-spline ap-
proximation in W3"(R") is proved.

1. Introduction

The mixed spline approximation problem combines the peculiarities of the
problems of spline interpolation and smoothing that were studied by many
mathematicians beginning from the works of Atteia [1, 2]. The monograph
of Loran [3] should be mentioned specially. It gives the conditions of ex-
istence and uniqueness of the interpolating and smoothing splines in the
general form.

The mixed formulation was first proposed in [4], although in practice
the mixed problems were considered much earlier (however, without the
use of the variational formulation). The main purpose of the given paper
is to obtain precise conditions of unique solvability of the mixed problem.
In particular, it is shown that if the kernel of the operator T is finite-
dimensional, then the closeness of the image of the operator A for the
unique solvability of the problems of spline approximation is not required
(Theorem 5.4). At the same time, the closeness of the image of the oper-
ator T is necessary for the unique solvability on the class of operators A
(Theorem 7.1).

The method used by the author to obtain the conditions of unique
solvability of the mixed problem is in the replacement of this problem by

*This work was supported in part by Russian Fund of Fundamental Research under
Grant 93-01-00603.
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the equivalent problem of the best approximation in the convex set (affine
subspace), the unique solvability of which is well-known. In this case some
norm is being constructed with the help of the operators of the mixed
problem, and the requirement of the unique solvability turns out to be
directly related to the equivalence conditions of this norm and the original
norm of the space X.

2. Basic definitions

2.1. Let X be the real Banach space with the norm ||-||x. If, moreover, X
is the Hilbert space, then the scalar product in it will be denoted by (-,-)x.
If it is clear from the context what norm or scalar product is meant, then
the subscript X will be omitted. The zero element of the space X will be
denoted by the symbol 0.

The adjoint space of the linear continuous functionals over X is denoted
by X*, and the Banach space of the linear limited operators, acting from
X into the Banach space Y is denoted by L(X,Y).

2.2. Let A € L(X,Y) be some linear operator. N(A) and R(A) denote the
kernel and the image of the operator A:

N(A):{:.EEX: A:L‘=0}, R(A)———AX.

It is evident that N(A) is the closed subspace.
Let M C Y be some set. Then its preimage will be denoted in the
following way:
AT M)={zeX: Aze M}.

2.3. The norm generated by an operator. Consider the functional
df
llzlla = [ Az|ly,

which is, evidently, a semi-norm in X. If, méreover, N(A) = {0}, then the
functional || - ||4 will be a norm in X.
If X and Y are the Hilbert spaces, then the bilinear function

(u,0)4 L (Au, Av)y

will give a scalar semi-product in X, which will be a scalar product if
N(A) = {0}.

2.4. Direct sum of the Banach spaces. Let X and Y be the Banach
spaces. Consider the linear space
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Z={z@®y: z€X, yeY}
with the operations of summation and multiplication:

10y +T2Dy2 = (214 22)0 (11 + v2),
Mz®y) = Az @ Ay.

This space becomes the Banach space if we introduce a norm on it, for
example, in the following way:

le @ yllz = (2% + ll9l1%) "7, (2.1)

where 1 < p < oo (at p = oo, the sum of norms in (2.1) is replaced by
the maximum). Let us denote this space by X @, Y and call it the direct
sum of the Banach spaces X and Y with the p-norm. We shall more often
use the 2-norm, and therefore we shall write X @Y instead of X @, Y for
simplicity.

It is evident that all the p-norms given by (2.1) are equivalent.

2.5. Direct sum of operators. Let X, Y, Z be the Banach spaces, and
A € L(X,Y), B € L(X,Z) be some operators. Construct the operator
A @p B by the rule

A®p, Bx = Az @ Bz.

Here the subscript p indicates that the operator acts into the Banach space
Yo, Z

It is evident that the operator A@, B that will be called the direct sum
of operators, is continuous. We shall write simply A @ B instead of A @, B
at p=2.

2.6. Problems of spline approximation. Let X, Y, Z be the real Hilbert
spaces and the operators T' € L(X,Y) and A € L(X, Z) be given.
Let z € R(A). Then the solution to the problem
= in ||Tz|? 2.2
o =arg_min (T (22)
is called the interpolating spline.
Let @ > 0 be some parameter and z € Z. Then the solution to the
problem
On = arg Irélil o||Tz|? + || Az — 2|)? (2.3)

is called the smoothing spline.

Let Z=27,®2,, A= A1 ®A,, where A, € L(X, Z,) and A; € L(X, Z,)
are some operators. Let, also, z; € R(A;), z3 € Z, be some elements and
a > 0 be a parameter. Then the solution to the problem
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6o =arg min ofTz|®> 4 || Az — 2|)? (2.4)
z .41_1(21)
is called the mized spline.

The vector of the initial data z in the corresponding problem of spline
approximation will be called an acceptable vector if it satisfies the conditions
imposed in the definition of the problem. So, the set of acceptable vectors
for the problem of spline interpolation is R(A), this set for the smoothing
problem is Z, and for the mixed problem it is R(A;) & Z.

3. The sufficient criterion for the unique
solvability of the mixed problem

It should be noted that the interpolating and smeothing splines are special

cases of the mixed spline: we obtain the interpolating spline if we set

Z3 = {0} in the problem (2.4), and we get the smoothing spline if Z; = {0}.

Therefore, it is sufficient to determine the unique solvability for the mixed
problem (2.4).

3.1. Lemma. If there ezists the operator B € L(X,W) acting into some
Hilbert space W such that

(a) N(A;) C N(B),
d]
(b) the norms ||e|lraBea; £ (ITz|? + [ Bzl? + || A22]12)"/* and |jo]x
are equivalent,

then the solution to the mized problem (2.4) ezists and is unique for any
acceptable initial data.

Proof. It is evident that A7!(z1) = 2.+ N(A;), where z, € A7!(z) is an
arbitrary element. Then, taking into account (a), we have

Vz € AT'(z1) Bz = Bz.+ B(z - z,) = Buz..

Consequently, the functional of the problem (2.4) can be corrected, with
the addition of the value ||Bz||? to it, which is equal to the constant on
AT (21):

df
24(2) = a||Tz|]* + || Bzl + [ A2z — 22l* = l|2112 arg pe.a, — 2(22, A22) + Ci.

It follows from the condition (b) that the norm || -|| VaTeBaA, 15 equivalent
to the norm || - ||x. Therefore, by Riesz’s theorem, the functional (27, Asz)
can be represented in the form
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(22, A2%) = (f, %) /aToBa,>

where f € X is some element. Then

o,(z)= ||z - f”f/ETEBB@Az +Ca

and the problem (2.4) reduces to the equivalent problem

6o =arg min |z - f||?
’ €A (1) VoT®B®A:*

which is in the minimization of the distance from the closed affine subspace
A7'(z1) to the element f. It is well-known (see, for example, [3]) that this
problem has the unique solution. ]

Let us next obtain the conditions providing the equivalence of the norm
generated by the operator T'@® B @ Az, and the original norm of the space

X. We shall study this question in a more general case of the Banach
space.

4. Equivalent norms in the Banach spaces

Let us give some known theorems of functional analysis (see, for example,
[3, 5, 6]) which we shall need later.

4.1. Theorem. If the Banach space X is reflezive (X** = X ), then, from
any sequence £, € X bounded over the norm, a weak convergent subsequence
can be selected.

4.2, Theorem (on open mapping). Let the operator A € L(X,Y) act on
the space Y. Then the image of any open set in X by the mapping A is open
inY.

Corollary. Let A € L(X,Y) and M C X be some set. If
(a) AM 1is closed inY,

then
(b) N(A)+ M is closed in X.

If, moreover, R(A) is closed in'Y, then (b) implies (a).

Proof. (a) = (b). It is evident that N(A)+ M = A7}(AM) and the set
N(A)+ M is closed as the preimage of the closed set AM.
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(b) = (a). As the subspace R(A) is closed in Y, it can be considered
as the Banach space with the topology induced from Y. Then the mapping
A:X — R(A) is open and transforms the open set U g x \ (N(A) + M)
to the open set AU. As N(A)+ M = A~'(AM), then AU = R(A)\ AM.
Consequently, the set AM is closed as the complement to the open set AU.

a

4.3. Theorem. Let the operator A € L(X,Y) act on the space Y. Then
there ezists the constant C > 0 such that, for any point y € Y, the point
z € A Y(y) will be found such that ||z|| < C||y||-

Remark. If operator A acts not on the whole space Y, then this theorem
is valid at the condition that R(A) is closed in Y and the point y is taken
from R(A).

4.4. Theorem (the Banach theorem on the continuity of the inverse ope-
rator). If the operator A € L(X,Y) acts on the space Y and N(A) = {0},
then operator A~! is continuous.

Corollary (inversion of Theorem 4.3). Let X be reflezive, A € L(X,Y) and
there exist the constant C > 0 such that, for any point y € R(A), the point
z € A~ (y) will be found such that ||z|| < C||y||. Then R(A) is closed inY .

Proof. Let us consider the fundamental sequence y,, € R(A) and construct
the sequence z, so that Az, = y, and

lzall < Cllynll- (4.1)

As the sequence y, converges, then, due to (4.1), z, is the bounded se-
quence. Consequently, by Theorem 4.1, the subsequence z,s can be chosen
from it that weakly converges to some point z, € X. Then y,y = Az, —
Az.. As the sequence y, converges strongly, its limit coincides with Az,.

a

4.5. Lemma. Let A € L(X,Y). Then the following statements are equiva-
lent:

(a) the norms || -||4 and || - ||x are equivalent;

(b) N(A)= {0} and R(A) is closed in Y.

Proof. (a) = (b). As the functional || - ||4 gives the norm in X, then
N(A) = {0}. Consequently, operator A is the isomorphism between X
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and R(A), and the operator A= : R(A) — X exists. It follows from the
equivalence of the norms ||-||4 and ||-||x that the operator A~! is bounded
and, consequently, R(A) is closed as the preimage of the closed set X.

(b) = (a). As the subspace R(A) is closed in Y, then it can be con-
sidered as the Banach space. Then, in accordance with Theorem 4.4, the
operator A™1: R(A) — X is continuous, i.e.,

Vye R(A)  |[A7ylx <A™ llvlly -

Denoting = A~!y and taking into account that the operator A~! acts on
the space X, we obtain

VeeX  |lzllx < A7Vl Azlly = (147 l2]la-
On the other hand,
lzlla = [[AX|ly < [JAll - [l]|x-
Consequently, the norms || -||,4 and || - ||x are equivalent. o

4.6. Theorem. Let X, Y, Z be the Banach spaces, and A € L(X,Y),

B € L(X, Z) be some operators. Then the following statements are valid at
any 1 < p<oo:

(a) if R(A®p B) is closed, then N(A)+ N(B) is closed;

(b) if R(A) and BN(A) are closed and X is reflexive, then R(A @, B) is
closed;

(c) if R(A), R(B) and N(A)+ N(B) are closed and X is reflexive, then
R(A &, B) is closed;

(d) if R(A) is closed and N(A) is finite-dimensional, then R(A &, B) is
closed.

Proof. (a) As N(A®, B) C N(A), then
N{A®, B)+ N(A) = N(A),

i.e., the subspace N(A &, B) + N(A) is closed. It follows from the corol-
lary of Theorem 4.2 that the subspace (A @, B)N(A) = {0} & BN(A) is
closed. Hence, the set BN(A) is closed and, consequently, its preimage
B Y (BN(A)) = N(A)+ N(B) is closed.

(b) It follows from the corollary of Theorem 4.4 that, for the proof of
the closeness of the subspace R(A®, B), it will suffice to find, for any point
y® z € R(A®, B), the point = € (A @, B)"'(y ® z) such that
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llzllx <Cily® zllya,z

with the constant ¢ > 0 which does not depend on y & z. As all the
p-norms in Y & Z are equivalent, it can be considered that p = 1.

It follows from the closeness of R(A) and Theorem 4.3 that, for any
y € R(A), the point u € A7'(y) will be found such that

llull < Cllyll (4.2)

with the constant C7 > 0 which does not depend on y.

If z € (A®, B)~!(y$=2) is any point, then z—u € N(A). Consequently,
the point z can be sought in the form « + v, where the point v € N(A)
satisfies the condition Bu + Bv = z.

As the subspace BN(A) is closed, then, if we consider the restriction
of operator B on N(A) and apply Theorem 4.3, the point v € N(A) will
be found such that Bv = z — Bu and

l[o]l < Callz = Bul|. (4.3)

It is obvious that z 2 u + v € (A @, B)"'(y ® z). Then, taking into
account the inequalities (4.2) and (4.3), we obtain
Nzl < llull + [lol] < [Jull + Callz - Bull
< (14 Col|BIDllull + Callzll < (14 Cal| BI)Callyll + C2l=ll
max{(1+ C2||B||)C1, Ca} - lly ® z[|xa, v

IA

(c) Applying the corollary of Theorem 4.2, we conclude from the close-
ness of R(B) and N(A)+ N(B) that BN(A) is closed. Then we use the
statement (b).

(d) The given statement is proved using the explicit construction of the
continuous operator that is “pseudo-inverse” for A &, B.

As the subspace N(A) is finite-dimensional, then it is complementable
[6, Lemma 4.21}, i.e., the closed subspace U C X will be found such that
N(A)NU = {0} and N(A)+ U = X. It is evident that restriction A of
operator A on U is one-to-one correspondence between U and R(A). As
R(A) is closed, then, by Theorem 4.4, operator A-1is continuous.

Furthermore, due to the finite dimensionality of N(A), the set BN(A)
is closed and N(A)N N(B) is finite-dimensional. Consequently, the closed
subspace V' C N(A) will be found which is the complement to N(A)NN(B),
and the continuous operator B~ can be constructed which is the inverse
operator relative to the restriction of operator B on V.

Assume that v = A~ly and v = B~1(z — Bu). Then
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e utve(de, By (yo2)

and, given in this way, the linear mapping C from R(A®, B) on U + V is
continuous and has one-to-one correspondence. As V is finite-dimensional,
then the subspace U + V is closed and, consequently, R(A @, B) is closed
as the preimage of the closed set by the mapping'C. a

4.7. Theorem. Let 1 < p < oo. The following statements are valid:
(a) if the norms || - ||ag,B and || -||x are equivalent, then N(A)N N(B) =
{0} and N(A)+ N(B) is closed;

(b) if, on the subspace N(A), the norms || -||g and || - ||x are equivalent,
R(A) is closed and X is reflexive, then the norms || - || ag,B and || - || x
are equivalent;

(c) if R(A), R(B) and N(A)+ N(B) are closed, N(A)NN(B) = {0} and

X s reflexive, then the norms || - ||4g,B and || - ||x are equivalent;
(d) if R(A) is closed, N(A) is finite-dimensional and N(A)NN(B) = {0},
then the norms || - ||ag,B and || - ||x are equivalent.

Proof. All these statements easily follow from Lemma 4.5, the identity
N(A @&, B) = N(A)N N(B) and the corresponding statements of Theo-
rem 4.6. m]

5. The necessary and sufficient conditions for
the unique solvability of the mixed problem

5.1. Lemma. Conditions of Lemma 3.1 are equivalent to the following:

On the subspace N(A;), the norms || - ||x and || - ||r@a, are
equivalent,
Proof. The norm || - ||rgBg4, on the subspace N(A;) coincides with
| - lr@a,- Therefore, the equivalence of the norms || - ||7g4, and || - ||x

on N(A;) is evident. It remains to show the reverse, i.e., to construct
some operator B which satisfies the conditions of Lemma 3.1.

As B, let us take an arbitrary operator with the closed image and the
kernel N(A;) (for example, an orthoprojector on N(A;)*) and, applying
the statement (b) of Theorem 4.7 to the operators B and T @& A,, we
obtain the required condition (reflexivity condition of space X is fulfilled
automatically, because it is the Hilbert space). i
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5.2. Lemma. The condition
(a) N(T')Nn N(A;)Nn N(Az) = {0}

is required for the uniqueness of the solution to the problem (2.4). If, more-
over, R(T) is closed, then the condition

(b) (T & A2)N(A;) is closed in Y & Z,

is required for the ezistence of the solution to the problem (2.4).

Remark. In accordance with Lemma 4.5, the conditions (a), (b) of the
given lemma provide the equivalence of the norms || - ||7g4, and || - ||x on
N(Ay).

Proof. (a) If this condition is not fulfilled, then the non-zero element
u € N(T)N N(A1) N N(Az) will be found. Then, if the solution &, of the
problem (2.4) exists at some initial data, 6, + » will also be its solution.

(b) Let us reduce the problem (2.4) to the problem on the subspace
N(Ay) which is equivalent to (2.4). To do this, let us make the substitution
x = z, + u, where z, € A7 1(.31) is an arbitrary element. As a result we
obtain the problem

i = arguEI]I\lri(Illh) a||Tu - fI? + || Azu — g||%, (5.1)

where
U=0y— s, [f=-Txe, g=2z9— Aga..

As the problem (2.4), in accordance with the condition of this lemma,
has the solution at any acceptable initial data, the element z,., at any
z1, “passes” through the whole space X. Consequently, the element f
passes the whole set R(T), and g passes the whole space Z; (22 changes
independently of z;). Thus, the problem (5.1) must have the solution at
any fd g € R(T) S Z,.

Assume that the set (T' @ A2)N(A;) is not closed, i.e., the element

e ® g« € (T ® A2)N(4)

exists which is not contained in (T@® A3)N(A1). As R(T) is closed, then the
closure of the set (T & A3)N(A;) is contained in R(T')& Z,. Consequently,
the problem (5.1) must have the solution at f & g = f. ® g.. However,
this is not fulfilled, as f. @ g. & (T ® A2)N(A;) and, at the same time, the
element u € N(A;) will be found such that the element Tu & Asu is as
near to f. @ g. as possible. O
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After combining Lemmas 3.1, 5.1 and 5.2, we obtain the following the-
orem:

5.3. Theorem. Let the subspace R(T) be closed in Y. Then, for the unique
solvability of the mized problem (2.4) at any acceptable initial data, it is
necessary and sufficient for the norm || - ||x on the -subspace N(A;) to be
equivalent to the norm || - ||7ga,- ‘

If N(T) is finite-dimensional, then the conditions of the unique solv-
ability of the problem (2.4) are somewhat simplified.

5.4. Theorem. Let R(T') be closed and N(T) be finite-dimensional. Then,
for the unique solvability of the problem (2.4) at any acceptable initial data,
it s necessary and sufficient that

N(T)n N(4) = {0}. (5.2')

The necessity of the condition (5.2) follows from Lemma 5.2, and its
sufficiency follows from the statement (d) of Theorem 4.7 applied to the
operators T and A, and also from Lemma 3.1 at B = A4;.

6. The case of infinite dimensional kernel of
operator T

If N(T) is infinite dimensional, then the condition of the equivalence of
the norms in Theorem 5.3 can be replaced by other conditions that can be
easily verified. To do this we shall need the concept of linear independence
of the operators A; and Aj.

6.1. Definition. The family of operétors A; € L(X, Zi),i=1,...,N, is
linearly independent if

R(Al@ ...@AN)Z R(Al)@ @R(AN)

The criterion of linear independence for a pair of operators can be
formulated in different ways.

6.2. Lemma. The following statements are equivalent:
(a) operators Ay and Ay are linearly independent;
(b) A2N(A;) = R(Az2) (or A;N(4y) = R(Ay));

(C) N(Al) + N(Az) =X.
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Proof. (a) = (b). Let us take the element 0 ® 23 € R(A;) ® R(Az). As,
by the condition, it belongs to R(A; @ Az), then the element z € X will
be found such that

Alx = 0, AQCL‘ = 29. (61)

It follows from the first equation in (6.1) that z € N(A;). In other words,
the conditions (6.1) imply that, for any 22 € R(A32), z € N(A;) will
be found such that Az = z;. Hence, A;N(A4;) = R(Az2). (Similarly,
A1N(Az2) = R(A1).)

(b) = (c). Let us consider the preimages of the sets in the statement
(b):

X = A;(R(A2)) = A3 (A;N(A1)) = N(Ay) + N(4y).

(c) = (a). Let z; € R(Ai), i = 1,2, be arbitrary elements. Let us
choose some elements z; € A7!(2;) and represent them, in accordance with
(c), in the form z; = u; + v;, where u; € N(A;) and v; € N(Az). Then

Ay = A1y = 21, Agug = Azxg = 29,
Assuming that z = v; + uz, we obtain
Az = A1z @ Az = A1v1 @ Agup = 21 O 2o,
ie., 21 ® 2z € R(A1 & A,). m]

6.3. Theorem. Let R(T) and R(A;) be closed and operators A; and A; be
linearly independent. Then the conditions

N(T)Nn N(A) = {0} and N(T)+ N(A) is closed

are the necessary and sufficient conditions for the unique solvability of the
problem (2.4) at any acceptable initial data.

Proof. Necessity. By Theorem 5.3, the norms || - [[7g4, and | - ||x are
equivalent on N(A;). Further, by the statement (b) of Theorem 4.7, the
norm ||-||pg(Te4,) is equivalent to the norm ||-||x on X for any operator B
with the closed image and the kernel N(A;). Finally, from the statement
(a) of the same theorem we have that

N(T)NN(B® A3) = {0}, N(T)+ N(B® A;) is closed.

Taking into account that N(B) = N(A;), we obtain what was required.
Sufficiency. Let B € L(X,W) be some operator with the closed image
and the kernel N(A4;). As operators A; and A; are linearly independent,
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then B and Aj are also linearly independent (this follows from the state-
ment (c) of Lemma 6.2). Taking into account the closeness of the images
of operators B and A3, we obtain that the subspace R(B @ A;) is closed.
From the statement (c) of Theorem 4.7, the norms || - |7g(Bga,) and |- ||x
are equivalent on X. Finally, applying Lemma 3.1, we get the unique
solvability of the problem (2.4). O

Remark. In the special cases for the problems of spline interpolation and
spline smoothing, one of the operators in the representation of the operator
A = Ay ® Az is a zero operator. It is evident that here the operators A,
and A; are linearly independent.

7. Criterion for the closeness of the image of
operator T

The requirement of closeness of the image of operator 7" which is present in
the conditions of Theorems 5.3, 5.4, 6.3 is, generally speaking, not necessary
for the unique solvability of the spline approximation problems. However,
if we consider these problems on the class of operators A, this condition
becomes necessary.

7.1. Theorem. If R(T) is not closed, then the operator A € L(X Z) actmg
into some Hilbert space Z and satisfying the conditions

N(T)NN(A) = {0}, R(A) and N(T)+ N(A) are closed,  (7.1)

will be found such that the spline interpolation problem (2.2) does not have
solution at some z € R(A).

Proof. As R(T) is not closed, then some point y, € R(T) will be found
which does not belong to R(T). It is obvious that y, # 0. Let us take

the linear functional ¢(y) g (9, y«)y and consider the spline interpolation
problem in the space Y

e(g)=A, |lglly — min, (7.2)

where A = ¢(y.). It is easy to verify that its solution is unique and coincides
with y..

Let us consider the problem (7.2) on the subspace R(T). The inter-
polation condition in (7.2) is not contradictory on R(T), as the set R(T)
is linear and y, is its limit point. However, this problem does not have
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any solution, as y. ¢ R(T) and the sequence y, € R(T') will be found
converging to yi. :

Let B € L(X,W) be the operator acting into some Hilbert space W
and satisfying the conditions

N(T)AN(B)={0}, N(T)+N(B)=X, R(B)is closed. (7.3)

(For example, the orthoprojector on N(T) can be taken as B.) Assume
that

Y(z) = (Tz,u)y, A=B@¢Y, z=08A

It easily follows from (7.3) that operator A satisfies the conditions (7.1).
It remains to show that the problem (2.2) does not have solution at the
given A and z.

Let us assume the opposite. Let o be the solution to the problem (2.2).
By the interpolation conditions

Bo =0, yY(o)=¢(Te)=A.

Hence, ¢ € N(B) and To satisfies the interpolation condition of the prob-
lem (7.2). It can be easily obtained from (7.3) that operator T is one-to-one
correspondence between N(B) and R(T'). Therefore we conclude that the
vector To is the solution to the problem (7.2) on R(T'). However, as it was
shown above, this problem does not have solution. a

Thus, the closeness of R(T') is necessary for the existence of the inter-
polating spline on the class of operators A satisfying the conditions (7.1).
The following question arises: how can we verify that R(T) is closed? Let
us give one criterion of closeness which is based on the concept of the
semi-Hilbert space.

7.2. Definition. The vector space X whicl has the semi-norm | .| with
the kernel P is called the semi-Hilbert space if the factor space X/P is the

Hilbert space over the norm ||z + P||. ¢ |z|.

7.3. Lemma. Let X be vector space and T : X — Y be the linear op-
erator acting into the Hilbert space Y. Then the following statements are
equivalent:

(a) the set R(T) is closed in Y ;
(b) (X,||-|IT) is the semi-Hilbert space.
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Proof. It is clear that the kernel of the semi-norm || - ||z coincides with

N(T). Further, let {%, ¥ zn+ N(T)} be an arbitrary sequence in X/N(T).
We denote y, = T'z,,. Then

182 = ZmllT = llgn — vmlly-

Consequently, the sequence {Z,} is fundamental in X/N(T) if and[only if
the sequence {y,} is fundamental in Y. Thereby the conditions of closeness
R(T) and X/N(T) are equivalent. m

8. D™-splines in a bounded domain

8.1. Let 2 C R" be a bounded domain, and X = WJ*(£2) be the Sobolev
space with the norm

1/2
ez = (3 [ D*sfia)

la<m

where

a = (ei,...,0y) is the multiindex, |o| =03 +...+ an,
glal
D* = ———————— is the operator of the partial derivative.
atll '...'atnn
Let us consider the problem of construction of the interpolating D™-
spline [4] using its values on the scattered (possibly infinite) mesh of nodes

wCQ
a(t)tzh l€w,

df m! o : 8.1
el ® 2 5 [ (©°0y7d0 — min (8.1)
a|=m
and specify the conditions at which this problem is stated correctly.

8.2. Conditions of closeness for the image of operator D™. The
operator of the generalized gradient of the m-th order

D™z = {(%}'—') UZD‘”:L', la| = m}

acting from W;*(2) to the direct sum of (n + m — 1)!/(n — 1)!/m! spaces
L3(?) serves as the energy operator in the problem (8.1). The kernel of
this operator is finite-dimensional and consists of the polynomials of the
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order m — 1. The coefficients of the operator D™ were selected in such a
way as to provide the invariance of the semi-norm || - ||pm relative to the
rotations of the Cartesian coordinate system.

In accordance with Lemma 7.3, the image of the operator D™ is closed
if and only if the space WJ*(R) is closed over the semi-norm || - [|pm. In
other words, this means that the space WJ"(£2) must coincide, as a set, with
the semi-Hilbert space D~™ Ly() (it is often denoted by L7'(2)) consisting
of functions with the bounded semi-norm || - ||pm.

The spaces WJ*(€) and D~™ L;(£2) coincide (for the bounded domain)
in the following cases [7]:

(a) Q is a star domain with respect to a ball, i.e., such a ball lying in
the domain will be found that any ray starting from its any point
intersects the boundary of the domain exactly in one point;

(b) the boundary of the domain is Lipschitz boundary, i.e., its any point
has such a neighbourhood U that the set U/ N { in some Cartesian
coordinate system is given by the inequality z, < f(z1y- ey Tno1)
with some function f satisfying the Lipschitz condition;

(c) the domain satisfies the cone condition, i.e., a cone will be found
having the constant height and opening, the top of which can touch
any point of the domain so that the cone will be inside of the domain;

(d) Q is a star domain with respect to the finite number of balls, i.e., it is
a union of the finite number of star domains with respect to a ball.

If the domain is bounded (as in our case), then there are the following
relations between these criteria:

(a) = (b) = () & (d), (82)

i.e., the criterion (a) is stronger than (b), (b) is stronger than (c), (c) and
(d) are equivalent. Differences between these criteria are seen in the figure.
So, if a domain satisfies the criterion (b), then the cone can touch its any
boundary point both from the inside and outside. At the same time, the
criterion (c) provides the cone touching only from the inside of the domain.

The criteria (c) and (d) are interesting from the practical point of view,
because they make it possible to consider the domain with cuts, punctured
points and zero angles directed inward. In this case the space WJ*(2)
contains functions which have discontinuities in the punctured points and
along the cuts. This fact serves to justify the algorithm for the construction
of the discontinuous D™-spline that was suggested in [8].
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(a) (b) (c)

8.3. Remark. The definition of D™-spline can be extended to a wider
class of domains. We shall consider that the domain 2 has a continuous
boundary, if every point t € 99 has such neighbourhood U that the set QNU
in some Cartesian coordinate system is represented by the inequality ¢, <
f(t1,...,tu_1), where f is a continuous function. If the bounded domain
1 is a combination of the finite number of domains with the continuous
boundary, then the spaces W]*(2) and D~™L,(2) coincide [7, Remark to
Lemma 1.1.11], which implies the closeness of the image of the operator
D™,

8.4. Correctness of the problem (8.1). For the correct statement of
the problem (8.1), along with the closeness of R(D™), the continuity of the
operator Ax = :L']w for the projection of the function z € WJ*(Q2) on the
mesh w is required. This will take place in any domain } (not necessarily
satisfying the cone condition) if m > n/2. (In this case only the local
properties of the functions from the space WJ*({1) are important. As the
mesh nodes are inside of the domain 2, then the functions of the space
W3 () will be continuous in the sufficiently small neighbourhood of these
nodes.)

Mesh nodes can also be at the boundary of the domain, if in their
neighbourhood there is Lipschitz boundary (this provides a possibility for
the local extension of the function beyond the domain preserving the order
of smoothness).

And, finally, for the unique solvability of the problem (8.1) (and, also,
smoothing and mixed problems), it is necessary and sufficient (Theorem 5.4)
that the kernels of the operators A and D™ intersect at the zero function
(the closeness of the image of operator A is not required). This is true if
(n+m—1)!/n!/(m —1)! nodes will be found among the nodes of mesh w
where the problem of construction of the polynomial of the order m — 1
has the unique solution. Such set of nodes is usually called the Lagrangian
set or simply L-set.
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9. D™-splines in R"

9.1. Incorrectness of the problem of D™-approximation in W*(R").
In order to construct D™-spline in a bounded domain, we need to know
the reproducing kernel of the space W3*(1) connected with the semi-norm
[| - |lpm [4] (it is also called the Green function of the polyharmonic oper—
ator (—A)™). In the multivariate case, the problem of construction of the
reproducing kernel has most probably no analytical solution.

The situation changes for the better if & = R™. However, the space,
where the D™-approximation is fulfilled, should be correctly chosen. The
fact is that the space Wj*(R") is not good for the construction of D™-
spline in R™, as the image of the operator D™ is not closed. (It is easy to
verify that N(D™) = {0}. Therefore, if R(D™) is closed, then the norm
[+ |lpm, by Lemma 4.5, must be equivalent to the original norm. However,
this is not the case, as the function f(t) = C' does not belong to WJ*(R"),
and, at the same time, ||f||pm = 0.)

The fact of absence of the solution in WJ*(R™) can be proved directly.

9.2. Lemma. Let m > n/2. Then the problem of spline interpolation
o(0)=1, ||D™o| — min (9.1)
‘does not have solution in the space WJ*(R™).

Proof. Let us assume that the solution o € Wi (R™) of the problem (9.1)
exists. As N(D™) = {0}, then ||[D™0| > 0. Let us take an arbitrary

number ¢ € (0,1) and consider the function o.(z) - o(ez). It is easy to
verify that the function o, satisfies the interpolation condition and belongs
to Wi*(R"™). At the same time,

D™ || = e™~"/?| D™a]| < | D™ ]|, o

9.3. The problem of spline approximation in R™ becomes correct if we con-
sider the space D™™ Ly(R") consisting of functions, m-th partial derivatives
of which belong to Ly(R"). The norm in this space can be introduced, for
example, in the following way:

1/2
lellpom, = ( jﬂ 2(1)du + IID”‘wII"iz) ,

where p is some measure in R", and the set & C R" is bounded and
contains the L-set for the operator D™ (for example, a unit ball can be
taken as Q).
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This problem was studied in the works of Duchon [9-11] considering
a more general space D™ H"(R") consisting of functions, m-th partial
derivatives of which belong to the Hilbert space H"(R™) with the norm

' \1/2
lellge = ( [ 1Fatry?-1riar) ™

Here Fz is the Fourier transform of the function z. The real parameter r
must be chosen so that the parameter

7gm—n/2+‘r

can belong to the interval (0,m). Here the condition 4 > 0 provides the
continuity of the point evaluation functionals (continuity of the operator
for the projection on the mesh), and ¥ < m provides the closeness of the
image of the operator D™ acting from D~™H"(R") into H™(R™).

The reproducing kernel of the semi-Hilbert space (D~™H"(R"™),||-|lpm)
is equal to

G,(s,t) = ( 1)['YI+1 { |s = ¢|*"In |s —t|, =« is integer,
RASE R Ea G

|s — ¢ otherwise,

with a positive normalizing factor. Here [7] is the entire part of v, and

ls -t = (i(si - ii)z)mr

i=1

The sign of the function G, (obtained in [12]) is of considerable impor-
tance for the problem of spline smoothing, but the normalizing factor is,
generally speaking, not essential.

References

[1] M. Atteia, Généralisation de la définition et des propriétés des «spline-fonctions»,
in C. R. Acad. Sci., Vol. 260, 1965, 3550-3553.

[2] M. Atteia. Spline-fonctions généralisées, in C. R. Acad. Sci., Vol. 261, 1965, 2149-
2152.

[3] P.-J. Laurent, Approximation et Optimization, Paris, 1972.

[4] A.Yu. Bezhaev, V.A. Vasilenko, Variational Spline Theory, Bulletin of the Novosi-
birsk Computing Center, Series Num. Anal., Special issue 3, NCC Publisher, Novosi-
birsk, 1993.

[5] K. Iosida, Functional Analysis, Springer-Verlag, 1965.



86 A.l Rozhenko

[6] W. Rudin, Functional Analysis, N.-Y., 1973.
[7] V.G. Mazia, Sobolev Spaces, Leningrad State Univ., 1985 (in Russian).

[8] V.A. Vasilenko, A.L. Rozhenko, Discontinuity localization and spline approximation
of discontinuous functions at the scattered meshes, in Proc. of Int. Conf. on Numer-
ical Methods and Applications, 1989, 540-544.

[9] J. Duchon, Interpolation des fonctions de deux variables suivant le principe de la
Flexion de plaque minces, in RAIRO, Anal. numer., Vol. 10, No. 12, 1976, 5-12.

[10] J. Duchon, Fonctions-spline & &nergie invariante par rotation, Preprint, RR, No. 27,
Grenoble, 1976.

[11] J. Duchon, Spline minimizing rotation-invariant seminorms in Sobolev spaces, in
Lect. Notes in Math., Vol. 571, 1977, 85-100.

[12] M.L Ignatov, A.B. Pevny, Natural Splines of Many Variables, Leningrad, Nauka,
1991 (in Russian).



