
Preface

The present monograph is devoted to the theoretical and numerical study of
the interaction of electromagnetic fields with deformable media. The models
considered are based on different combination of the Lamé and Maxwell
equations. Several direct and associated with them inverse problems are
studied. Then speaking about inverse problems, electromagnetic and elastic
characteristics of a medium are the subject of reconstruction. Values of
physical fields are connected through electromagnetoelastic interactions.

The authors consider the processes which are observed when seismic
waves propagate in the Earth’s crust. Variations of seismic and electro-
magnetic fields arising in this case are called electromagnetoelastic waves.
The following types of electromagnetoelastic interactions are distinguished:
interaction based on the electrokinetic properties of a medium, interaction
based on the piezoelectric properties of a medium and interaction based on
the velocity effect.

First, different statements of mathematical model of electromagnetoelas-
tic interactions is described. Then the theoretical results of the numerical
solution are discussed for various direct and inverse problems for the equa-
tions of electromagnetoelasticity.

Finally, the authors give some results of the numerical solutions of two
inverse problems for the system of equations describing linear processes of
interaction of electromagnetic and elastic waves.

Even if a complete review of the area is not exposed, rather wide range
of problems and methods for their solution are discussed. This makes the
monograph interesting and useful.



Contents

Introduction 1

Chapter 1. Mathematical model of electromagnetoelastic in-
teractions 3
1.1. Electromagnetic theory . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Elastic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3. Summary of equations and matching conditions . . . . . . . . 9

Chapter 2. Direct problems 10
2.1. The Cauchy problem for the electromagnetoelasticity equa-

tions for weakly conducting media . . . . . . . . . . . . . . . 10
2.2. Initial boundary-value problem for the electromagnetoelastic-

ity equations with partially nonlinear interaction . . . . . . . 15
2.3. Initial boundary-value problem for the electromagnetoelastic-

ity equations with complete nonlinear interaction . . . . . . . 19
2.4. The Cauchy problem for the electromagnetoelasticity equa-

tions with complete nonlinear interaction . . . . . . . . . . . 34

Chapter 3. Inverse problems 37
3.1. One-dimensional inverse problem . . . . . . . . . . . . . . . . 37
3.2. Inverse problems for the electromagnetoelasticity equations

for weakly conducting media . . . . . . . . . . . . . . . . . . . 44
3.3. An inverse problem for electromagnetoelasticity equations with

partially nonlinear interaction . . . . . . . . . . . . . . . . . . 53
3.4. An inverse problem for electromagnetoelasticity equations with

complete nonlinear interaction . . . . . . . . . . . . . . . . . . 59

Chapter 4. Numerical solution of inverse problems 65
4.1. The first inverse problem . . . . . . . . . . . . . . . . . . . . . 67
4.2. The second inverse problem . . . . . . . . . . . . . . . . . . . 74

Bibliography 80



Introduction

Recently the interaction of electromagnetic fields with deformable media has
been a subject of many theoretical and experimental investigations in the
field of continuum mechanics and geophysics. For the description of suffi-
ciently simpleinteractions, theories of magnetohydrodynamics [2, 26], elec-
troelasticity [13, 33], and magnetoelasticity [23, 48] were developed. These
theories are, basically, a combination (without introducing the new concep-
tions) of objects and phenomena considered in continuum mechanics and
electrodynamics.

Investigation of more complex electromagnetoelastic interactions in a
continuum medium requires consideration of more complex models. For a
more profound acquaintance with the state-of-the-art on theory of electro-
magnetoelastic interactions the reader is referred to, e.g., [18, 29, 34].

The present investigation is aimed at studying some direct and associated
with them inverse problems of electromagnetic and elastic characteristics of
a medium reconstruction connected with electromagnetoelastic interactions.
The models considered here are based on simple variants of a combination
of the Lamé and the Maxwell equations.

Let us characterize in brief the basic types of electromagnetoelastic inter-
actions. It is well known that when an electriconducting elastic body oscil-
lates in electromagnetic field, variations of the electrical and magnetic fields
are observed as a result of this motion. Similar processes are also observed
when seismic waves propagate in the Earth’s crust. Variations of seismic
and electromagnetic fields arising in this case are called electromagnetoelas-
tic waves. Such waves contain a certain information about electromagnetic
and elastic parameters of a medium. In this case, as a rule, the following
types of electromagnetoelastic interactions are distinguished:

• Interaction based on the electrokinetic properties of a medium.
It is supposed that generation of electric signals under elastic waves
propagation is connected precisely with manifestation of electrokinetic
properties of a medium. This effect is used for development of elec-
troseismic methods of “viewing” of the Earth’s crust, electroacoustic
investigations in boreholes, etc.

• Interaction based on the piezoelectric properties of a medium.
This interaction is connected with propagation of elastic waves in crys-
tal rocks when the elastic deformation of lattice of a material produces
displacement of electrons and, as consequence, there arises an electrical
field induced by such deformations.
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• Interaction based on the velocity effect. Whereas, for example, the
electrokinetic effect is connected with local interactions of elastic waves
with a flow of the pore liquid, the velocity effect is based on slow
movement of a medium in external electromagnetic field. In the case
of geophysical or seismological problems, the velocity effect leads to
so-called seismomagnetic effect based on the interaction of seismic
waves with the Earth’s magnetic field [31]. This interaction results in
induced electromagnetic waves propagating with velocities commen-
surable with those of seismic waves.

Anisimov et al. [5] confirm simultaneous propagation of seismic waves
with induced geomagnetic variations and point to a possibility to record
such geomagnetic variation with confidence.

The first result on inverse problems of electromagnetoelasticity was ob-
tained, apparently, by Burdakova and Yakhno [14]. Omitting here the
geophysical aspect of such problems we would like to point out the pa-
per by Alekseev [1] which is, in our opinion, of substantial mathematical
and methodological importance. It turned out that, in essence, the inverse
problems of electromagnetoelasticity as a part of so-called combined in-
verse problems provide a possibility of a more successful solution than
the study of each of the inverse problems separately, taking into account the
data obtained in order to get the general idea of the medium in study. He
gave a mathematical definition of the combined inverse problem and showed
that it is not equivalent to a simple set of individual problems.

A systematic study of theoretical questions which are connected with
the uniqueness, existence, and stability of solutions of inverse problems (and
associated with them direct ones) for electromagnetoelasticity system began
in the nineties of the XX-th century. In this connection, we should note the
works [7, 8, 9, 20, 22, 24, 27, 28, 30, 35, 36, 37, 41, 42, 50, 51].

As for applications of such problems the reader is referred, for example,
to [18].

This monograph is not a complete exposition of this field of research. Its
main objective is to give a conception of the range of problems and methods
for their solution.



Chapter 1

Mathematical model of
electromagnetoelastic interactions

The interaction of electromagnetic fields with deformable media is consid-
ered with point of view of linear elasticity connected with electrodynamic of
elastic moving media by means of motion of particles in the electromagnetic
field. We do not consider any effects of interactions, which could arise as
a result of some kind of relations in constitutive equations besides velocity.
We, basically, follow Dunkin and Eringen [16] when defining a mathematical
model for electromagnetoelastic effect.

1.1. Electromagnetic theory

Let R3 be a three-dimensional Euclidean space of points x = (x1, x2, x3).
The process of propagation of electromagnetic waves in R3 will be described
by the following Maxwell system:

∂D

∂t
+ J = rot H,

∂B

∂t
+ rotE = 0, (1.1)

div D = ρe, div B = 0. (1.2)

Here E,H,D, and B are the electromagnetic vectors, J is the current
density, ρe is the charge density, and all quantities are expressed in the
MKS units. When a medium is at rest, the electromagnetic constitutive
equations of an isotropic medium are

D0 = εE0, B0 = µH0, J0 = σE0, (1.3)

where ε, µ are called the electric and the magnetic permeabilities, and σ
is the electrical conductivity. The same equations are assumed to be valid
at each point in the reference frame moving with the velocity of a material
point, i.e., the proper frame, but they are expressed in terms of the field
measured in the laboratory frame in which motion is observed. For small
velocities the proper quantities are related to the laboratory ones by the
equations (cf. [48])

E0 = E +
∂u

∂t
×B, D0 = D + c−2∂u

∂t
×H,
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H0 = H − ∂u

∂t
×D, B0 = B − c−2∂u

∂t
×E,

J0 = J − ρe
∂u

∂t
, ρ0

e = ρe, c ≡ (ε0µ0)−1/2,

where ε0, µ0 are the dielectric and the magnetic permeabilities of the vac-
uum, and u is a displacement vector. Let us substitute these relations into
constitutive equations (1.3). If the terms of order |∂u

∂t |
2/c2 and higher are

dropped, the results of [48] are as follows:

D = εE + α
∂u

∂t
×H, B = µH − α

∂u

∂t
×E, α ≡ εµ− ε0µ0, (1.4)

J = ρe
∂u

∂t
+ σ

(
E +

∂u

∂t
×B

)
. (1.5)

For more details of electromagnetic theory, the reader is referred to many
textbooks that treat this research field, e.g., [18, 21, 26], etc.

Thus, we have obtained a complete system for freely moving media.
They are Maxwell’s equations (1.1), (1.2) and the constitutive relations
(1.4), (1.5). Equation (1.5) is a modification of Ohm’s law, where appears a
term reflecting the influence of particles moving in the magnetic field with
a current density.

The electromagnetic matching conditions are obtained in the following
manner. First rewrite equations (1.1), (1.2) in the equivalent form

rot
(
E +

∂u

∂t
×B

)
= −∂B

∂t
− ∂u

∂t
div B + rot

(∂u

∂t
×B

)
,

rot
(
H − ∂u

∂t
×D

)
=
∂D

∂t
+
∂u

∂t
div D − rot

(∂u

∂t
×D

)
+ J − ρe

∂u

∂t
,

(1.6)

div B = 0, div D = ρe. (1.7)

Then integral analogues of these equations can be obtained by integrating
(1.6) over the surface S′ composed of material particles and bounded by
a curve C and (1.7) over a volume V of material particles bounded by the
surface S. Note that C, S′, S, and V move with the material. After applying
Stokes’ theorem on the left-hand sides of (1.6), we obtain∫

C

(
E +

∂u

∂t
×B

)
· dc = − d

dt

∫
S′

B · ds′,∫
C

(
H − ∂u

∂t
×D

)
· dc =

d

dt

∫
S′

D · ds′ +
∫

S′

(
J − ρe

∂u

∂t

)
· ds′,

(1.8)

Applying the Gauss–Ostrogradskii theorem to (1.7) yields∫
S

B · ds = 0,
∫

S
D · ds =

∫
V
ρe dx, (1.9)

where we have also used the well-known relation
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d

dt

∫
S′

F · dS′ =
∫

S′

[∂F

∂t
+
∂u

∂t
div F − rot

(∂u

∂t
× F

)]
dS′.

Select S′ to be a small rectangular area oriented perpendicular to the dis-
continuity surface such that one side lies in the part of material with one
material properties and other one lies in the part with another material
properties (Figure 1.1).

Figure 1.1

As the dimension of S′, perpendicular to the boundary, tends to zero,
equations (1.8) now look like[

E +
∂u

∂t
×B

]
t
= 0,

[
H − ∂u

∂t
×D

]
t
= JS

m − ρS
e

∂um

∂t
, (1.10)

where the symbol [F ]t means a jump of the tangential components of the
vector F across the surface, where the coefficients of equations have breaks,
and JS

m, ρS
e represent the surface current and the charge, respectively. Here

and in the sequel the subscripts t,m, n denote the vector components in
the directions t,m,n which form the right-hand orthogonal triad (see Fig-
ure 1.1). Now, let us choose V to be a small cylindrical volume, whose axis
is perpendicular to the discontinuity surface such that one of the circular
ends lies in the part of the material with one material property and another
one lies in the part with another material property (see Figure 1.1). As the
height of the volume tends to zero, equations (1.9) take the form:
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[B]n = 0, [D]n = ρS
e , (1.11)

where [F ]n means a jump in the normal component of F .
Equations (1.10), (1.11) constitute the complete electromagnetic match-

ing conditions on a discontinuity surface.

1.2. Elastic theory

Consider now the equations of motion of a deformable medium. The mechan-
ical equations will be derived by applying the conservation of momentum
to the volume of a material, V , with the bounding surface S in the absence
of a mechanical force, using an assumption that only a mechanical effect of
the electromagnetic fields is the introduction of the Lorentz force

f e = ρeE + J ×B.

Thus the equation of global conservation of momentum in the rectangular
coordinates is the following∫

S
T · n ds+

∫
V

f e dx =
d

dt

∫
V

gm dx, (1.12)

where T is a stress tensor and gm is momentum per unit volume. Using the
Gauss–Ostrogradskii theorem for the surface integral and differentiation of
the volume integral according to [17, Eq. 20.9],

d

dt

∫
V

gm dv =
∫

V

(∂gm

∂t
+ Div

(
gm ⊗ ∂u

∂t

))
dx (1.13)

we obtain ∫
V

(
Div T + f e −Div

(
gm ⊗ ∂u

∂t

)
− ∂gm

∂t

)
dx = 0,

where

Div T =
( 3∑

j=1

∂

∂xj
Tij

)3

i=1

.

If the mechanical momentum is locally conserved, then

Div T + f e = Div
(
gm ⊗ ∂u

∂t

)
+
∂gm

∂t
. (1.14)

In an elastic solid gm = ρ∂u
∂t , where ρ is the material density, and the

assumption of infinitesimal strains and rotations (1.14) reduces to
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ρ
∂2u

∂t2
= Div T + f e. (1.15)

The elastic matching conditions on stress are obtained by applying (1.15)
to appropriate differential elements. Introduce Maxwell’s stresses T e and the
electromagnetic momentum ge according to Minkowski (cf. [44]),

T e = E ⊗D + H ⊗B − 1
2
(E ·D + H ·B)I, ge = D ×B,

where I is the unit matrix of order 3×3. Let us show that the Lorentz force
f e can be represented in the following form

f e = Div T e − ∂ge

∂t
. (1.16)

It is easy to check the correctness of formula (1.16) taking into account
equations (1.1), (1.2) and constitutive relations

D = εE, B = µH.

After simple transformations we come to the equation

Div T = ρeE + rotE ×D + rotH ×B.

Using Maxwell’s equations (1.1), (1.2) we obtain

Div T = ρeE + J ×B +
∂D

∂t
×B − ∂B

∂t
×D

from which follows the next formula:

Div T = ρeE + J × V B +
∂

∂t
(D ×B) = f e +

∂ge

∂t
.

This formula proves the representation (1.16).
The volume integral containing f e can be written down as∫
V

f edx =
∫

S

(
T + ge ⊗ ∂u

∂t

)
· n ds−

∫
V

(∂ge

∂t
+ Div

(
ge ⊗ ∂u

∂t

))
dx,

where Div(ge⊗ ∂u
∂t ) was added and subtracted, and the Gauss–Ostrogradskii

theorem was used to convert the volume integral to the surface one. Using
this expression and (1.13) in (1.12) gives us
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∫
S

(
T + T e + ge ⊗ ∂u

∂t

)
· n ds =

d

dt

∫
V

(
gm + ge

)
dx, (1.17)

which is the form appropriated for obtaining the matching conditions on
surface fractions.

Now let S and V be the surface and the volume of a small cylindrical
element, whose axis is perpendicular to the discontinuity surface such that
one end of the cylinder lies in the part of a material with certain material
properties and another one lies in the part with other material properties
(see Figure 1.1). Applying (1.17) to this cylindrical region and allowing the
axial dimension to approach zero, (1.17) becomes

[
T + T e + ge ⊗ ∂u

∂t

]
· n = 0. (1.18)

In the case of a body surrounded by vacuum T = 0 outside the body and
(1.18) reduces to

T · n = −
[
T e + ge ⊗ ∂u

∂t

]
· n on Ω,

where Ω is the body surface.
The mechanical constitutive equations are taken to be the usual Hook’s

Law for an isotropic elastic medium, i.e.

T = λ trS · I + 2κS, (1.19)

where S is the strain tensor defined by the formula

Sij =
1
2

(∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, 2, 3.

In the above formulas, λ,κ are the Lamé coefficients. When using these
relations it is assumed that the stresses and strains for this combined sys-
tem in proper and laboratory frames are the same. Due to the fact that the
system has been split to two parts, the mechanical part and the electromag-
netic part, as expressed by the Minkowski energy-momentum tensor, this
question needs further consideration. For the present purposes we simply
assume that constitutive relations (1.19) for a purely elastic medium are
unaffected by the electromagnetic fields. For very large fields or finite defor-
mations the interaction terms will enter the constitutive relations thereby
coupling together the elastic and the electromagnetic constitutive equations
[18].
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1.3. Summary of equations and matching
conditions

Here we summarize the basic field equations and matching conditions for an
electromagnetoelastic medium.

Field equations:
∂D

∂t
+ J = rot H, div D = ρe,

∂B

∂t
+ rotE = 0, div B = 0,

(1.20)

ρ
∂2u

∂t2
= Div T + ρeE + J ×B. (1.21)

Constitutive equations:

D = εE + α
∂u

∂t
×H, B = µH − α

∂u

∂t
×E, α ≡ εµ− ε0µ0,

J = ρe
∂u

∂t
+ σ(E +

∂u

∂t
×B),

(1.22)

T = λ trS · I + 2κS, Sij =
1
2

(∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, 2, 3. (1.23)

Matching conditions:[
E +

∂u

∂t
×B

]
t
= 0,

[
H − ∂u

∂t
×D

]
t
= JS

m − ρS
e

∂um

∂t
,

[B]n = 0, [D]n = ρS
e ,

(1.24)

[
T + E ⊗D + H ⊗B − 1

2

(
E ·D + H ·B

)
I +

(
D ×B

)
⊗ ∂u

∂t

]
· n = 0.

(1.25)



Chapter 2

Direct problems

In this chapter, we present some results of the solution of direct problems
for the system of equations describing linear and nonlinear processes of the
interaction of electromagnetic and elastic waves based on motion of particles.

2.1. The Cauchy problem for
the electromagnetoelasticity equations
for weakly conducting media

In this section, following the work [41], we present some results of solu-
tion of the Cauchy problem for a system of equations describing the linear
interaction process of electromagnetic and elastic waves in a weakly con-
ducting elastic medium. The linear interaction of electromagnetic field with
an elastic isotropic medium based on motion of particles is described by the
following equations:

∂D

∂t
+ J + j = rot H,

∂B

∂t
+ rotE = 0, (2.1)

ρ
∂2u

∂t2
= Div T + µJ × h0 + f , (2.2)

where the vectors j and f characterize the external source of currents and
the external source of elastic oscillations. In this section, j,f are supposed
to be distributions with finite supports and

(j,f) ≡ 0, (x, t) ∈ R3 × R−, (2.3)

where R− = {t ∈ R | t < 0}. The defining relations for the stress tensor T
and components of the electric induction D and the magnetic induction B
for an elastic isotropic inhomogeneous space are as follows:

D = εE + α
∂u

∂t
× h0, J = σE + σµ

∂u

∂t
× h0, B = µH,

T = λ · trS · I + 2κS, (2.4)

S : Sij =
1
2

(∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, 2, 3.
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Here h0 is the magnetic intensity vector characterizing the external constant
magnetic field. In this case we assume that µ is a positive constant and h0

is a constant nonzero vector. The material properties of a medium are
described by the smooth bounded functions

ε, ρ, λ,κ : R3 → R+, σ : R3 → R+.

For system (2.1)–(2.4), we consider the Cauchy problem with the initial data

(H,E,u, ) ≡ 0, (x, t) ∈ R3 × R−. (2.5)

We shall treat the solution of the Cauchy problem (2.1)–(2.5) as a gener-
alized function defined over the space of infinitely differentiable compactly
supported functions. Let us now make a general note about terminology.
Usually, system (2.1) is supplemented with the two equations

div B = 0, div D = ρe. (2.6)

According to the classical theory, it is system (2.1), (2.6) which is used as
a system of Maxwell’s equations. However, it is often used to regard system
(2.1) as an independent object, ignoring equations (2.6). This treatment
is based on the following reasons. The first equation in (2.6) is a direct
corollary of (2.1); so it is fulfilled for any solution to problem (2.1)–(2.5).
The second equation in (2.6) can be naturally considered as an independent
equation for determining the charge density ρe, but this problem is beyond
our interest here. At the same time, the electric strength vector E can
be found from (2.1)–(2.5). Thus, equations (2.1) are the major and quite
independent part of Maxwell’s equations.

System (2.1)–(2.4) arises in result of linearization of a more complicated
nonlinear system (1.20)–(1.23). These equations show that interaction of
elastic medium with electromagnetic field is uniliteral interaction for non-
conductive media (σ = 0): the displacement vector u is independent of
electromagnetic field, but at the same time the vectors E,H are depen-
dent on the vector u. The assumption about weak electrical conductivity
of the medium (σ ≈ 0) makes it possible to linearize the original equations
(2.1)–(2.5) with respect to σ calculating the Frechèt derivative on σ = 0.

Let
H = H0 + H1, E = E0 + E1, u = u0 + u1, (2.7)

where (H0,E0,u0) is the solution of the Cauchy problem (2.1)–(2.5) with
σ ≡ 0:

ε
∂E0

∂t
+ α

∂2u0

∂t2
× h0 + j = rot H0, (x, t) ∈ R3 × R, (2.8)

µ
∂H0

∂t
+ rotE0 = 0, (x, t) ∈ R3 × R, (2.9)
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ρ
∂2u0

∂t2
−Div T (u0) = f , (x, t) ∈ R3 × R, (2.10)

(H0,E0,u0) ≡ 0, (x, t) ∈ R3 × R−, (2.11)

Thus, the problem corresponding to linearization with respect to σ in
the neighborhood of σ ≡ 0 has the following form:

ε
∂E1

∂t
+ α

∂2u1

∂t2
× h0 + σE0 + µσ

∂u0

∂t
× h0 = rot H1,

(x, t) ∈ R3 × R,
(2.12)

µ
∂H1

∂t
+ rotE1 = 0, (x, t) ∈ R3 × R, (2.13)

ρ
∂2u1

∂t2
−Div T (u1)− σµ

(
E0 + µ,

∂u0

∂t
× h0

)
× h0 = 0,

(x, t) ∈ R3 × R,
(2.14)

(H1,E1,u1) ≡ 0, (x, t) ∈ R3 × R−, (2.15)

where as T (uk), k = 0, 1, we mark the value of the stress tensor on the
functions uk, k = 0, 1, respectively.

Thus, the interaction of electromagnetic field with a weakly conductive
elastic medium is described by equations (2.7)–(2.15). Obtained in such way
system is the basic subject of our investigation in this section.

Problem statement and basic result

The basic question, which we are going to study here is the structure of the
solution to the Cauchy problem (2.7)–(2.15). First of all we are interested in
singular part of the Cauchy problem solution, and as well that regular part,
which defined discontinuities on characteristic cones of the solution. The
structure of the solution of the Cauchy problem (2.7)–(2.15) will be studied
under the condition that the vector-functions j and f have the form

j = j0 δ(x− x0, t), f = f0 δ(x− x0, t),

where j0 and f0 are constant vectors and x0 ∈ R3 is a fixed point.
Let c1, c2, and c3 be velocities of electromagnetic, longitudinal, and

transverse elastic waves, respectively:

c1 =
√

1
εµ
, c2 =

√
λ+ 2κ
ρ

, c3 =
√

κ
ρ
. (2.16)

For each of them we introduce the Riemannian metric with the length ele-
ment dτk defined by the formula
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dτk = ck(x) ds, k = 1, 2, 3, (2.17)

where ds is the length element in the Euclidean metric. Let us denote by
Γk(x0, x) the geodesic of metric (2.17) connecting the points x0 and x and
by τk(x0, x) its length. It is well-known that τk(x0, x) as a function of the
variable x satisfies the relations

|gradx τk(x
0, x)| = c−2

k (x), τk(x0, x) = O(|x− x0|) for x→ x0. (2.18)

In what follows we will assume that each of metrics (2.17) is simple, i.e.,
each pair of points x0, x is connected by one and only one geodesic Γk(x0, x).
In addition, we assume that ck(x), k = 1, 2, 3, satisfy the conditions

0 < m3 ≤ c3(x) < c2(x) < c1(x) ≤M1 <∞, (2.19)

where m3 and M1 are constants defined by the formulas

m3 = inf
x∈R3

c3, M1 = sup
x∈R3

c1.

Let θ0(t) be the Heaviside function:

θ0(t) = 1 for t ≥ 0, θ0(t) = 0 for t < 0.

Introduce the functions

θn(t) =
tn

n!
θ0(t), θ−n(t) =

dn

dtn
θ0(t), n = 1, 2, 3, . . . , (2.20)

Sk = Sk(x, t, x0) ≡ t− τk(x0, x), k = 1, 2, 3.

The differentiation in (2.20) is understood in the sense of the theory of
distributions. The equalities Sk = 0, k = 1, 2, 3, define the characteristic
cones corresponding to the velocities ck, k = 1, 2, 3.

We now introduce new vector functions V , V 0, V 1, defined by the for-
mulas

V = V 0 + V 1, V k = (V 1k,V 2k,V 3k) ≡ (Hk,Ek,uk), k = 0, 1.

The following theorem holds.

Theorem 2.1. Let there be a certain number δ0 > 0 such that the coeffi-
cients ε, σ, ρ, λ, and κ are constants in the domain

D0 =
{
x ∈ R3

∣∣ |x− x0| < δ0
}

and belong to Cm(R3), m > 3(N + 10) + 10, for a certain integer N ≥ 5.
Then the solution to the Cauchy problem (2.7)–(2.15) can be represented in
the form
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V ik(x, t) =
N∑

n=−2

{
αik

n (x) θn(S1) + βik
n (x) θn(S2) + γik

n (x) θn(S3)
}

+

V ik
N (x, t), i = 1, 2, 3; k = 0, 1, (2.21)

where V ik
N (x, t) ∈ CN (R3 × R) and the coefficients αik

n (x), βik
n (x), and

γik
n (x) have the following properties:

a) α3k
−2(x) = β3k

−2(x) = γ3k
−2(x) ≡ 0, k = 0, 1,

b) αik
n (x), βik

n (x), and γik
n (x) are analytic as real-valued functions in

the domain D0 \{x0} and smooth outside of D0 (more precisely, these
are functions of the class Cm−2n−8(R3\D0)). Moreover, there exists a
positive constant C > 0 depending only on the values of the coefficients
ε, µ, σ, ρ, λ, and κ in the domain D0 and on the values of |j0|, |f0|,
and |h0| such that

(
|αi0

n |, |βi0
n |, |γi0

n |
)
≤ C ·

{
|x− x0|−(3+n), i = 1, 2,
|x− x0|−(2+n), i = 3;

(2.22)

(
|αi1

n |, |βi1
n |, |γi1

n |
)
≤ C ·

{
|x− x0|−(2+n), i = 1, 2,
|x− x0|−(1+n), i = 3;

(2.23)

c) in the domain {(x, t) | S3 > 0, x ∈ D0}, the functions

Ṽ ik
N (x, t) =

N∑
n=−2

{
αik

n (x) θn(S1) + βik
n (x) θn(S2) + γik

n (x) θn(S3)
}

satisfy the estimates

Ṽ 10
N = Ṽ 30

N ≡ 0, |Ṽ 2k
N | ≤ C |x− x0|−3, k = 0, 1,

|Ṽ 11
N | ≤ C |x− x0|−2, |Ṽ 31

N | ≤ C |x− x0|−1

with the same constant C as in (2.22) and (2.23).

Remark 2.1. For the correctness of representation (2.21) at some fixed
point x1 for values t ≤ T , for any T > τ1(x0, x1), it is sufficient, by virtue of
hyperbolic system (2.7)–(2.15), to suppose the condition of simplicity of the
metrics (2.17), and the conditions of smoothness of the coefficients be valid
in a finite domain of the space R3 bounded by the Riemannian ellipsoid

τ1(x0, x) + τ1(x, x1) = T.

Representation (2.21) is also correct for all the points satisfying the inequal-
ities

τ1(x0, x) ≤ t ≤ T − τ1(x, x1).
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Remark 2.2. Apparently, the above theorem is valid without hypothesis
about homogeneity of medium in the domain D0.

The above theorem is a basis for formulating inverse problems for weakly
conducting media.

Sketch of the proof

The basic idea of the proof of the theorem is the following. We construct for
a homogeneous medium the solution to problem (2.7)–(2.15) having the form
of (2.21) with N = 5,V ik

N ≡ 0. The thus obtained solution is equal to the
required one for t < t0, where t0 = δ0/M1, by virtue of the hyperbolic sys-
tem and an assumption about constancy of the coefficients in the theorem.
By this reason we can consider the problem for t > t0 only. Representing
for this case the functions V ik(x, t) in the form of (2.21) with N ≥ 5, for
αik

n , β
ik
n , γ

ik
n a system of algebraic and ordinary differential equations along

geodesic metrics (2.17) is obtained. The solution to such equations is se-
lected from the condition of their coincidence with the solution constructed
in the domain D0. As a result of such action we obtain for the functions
V ik

N (x, t) the Cauchy problem with zero initial data for t < t0 and a smooth
right-hand side. Using the method of energetic estimates enables us attain
necessary smoothness of the functions V i

N (x, t). The proof utilizes the meth-
ods developed in [39, 49] for investigation of the structure of fundamental
solutions to the Cauchy problem for hyperbolic equations, as well as for the
Lamè and Maxwell’s systems.

For the complete proof the reader is referred to the original work [41].

2.2. Initial boundary-value problem for
the electromagnetoelasticity equations with
partially nonlinear interaction

In this section, following the original work Lorenzi and Priimenko [27], we
present some results of solution of the first initial boundary-value problem
for the electromagnetoelasticity system in the case when the nonlinear term
describing the interaction of the electromagnetic and the elastic fields is
presented in Maxwell’s system only.

We will consider one possible statement of the problem which arises in
the theory of electromagnetoelasticity under the following assumptions:

1. Ω1, Ω2, and Ω are three bounded connected open sets in R3 such
that Ω2 and Ω belong to the classes C3 and C2, respectively, and the
following conditions are fulfilled: Ω2 b Ω, Ω1 = Ω \ Ω2.
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2. An oscillating inhomogeneous isotropic electrical-conducting elastic
body B, which occupies the domain Ω2 ⊂ R3, is placed into the do-
main Ω where the process of propagation of electromagnetic waves
occurs.

3. The electromagnetic field arises as a result of propagation of elastic
oscillations. Moreover, we neglect the reverse effect of the electromag-
netic field on the process of elastic waves propagation.

4. We neglect the transport currents in the domain Ω.

5. The motion of the medium occurs with velocities which are lower than
those of electromagnetic waves in the elastic medium.

By virtue of the previous assumptions the constitutive relations (1.22)
take the form

D = εE, B = µH, J = σ
[
E + µ

∂ũ

∂t
×H

]
,

where ũ is an continuation of the function u by zero over the whole of the
domain (0, T )×Ω, T > 0. Using the relations obtained, we can write down
the Maxwell system (1.20) in the domain (0, T )× [Ω1 ∪ Ω2] in the form

ε
∂E

∂t
+ σE + σµ

∂ũ

∂t
×H = rot H,

µ
∂H

∂t
+ rotE = 0, divµH = 0.

(2.24)

According to assumptions 2 and 3, the propagation of elastic waves in the
body B is governed by the ordinary system of the Lamé equations

ρ
∂2u

∂t2
= Div T + f , (t, x) ∈ (0, T )× Ω2, (2.25)

where ρ : Ω2 → R+ and f ,u : (0, T ) × Ω2 → R3, and the stress tensor T
is defined by formula (1.23) with λ,κ : Ω2 → R+. In this section, we
assume the function f to have the representation f(t, x) = f(t) g(t, x),
where g : [0, T ]× Ω2 → R3 and f : [0, T ] → R are known functions.

Our main problem consists in determining the functions E, H, u. To
this end, we need to supplement differential equations (2.24) and (2.25) with
appropriate initial and boundary conditions and with the gluing conditions
for the solution of the problem on the surfaces, where the coefficients of
differential equations have breaks.

Now we can formulate the direct problem.
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Direct Problem 2.1. Determine a set of the functions

u : [0, T ]× Ω2 → R3, E,H : [0, T ]× Ω → R3,

such that

ρ
∂2u

∂t2
= Div T + f(t)g(t, x), (t, x) ∈ (0, T )× Ω2, (2.26)

u(0, x) = u0(x),
∂u

∂t
(0, x) = u1(x), x ∈ Ω2, (2.27)

u(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω2, (2.28)

ε
∂E

∂t
+ σE + σµ

∂ũ

∂t
×H = rot H, (t, x) ∈ (0, T )× [Ω1 ∪ Ω2], (2.29)

µ
∂H

∂t
+ rotE = 0, divµH = 0, (t, x) ∈ (0, T )× [Ω1 ∪ Ω2], (2.30)

E(0, x) = E0(x), H(0, x) = H0(x), x ∈ Ω, (2.31)
n×E = 0, (t, x) ∈ (0, T )× ∂Ω, (2.32)

[E × n]∂Ω2 = [H × n]∂Ω2 = 0, (t, x) ∈ (0, T )× ∂Ω2. (2.33)

It is assumed that the functions ε, µ : Ω → R+, σ : Ω → R+, and
E0,H0 : Ω → R3 are continuous in the domain Ω \ ∂Ω2 with possible jumps
on the surface ∂Ω2. We also assume that the functions f : [0, T ] → R,
g : [0, T ] × Ω2 → R3, u0,u1 : Ω2 → R3 are given and have sufficient
smoothness.

As is easy to see, the solution of Direct Problem 2.1 can be divided into
two steps because we can separate the solution of problem (2.26)–(2.28)
from the solution of problem (2.29)–(2.33) (the coupling term is presented
in Maxwell’s system only). For this reason we divide this process into two
ones: the first – to solve the direct problem (2.26)–(2.28), and the second –
to solve the direct problem (2.29)–(2.33).

Solution of direct problem (2.26)–(2.28)

It is worth noting that the term ∂ũ/∂t × H occurring in equation (2.26)
creates certain difficulties in the course of solution of direct problem (2.26)–
(2.28). In fact, we cannot confine ourselves to consideration of the weak
solution (E,H,u) of the problem since in this case the product ∂ũ/∂t×H
may fail to be an element of the space L2(Ω2; R3). In order that imposing
too severe constraints on the function be avoided we should require at least,
that both the multipliers ∂ũ/∂t and H be elements of the space L4(Ω2; R3).
For this, we assume the density ρ, the Lamé coefficients λ and κ, the free
term fg, and the initial data u0 and u1 of problem (2.26)–(2.28) to satisfy
the following conditions:
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ρ ∈ H2(Ω2; R), κ, λ ∈W 2,∞(Ω2; R), (2.34)

min
(
ρ(x), λ(x),κ(x)

)
≥ ρ0 > 0, ∀x ∈ Ω2 , (2.35)

f ∈ Lp((0, T ); R), g ∈ Lp′
(
(0, T );H2(Ω2; R3)

)
∩ H1

0 (Ω2; R3), (2.36)

U0 ∈ H3(Ω2; R3) ∩H1
0 (Ω2; R3), Div T ∈ H1

0 (Ω2; R3), (2.37)

U1 ∈ H2(Ω2; R3) ∩H1
0 (Ω2; R3). (2.38)

Here 1/p+ 1/p′ = 1.

Theorem 2.2. Let ρ, λ, κ, f , g, u0, and u1 satisfy conditions (2.34)–
(2.38). Then there exists a unique solution u(f) to problem (2.26)–(2.28).
This solution satisfies the conditions

u(f) ∈ C
(
[0, T ];H3(Ω2; R3)

)
∩H1

0 (Ω2; R3) ∩
C1

(
[0, T ];H2(Ω2; R3)

)
∩W 2,1

(
(0, T );H1(Ω2; R3)

)
, (2.39)(

‖u(f)(t)‖2
3,2 +

∥∥∥ ∂
∂t

u(f)(t)
∥∥∥2

2,2
+

∥∥∥ ∂2

∂t2
u(f)(t)

∥∥∥2

1,2

)1/2

≤ C1

(
ρ−1
0 , ‖ρ‖2,2, ‖κ‖2,∞, ‖λ‖2,∞

)
×[(

‖u0‖2
3,2 + ‖u1‖2

2,2

)1/2 + ‖g‖t,0,p′,2,2 · ‖f‖t,0,p

]
,

∀t ∈ [0, T ], ∀f ∈ Lp((0, T ); R), (2.40)(
‖u(f2)(t)− u(f1)(t)‖2

3,2 +
∥∥∥ ∂
∂t

u(f2)(t)−
∂

∂t
u(f1)(t)

∥∥∥2

2,2
+∥∥∥ ∂2

∂t2
u(f2)(t)−

∂2

∂t2
u(f1)(t)

∥∥∥2

1,2

)1/2

≤ C1

(
ρ−1
0 , ‖ρ‖2,2, ‖κ‖2,∞, ‖λ‖2,∞

)
‖g‖t,0,p′,2,2 · ‖f2 − f1‖t,0,p,

∀t ∈ [0, T ], ∀f1, f2 ∈ Lp((0, T ); R). (2.41)

Here ‖·‖j,2, ‖·‖t,0,q,j,2, and ‖·‖t,0,p are the norms in the spaces Hj(Ω2; R3),
Lq((0, t);Hj(Ω2; R3)), and Lp((0, t); R), respectively, and C1 is a nonnega-
tive function continuous and nondecreasing in each of its arguments.

Solution of direct problem (2.29)–(2.33)

Now we are able to solve direct problem (2.29)–(2.33). We make the follow-
ing assumptions about the coefficients and the initial data of the problem:

ε, µ, σ ∈W 1,∞(Ω1; R) ∩W 1,∞(Ω2; R),

min
{
ε(x), µ(x)

}
≥ γ−1 > 0, ∀x ∈ Ω1 ∪ Ω2;

(2.42)

E0 ∈ H(rot,Ω), H0 ∈ H(rot,Ω) ∩H1(Ω1; R3) ∩H1(Ω2; R3),
µH0 ∈ H(div; Ω);

(2.43)
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n×E0 = 0, x ∈ ∂Ω; divµH0 = 0, x ∈ Ω;
n ·H0 = 0, x ∈ ∂Ω.

(2.44)

The following theorem is valid under these assumptions.

Theorem 2.3. Let the vector-functions g, u0, u1, E0, and H0 satisfy
conditions (2.36)–(2.38), (2.43), and (2.44). Then for every function f ∈
Lp((0, T ); R) problem (2.29)–(2.33) has a unique solution (E,H) =
(E(f),H(f)) satisfying the conditions

E(f) ∈ C
(
[0, T ];H(rot; Ω)

)
∩ C1

(
[0, T ];L2(Ω; R3)

)
, (2.45)

H(f) ∈ C
(
[0, T ];H(rot; Ω) ∩H1(Ω2; R3)

)
∩ C1

(
[0, T ];L2(Ω; R3)

)
, (2.46)∥∥∥ ∂

∂t
E(f)(t)

∥∥∥
0,2,Ω

+
∥∥∥ ∂
∂t

H(f)(t)
∥∥∥

0,2,Ω
+ ‖rotE(f)(t)‖0,2,Ω +

‖E(f)(t)‖0,2,Ω + ‖H(f)(t)‖1,2,Ω1 + ‖H(f)(t)‖1,2,Ω2

≤ C2(T ) + TC3(T, ‖f‖T,0,p), ∀t ∈ (0, T ), (2.47)

where C2 and C3 are positive nondecreasing continuous functions depending
also on the norms of the data of the problem. Moreover, for every pair of
the functions f1, f2 ∈ Lp((0, T ); R) the following estimate holds:∥∥∥ ∂

∂t
E(f2)(t)−

∂

∂t
E(f1)(t)

∥∥∥
0,2,Ω

+
∥∥∥ ∂
∂t

H(f2)(t)−
∂

∂t
H(f1)(t)

∥∥∥
0,2,Ω

+

‖rotE(f2)(t)− rotE(f1)(t)‖0,2,Ω + ‖E(f2)(t)−E(f1)(t)‖0,2,Ω +

‖H(f2)(t)−H(f1)(t)‖1,2,Ω1 + ‖H(f2)(t)−H(f1)(t)‖1,2,Ω2

≤ C4(T, ‖f1‖T,0,p)
∫ t

0
h(f2)(t− s) ‖f2 − f1‖s,0,p ds, (2.48)

where h(f)(t) = exp
[
t
(
γ ‖σ‖0,∞,Ω +C5(T ) ‖f‖T,0,p · ‖g‖T,0,p′,2,2,Ω2

)]
and C4

and C5 are positive nondecreasing continuous functions depending also on
the norms of the data of the problem.

The proofs of Theorems 2.2 and 2.3 are rather bulky and therefore are
omitted. For their complete proofs the reader is referred to the original
paper [27].

2.3. Initial boundary-value problem for
the electromagnetoelasticity equations with
complete nonlinear interaction

In this section, we will present some results of solution of the first initial
boundary-value problem for a system of electromagnetoelasticity, when non-
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linear terms describing the interaction of electromagnetic and elastic fields
are presented in both Maxwell’s and the Lamè systems.

Basic equations

Consider the case of diffusion approximation of Maxwell’s system. This
means that in the field equations (1.20), (1.21) we neglect by displacement
current ∂D

∂t formally assuming ε = 0, and set ρe = 0. Simultaneously we
put in constitutive equations (1.22), (1.23) α = 0 and ρe = 0, too. It is easy
to show that in this case in the presence of external electromagnetic j and
elastic f sources of oscillations we can form the following electromagnetoe-
lasticity system

σE + σµ
∂u

∂t
×H + j = rot H,

µ
∂H

∂t
+ rotE = 0, divµH = 0,

ρ
∂2u

∂t2
= Div T + µ rotH ×H + f .

We make the following assumptions about the functions E,H,u, j,f :

E = (0, 1, 0)E(z, t), H = (1, 0, 0)H(z, t), u = (0, 0, 1)u(z, t),
j = (0, 1, 0)j(z, t), f = (0, 0, 1)f(z, t),

(2.49)

where the variable z stands for the variable x3. Under such assumptions for
the case ρ = const, µ = const we can form the following non-dimensional
model system (cf. [3]):

ht = (rhz)z − (hut)z − (rj)z, utt = (ν2uz)z − phhz + f,

where h, u, j, f are dimensionless analogues of the functions, introduced
by formulas (2.49), r−1 = µLV0σ is the magnetic Reynolds number, p =
µH2

0ρ
−1V −2

0 , ν =
√

(λ+ 2κ)/ρV 2
0 is dimensionless velocity of the elastic

waves propagation; and L, V0,H0 are characteristic values of length, seismic
velocity and magnetic field, respectively.

The problem statement

Now we are able to formulate the basic problem to be studied. Consider the
equations

ht = (rhz)z − (hut)z − (rj)z, (z, t) ∈ QT , (2.50)

utt = (ν2uz)z − phhz + f, (z, t) ∈ QT , (2.51)

where QT = Ω × (0, T ), Ω = (−l, l). The functions r, ν, f, j are supposed
to be smooth functions with possible jumps in points zm: −l < z1 < z2 <
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. . . < zm < l, r(z) ≥ r0 > 0; ν(z) ≥ ν0 > 0, p is a positive number. The
following initial boundary value problem is considered for equations (2.50),
(2.51) with the initial conditions

h(z, 0) = h0(z), u(z, 0) = u0(z), ut(z, 0) = u1(z), z ∈ Ω, (2.52)

and the boundary conditions

h(−l, t) = h(l, t) = 0, u(−l, t) = u(l, t) = 0, t ∈ (0, T ). (2.53)

The initial boundary value problem (2.50)–(2.53) can be considered as a
diffraction problem for parabolic-hyperbolic system (2.50), (2.51), i.e., as
a problem in the cylinder QT consisting of several media. The following
transmission conditions on the boundaries of such media were assumed:
continuity of the solution and its derivatives in co-normal directions to dis-
continuous surfaces. In our problem, the discontinuous surfaces are the lines
z = zi, i = 1, 2, . . . ,m, in the cylinder QT . These conditions mean the phys-
ical absence of discontinuities of a medium and equilibrium of the effective
forces on discontinuous surfaces. Mathematically we can form the following
transmission conditions at the points of discontinuity of the coefficients:

[h(z, t)]z=zi = 0, [r(z)(hz(z, t)− j(z, t))]z=zi = 0,

[u(z, t)]z=zi = 0, [ν2(z)uz(z, t)]z=zi = 0, i = 1, . . . ,m.
(2.54)

For studying this problem we will make use of the fact that any diffraction
problem can be considered as a generalized solution of an initial boundary-
value problem with discontinuous coefficients [25, Chapter III, p. 224–232].

To introduce the generalized solution of the initial boundary-value prob-
lem (2.50)–(2.54) we need some functional spaces.

The Banach space Lq(Ω) consists of all measurable functions on Ω that
are the qth-power (q ≥ 1) summable on Ω provided with the norm ‖v‖q,Ω =
(
∫
Ω |v(z)|

qdz)1/q. Measurability and summability are to be understood in
the sense of Lebesgue.

The Banach space Lq,r(QT ), q, r ≥ 1, consists of all measurable on QT

functions with the finite norm ‖v‖q,r,QT
= (

∫ T
0 (

∫
Ω |v(z, t)|

qdz)
r
q dt)1/r. In

the case q = r, the Banach space Lq,q(QT ) will be denoted by Lq(QT ), and
the norm ‖v‖q,q,QT

– by ‖v‖q,QT
.

The generalized derivatives are understood in the sense accepted in the
theory of generalized functions [43, 47].

The Banach space W l
q(Ω) of all the functions from Lq(Ω) has general-

ized derivatives up to order l (integers inclusively), that are the qth-power
summable on Ω. The norm in W l

q(Ω) is defined by the equality
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‖v‖(l)
q,Ω =

l∑
j=0

‖Ds
zv‖l

q,Ω,

◦
W l

q(Ω) is a subspace of W l
q(Ω) in which the set of all functions that are

infinitely differentiable and finite in Ω is dense.
The Banach space W 2l,l

q (QT ) for l integral (q ≥ 1) of all Lq(QT )-elements
has generalized derivatives Dr

tD
s
z, where the numbers r, s satisfies the in-

equality 2r + s ≤ 2l. The norm in W 2l,l
q (QT ) is defined in the following

way:

‖v‖(2l)
q,QT

=
l∑

j=0

∑
2r+s=j

‖Dr
tD

s
zv‖q,QT

.

The Hilbert space W 1,k
2 (QT ), k = 0, 1, has a scalar product defined by

(u, v)
W 1,k

2 (QT )
=

∫
QT

(uv + uzvz + kutvt)dzdt.

The Banach space V2(QT ) of all W 1,0
2 (QT )-elements has the finite norm

|v|QT
= max

0≤t≤T
‖v‖2,Ω + ‖vz‖2,QT

where

‖vz‖2,QT
=

(∫
QT

v2
zdzdt

)1/2

.

The Banach space V 1,0
2 (QT ) is obtained from W 1,1

2 (QT ) by closing in
V2(QT )-norm. V 1,1/2

2 (QT ) is a subset of those V 1,0
2 (QT )-elements, for which∫ T−τ

0

∫
Ω
τ−1(v(z, t+ τ)− v(z, t))2 dz dt→ 0 as τ → 0.

Zero over W 1,0
2 (QT ),W 1,1

2 (QT ), V2(QT ), V 1,0
2 (QT ), V 1,1/2

2 (QT ) means
that only those elements of these spaces are taken, which vanish on ST =
∂Ω× (0, T ).

The space Cα,α/2(QT ) is a set of all the functions continuous in QT with
the Hölder indices α by z and α/2 by t [25, Chapter I, p. 2–10].

Now we can define the solution of problem (2.50)–(2.53).

Definition 2.1. The functions h(z, t) ∈
◦
V 2(QT ), u(z, t) ∈

◦
W

1,1
2 (QT ) are

called the generalized solution of the initial boundary value problem (2.50)–
(2.54) if they satisfy the integral equalities

−
∫

QT

hηt dz dt+
∫

QT

rhzηz dz dt−
∫

QT

hutηz dz dt

=
∫

QT

rjηz dz dt+
∫

Ω
h0(z)η(z, 0) dz, (2.55)
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−
∫

QT

utζt dz dt+
∫

QT

ν2uzζz dz dt+
∫

QT

phhzζ dz dt

=
∫

QT

fζ dz dt+
∫

Ω
u1(z)ζ(z, 0) dz, (2.56)

u(z, 0) = u0(z), z ∈ Ω, for any η(z, t), ζ(z, t) ∈
◦
W

1,1
2 (QT ) such that η(z, T ) =

ζ(z, T ) = 0.

The generalized solution of (2.50)–(2.54) can be done in another equiv-
alent form.

Definition 2.2. The functions h(z, t) ∈
◦
V 2(QT ), u(z, t) ∈

◦
W

1,1
2 (QT ) are

called the generalized solution of problem (2.50)–(2.54) if almost for all
t1 ∈ [0, T ] they satisfy the equalities

−
∫

Qt1

hηt dz dt+
∫

Qt1

rhzηz dz dt−
∫

Qt1

hutηz dz dt

=
∫

Qt1

rjηz dz dt+
∫

Ω
h0(z)η(z, 0) dz −

∫
Ω
h(z, t1)η(z, t1) dz, (2.57)

−
∫

Qt1

utζt dz dt+
∫

Qt1

ν2uzζz dz dt+
∫

Qt1

phhzζ dz dt

=
∫

Qt1

fζ dz dt+
∫

Ω
u1ζ(z, 0) dz dt−

∫
Ω
ut(z, t1)ζ(z, t1) dz, (2.58)

u(z, 0) = u0(z), z ∈ Ω, where Qt1 = Ω× (0, t1), η(z, t), ζ(z, t) ∈
◦
W

1,1
2 (QT ).

The equivalence of Definitions 2.1 and 2.2 was proved in [35]. The gener-
alized solution is considered in the sense of the distributions theory and for
this reason we should understand the fulfillment of the transmission condi-
tions (2.54) in the sense of integral equalities (2.55), (2.56). For more details
the reader is referred to [35].

Existence theorem

Let us prove the following existence theorem about the solvability of problem
(2.50)–(2.54). For this purpose we assume that the functions r, ν, the free
members f , j, the constant p and initial data h0, u0, u1 in problem (2.50)–
(2.54) enjoy the properties

a) the functions r, ν, f , j are supposed to be smooth functions with
possible jumps in the points zm: −l < z1 < z2 < . . . < zm < l,
r(z) ≥ r0 > 0; ν(z) ≥ ν0 > 0 and p is a positive number;

b) h0 ∈ Cα(Ω), α ∈ (0, 1), h0(±l) = 0, and u0 ∈
◦
W 1

2(Ω) and u1 ∈ L2(Ω).
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Theorem 2.4. In the conditions, formulated above, problem (2.50)–(2.54)
has the solution

h(z, t) ∈
◦
V 2(QT ), u(z, t) ∈

◦
W

1,1
2 (QT ).

Proof. Theorem 2.4 will be proved using the Bubnov–Galerkin method.
Let us check that the functions h, u satisfy equalities (2.57), (2.58). Let

us consider in
◦
W

1,1
2 (QT ) a fundamental sequence of the functions ψk(z),

orthogonal in L2(Ω), such that (ψk, ψl) = δkl. The approximate solution
will be constructed in the following form

hN (z, t) =
N∑

k=1

aN
k (t)ψk(z), uN (z, t) =

N∑
k=1

bNk (t)ψk(z),

where
aN

k = (hN , ψk), bNk = (uN , ψk), k = 1, . . . , N.

The functions aN
k , b

N
k are determined from the conditions

d

dt
(hN , ψk) = ((rhN

z )z − (uN
t h

N )z − (rj)z, ψk),

(hN (z, 0), ψk) = h0k,
(2.59)

d2

dt2
(uN , ψk) = ((ν2uN

z )z − phNhN
z + f, ψk),

(uN (z, 0), ψk) = u0k,
d

dt
(uN (z, 0), ψk) = u1k.

(2.60)

System (2.59), (2.60) is a nonlinear one of ordinary differential equations. Its
solution exists on the interval [0, τ) and maxk(|aN

k (t)|, |bNk (t)|) → ∞ when
t→ τ . We will prove |aN

k (t)|, |bNt (t)|, k = 1, . . . , N, to be bounded functions
for t ∈ [0, T ], and for this reason system (2.59), (2.60) has a solution on the
interval [0, T ] with any positive T .

Let us do the following transformations of equations (2.59), (2.60):

• multiply equalities (2.59) by paN
k (t) and sum up the results for all

k = 1, . . . , N ;

• multiply equalities (2.60) by bNk (t) and sum up the results for all k =
1, . . . , N ;

• integrate the equalities obtained with respect to the variable t over the
interval (0, t1), t1 ≤ T , and sum up the final results.

The above steps give us the equality
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1
2
p‖hN (z, t)‖2

2,Ω

∣∣∣t=t1

t=0
+

1
2
‖uN

t (z, t)‖2
2,Ω

∣∣∣t=t1

t=0
+

1
2
‖νuN

t (z, t)‖2
2,Ω

∣∣∣t=t1

t=0
+

‖√prhz‖2
2,Qt1

= −
∫

Qt1

p(rj)zh
N dz dt+

∫
Qt1

fuN dz dt. (2.61)

Note that

‖hN (z, 0)‖2
2,Ω =

N∑
k=1

a2
k(0) ≤ ‖h0‖2

2,Ω,

‖uN
t (z, 0)‖2

2,Ω =
N∑

k=1

b′2k (0) ≤ ‖u1‖2
2,Ω,

‖νuN
z (z, 0)‖2

2,Ω ≤
N∑

k=1

ν2
0b

2
k(0) ≤ ν2

0‖u0‖2
2,Ω,

−1
2

∫
Qt1

pr[(hN
z )2 + 2hN

z j + j2] dz dt ≤ 0.

For this reason the following inequality is valid

1
2
p‖hN (z, t1)‖2

2,Ω +
1
2
‖uN

t (z, t1)‖2
2,Ω +

1
2
‖νuN

z (z, t1)‖2
2,Ω +

1
2
‖√prhN

z ‖2
2,Qt1

≤ µ2 + |
∫

Qt1

fuN
t dz dt|,

where
µ2 =

1
2
p‖h0‖2

2,Ω +
1
2
‖u1‖2

2,Ω +
1
2
‖νu0,z‖2

2,Ω +
1
2

∫
Qt1

prj2 dz dt.

In particular, we have

1
2
‖uN

t (z, t1)‖2
2,Ω ≤ µ2 +

∣∣∣∣ ∫
Qt1

fuN
t dz dt

∣∣∣∣.
Let us integrate the latter inequality over the interval [0, T ]

1
2
‖uN

t ‖2
2,QT

≤ µ2T +
∫ T

0

∣∣∣∣ ∫
Qt1

fuN
t dz dt

∣∣∣∣ dt1. (2.62)

Note that∣∣∣∣ ∫
Qt1

fuN
t dzdt

∣∣∣∣ ≤ δ2
∫

QT

(uN
t )2dzdt+

1
2δ2

∫
QT

f2 dz dt. (2.63)

Setting δ2 = 1/4T we have∫ T

0

∣∣∣∣ ∫
Qt1

fuN
t dz dt

∣∣∣∣ dt1 ≤ 1
4

∫
QT

(uN
t )2 dz dt+ 2T 2

∫
QT

f2 dz dt. (2.64)
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Then inequalities (2.62), (2.64) yield

1
4
‖uN

t ‖2
2,QT

≤ µ2T + 2T
∫

QT

f2 dz dt

Formula (2.63) with δ2 = 1/4T gives us∣∣∣∣ ∫
Qt1

fuN
t dz dt

∣∣∣∣ ≤ 1
4T

∫
QT

(uN
t )2 dz dt+ 2T

∫
QT

f2 dz dt

≤ µ2 + 4T
∫

QT

f2 dz dt.

Hence, from (2.61) the following inequality is obtained:

p

2
‖hN (z, t1)‖2

2,Ω +
1
2
‖uN

t (z, t1)‖2
2,Ω +

1
2
‖νuN

z (z, t1)‖2
2,Ω +

1
2
‖√prhN

z ‖2
2,Qt1

≤ 2µ2 + 4T
∫

QT

f2 dz dt ≡ µ1, (2.65)

with the constant µ1 independent of N . From (2.65) follows that all func-
tions

aN
k (t) = (hN (z, t), ψk(z)),

bNk (t) = (uN (z, t), ψk(z)), b′Nk (t) = (uN
t (z, t), ψk(z))

are uniformly bounded on the interval (0, t1), t1 ≤ T .
Let us show that they are equicontinuous functions on the interval [0, T ]

for a fixed number k and any N ≥ k. In fact, from (2.59) we can obtain

aN
k (t+ ∆t)− aN

k (t) =
∫

Qt,t+∆t

[(rhN
z )z − (uN

t h
N )z − (rj)z]ψk(z) dz dt,

where Qt,t+∆t = Ω× (t, t+ ∆t). To estimate the right-hand side one should
use the following inequalities∫

Qt,t+∆t

|v1v2v3| dz dt ≤ ‖v1‖q1,r1,Qt,t+∆t
‖v2‖q2,r2,Qt,t+∆t

‖v3‖q3,r3,Qt,t+∆t
, (2.66)

qi, ri ∈ [1,∞), i = 1, 2, 3,
1
q1

+
1
q2

+
1
q3

= 1,
1
r1

+
1
r2

+
1
r3

= 1;

‖v‖q,r,Qt,t+∆t
≤ β

2
r
‖vz‖2,Qt,t+∆t

+ β
(
1− 2

r

)
vrai max

0≤t≤T
|v|2,Ω, (2.67)

r ∈ [4,∞), q ∈ [2,∞),
1
r

+
1
2q

=
1
4
;∫

Qt,t+∆t

|rhN
z ψk,z| dz dt ≤ C‖ψk,z‖2,Qt,t+∆t

‖hN
z ‖2,Qt,t+∆t

, (2.68)
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∫
Qt,t+∆t

|uN
t h

Nψk,z| dz dt ≤ ‖ψk,z‖2,Qt,t+∆t
‖uN

t ‖2
1,2,Qt,t+∆t

‖hN‖∞,4,Qt,t+∆t
.

(2.69)

Using the fact that integrals (2.68), (2.69) tend to zero when ∆t → 0, we
obtain

|aN
k (t+ ∆t)− aN

k (t)| ≤ ε(∆t)‖ψk,z‖2,Ω

with ε(∆t) independent of N and tending to zero when ∆t → 0, i.e., the
equicontinuity of aN

k , N = k, k + 1, . . . , with respect to the variable t.
The uniform continuity of the functions bNk follows from the boundedness

of their derivatives with respect to the variable t. By the usual diagonal pro-
cess we can select a subsequence Nm, m = 1, 2, . . . , such that the functions
aNm

k , aNm
k be uniformly converging on [0, T ] to some continuous functions

ak(t), bk(t). The functions ak, bk define the two functions

h =
∞∑

k=1

akψk, u =
∞∑

k=1

bkψk.

The convergence of the functions hNm
k to the function h is a weak L2(Ω)-

convergence and uniform on [0, T ]. In fact, for any ψ(z) ∈ L2(Ω) we have

(hNm − h, ψ) =
s∑

k=1

(ψ,ψk)(hNm − h, ψk) +
( ∞∑

k=s+1

(hNm − h, (ψ,ψk)ψk

)
,

with ∣∣∣∣(hNm − h,

∞∑
k=s+1

(ψ,ψk)ψk

)∣∣∣∣ ≤ C ′
( ∞∑

k=s+1

(ψ,ψk)
)1/2

≡ C ′R(s),

where C ′ is independent of s. Let ε be a small positive number. We can
choose a number s so small that C ′R(s) < ε/2, and a number N so big that∣∣∣∣ s∑

k=1

(ψ,ψk)(hNm − h, ψk)
∣∣∣∣ < ε/2.

As a result we obtain |(hNm − h, ψ)| < ε for all t ∈ [0, T ]. Thus it has been
shown that the sequence hNm has a weak converge in L2(Ω) uniformly by
t ∈ [0, T ].

Note that uNm are the bounded functions in L∞(0, T ;
◦
W 1

2(Ω)) and uNm
t

are the bounded ones in L∞(0, T ;L2(Ω)). For this reason uNm → u ∗-weakly

in L∞(0, T ;
◦
W 1

2(Ω)) but uNm
t → ut ∗-weakly in L∞(0, T ;L2(Ω)). The func-

tions uNm belong to
◦
W

1,1
2 (QT ) and as

◦
W

1,1
2 (QT ) ↪→ L2(QT ) we can say that
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uNm → u strongly in L2(QT ) almost everywhere. It follows from estimate
(2.65) that one can extract from the sequence hNm a subsequence converging
to h weakly in L2(QT ) together with hNm

z . Without loss of generality we can
assume that the sequences hNm , uNm tend to h, u in the above mentioned
sense. By well-known properties of weak convergence inequality (2.65) is
valid for the limiting functions h, u, too.

Let us now check that the functions h, u satisfy equalities (2.55), (2.56).
First, we will show that the function h satisfies inequality (2.55). Multiply
equality (2.59) with a smooth function αk(t) equalled to zero for t = T , sum
up the equalities obtained with all k from 1 up to N ′ ≤ N , and integrate
the final result with respect to the variable t over the interval [0, T ]. After
integration by parts we obtain∫ T

0
(hN ,ΦN ′

t ) dt =
∫ T

0

[
(rhN

z ,Φ
N ′
z )− (uN

t h
N ,ΦN ′

z )− (rj,ΦN ′
z )

]
dt, (2.70)

where ΦN ′
(z, t) =

∑N ′

k=1 αk(t)ψk(z). In particular, it is possible in equality
(2.70) to pass to a limit with the selected above subsequences hNm , uNm with
fixed ΦN ′

and to obtain equality (2.70) with h, u instead of hN , uN . The
possibility of passing to the limit in (uN

t h
N ,ΦN ′

z ) follows from (2.65)–(2.69)
and a weak convergence proved earlier. Taking advantage of Lemma 4.12
from [25, Chapter II, p. 89] we obtain the set of the functions ΦN ′

is dense
one in the space of all functions Φ used in the definition of generalized
solution. By this reason, h satisfies equality (2.55) and belongs to

◦
V 2(QT ).

In addition the following inequality is valid

max
QT

|h(z, t)| ≤ C, h(z, t) ∈ Cα, α/2(QT ).

Really, consider equality (2.55) separately from (2.56) and apply Theo-
rems 7.1 and 10.1 from [25, Chapter III, p. 181, 204]. For application of
these theorems it is necessary to fulfil the condition

u2
t ∈ L1,2/(1−2κ)(QT ), κ ∈

(
0,

1
2

)
,

which follows from estimate (2.65). The set of the functions ΦN ′
is dense

one in
◦
W

1,1
2 (QT ), i.e., h(z, t) satisfies equality (2.55) and is the generalized

solution from
0
V 2 (QT ).

Repeating all the transformations which were made with equality (2.59)
with the function h for equality (2.60), we arrive at:∫ T

0
(uN

t ,Φ
N ′
t ) dt =

∫ T

0

[
(ν2uN

z ,Φ
N ′
z )− (phNhN

z ,Φ
N ′

) + (f,ΦN ′
)
]
dt+∫

Ω
uN

1 ΦN ′
dz, uN (z, 0) = uN

0 (z). (2.71)
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Considering the functions ΦN ′
as fixed ones pass in the latter equality to

the limit with respect to the above-selected sequence. For this reason we
obtain equality (2.71) with the functions h, u instead of hN , uN∫ T

0
(ut,ΦN ′

t ) dt =
∫ T

0

[
(ν2uz,ΦN ′

z )− (phhz,ΦN ′
) + (f,ΦN ′

)
]
dt∫

Ω
u1ΦN ′

dz, u(z, 0) = u0(z).

Note that since maxQT
|h| ≤ C, then

∫ T
0 (phhz,ΦN ′

) dt is a bounded integral

for any ΦN ′ ∈
0
W

1,1

2 (QT ) and, as a set of the functions ΦN ′
is dense in the

space considered in the definition of a generalized solution (see Lemma 4.12
from [25, Chapter II, p. 89]), we obtain the function u(z, t) satisfying equality

(2.56) and being the generalized solution from
◦
W

1,1
2 (QT ).

Thus, the existence theorem about solvability of problem (2.50)–(2.54)
has been proved.

Remark 2.3. Applying Lemma 4.1 from [25, Chapter III, p. 158] and The-
orem 2.4 it is easy to show that any generalized solution h(z, t) of problem

(2.50)–(2.54) from
◦
V 2(QT ) belongs to

◦
V

1,1/2
2 (QT ), too.

Uniqueness theorem

The proof of the uniqueness theorem is based on a priori estimate.

Lemma 2.1. Let h(z, t) ∈
◦
V

1,1/2
2 (QT ), u(z, t) ∈

◦
W

1,1
2 (QT ) be the general-

ized solution of problem (2.50)–(2.54). Then the following inequality is valid
for almost all t1 ∈ [0, T ]

1
2

∫
Ω
{ph2(z, t) + u2

t (z, t) + ν2(z)u2
z(z, t)} dz

∣∣∣t=t1

t=0
+

1
2

∫
Qt1

prh2
z dz dt

≤
(

1
2

+ t1

) ∫
Qt1

prj2 dz dt+ t21

∫
Qt1

f2 dz dt, (2.72)

where Qt1 = Ω× (0, t1).

Proof. Let h, u be the generalized solution of problem (2.50)–(2.54), i.e.,
(see formulas (2.55), (2.56))

−
∫

QT

hηt dz dt+
∫

QT

rhzηz dz dt−
∫

QT

hutηz dz dt

=
∫

QT

rjηz dz dt+
∫

Ω
h0(z)η(z, 0)dz,



30 Chapter 2. Direct problems

−
∫

QT

utζt dz dt+
∫

QT

ν2uzζz dz dt+
∫

QT

phhzζ dz dt

=
∫

QT

fζ dz dt+
∫

Ω
u1(z)ζ(z, 0) dz.

Consider the test functions η̂k̄(z, t) and ζ̂k̄(z, t) defined by the formulas

η̂k̄ =
1
k

∫ t

t−k
η̂(z, τ) dτ, ζ̂k̄ =

1
k

∫ t

t−k
ζ̂(z, τ) dτ,

where η̂(z, t), ζ̂(z, t) ∈W 1,1
2 (Q−k,T ), and η̂(z, t) = ζ̂(z, t) = 0 for t ∈ [−k, 0]∪

[T − k, T ], Q−k,T = Ω× (−k, T ). Then we have

−
∫

QT

hη̂k̄,t dz dt = −
∫

QT

hkη̂t dz dt =
∫

QT

hk,tη̂ dz dt.

To determine the latter equalities there was used the relation∫ T

0
hη̂k̄ dt =

∫ T−h

0
hkη̂ dt,

which is valid for any piecewise summable on [−k, T ] functions h, η̂ such
that one of them is equal to zero for t ∈ [−k, 0] ∪ [T − k, T ] and hk =
1
k

∫ t+k
t h(z, τ)dτ . In a similar way we obtain

−
∫

QT

utζ̂k̄,t dz dt =
∫

QT

uk,ttζ̂ dz dt.

In all other terms we can carry over the average (·)k̄ from the functions η̂, ζ̂
on others ones. Taking into account the permutability of such an average
with differentiation with respect to the variable z we obtain the following
equalities∫

QT−k

hk,tη̂ dz dt+
∫

QT−k

(rhz − hut − rj)kη̂z dz dt = 0, (2.73)∫
QT−k

uk,ttζ̂ dz dt+
∫

QT−k

ν2uk,z ζ̂z dz dt+
∫

QT−k

p(hhz)kζ̂ dz dt

=
∫

QT−k

f ζ̂ dz dt. (2.74)

Note that these equalities are valid for the functions η̂, ζ̂ from a set of
functions being wider than the above-considered one; namely, for any func-
tions η̂, ζ̂ which are equal to zero for t ≥ t1 and coincide with functions
η ∈

◦
V

1,0
2 (Qt1), ζ ∈

◦
W

1,1
2 (Qt1) for t ∈ [0, t1], where 0 ≤ t1 ≤ T −k. This fact

was proved in [35].
Let us take η = hk, ζ = uk,t for t ∈ [0, t1] and rewrite in (2.73), (2.74)

the corresponding terms in the following form
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∫
Qt1

hk,thk dz dt =
1
2

∫
Ω
h2

k dz
∣∣∣t=t1

t=0
,∫

Qt1

uk,ttuk,t dz dt =
1
2

∫
Ω
u2

k,t dz
∣∣∣t=t1

t=0
,∫

Qt1

ν2uk,zuk,zt dz dt =
1
2

∫
Ω
ν2u2

k,z dz
∣∣∣t=t1

t=0
.

Using the formulas obtained and letting k → 0, from (2.73), (2.74) we can
obtain the equality

1
2

∫
Ω
(ph2 + u2

t + ν2u2
z) dz

∣∣∣t=t1

t=0
+

∫
Qt1

prh2
z dz dt

=
∫

Qt1

prjhz dz dt+
∫

Qt1

fut dz dt.

Note that∫
Qt1

pr

(
1
2
h2

z − jhz +
1
2
j2

)
dz dt =

1
2

∫
Qt1

pr(hz − j)2 dz dt ≥ 0.

For this reason the following estimate is valid

1
2

∫
Ω
(ph2 + u2

t + ν2u2
z) dz

∣∣∣t=t1

t=0
+

1
2

∫
Qt1

prh2
z dz dt

≤ 1
2

∫
Qt1

prj2 dz dt+
∣∣∣∣ ∫

Qt1

fut dz dt

∣∣∣∣. (2.75)

Integrating inequality (2.75) over [0, t1] we obtain the inequality:∫
Qt1

u2
t dz dt ≤

1
2

∫
Qt1

prj2 dz dt+ t1ε

∫
Qt1

u2
t dz dt+

t1
2ε

∫
Qt1

f2 dz dt.

Substituting the latter inequality with t1ε = 1/2 in (2.75) gives us

1
2

∫
Ω
(ph2 + u2

t + ν2u2
z) dz

∣∣∣t=t1

t=0
+

1
2

∫
Qt1

prh2
z dz dt

≤ 1
2

∫
Qt1

prj2 dz dt+ t1

∫
Qt1

prj2 dz dt+ t21

∫
Qt1

f2 dz dt

=
(

1
2

+ t1

) ∫
Qt1

prj2 dz dt+ t21

∫
Qt1

f2 dz dt.



32 Chapter 2. Direct problems

Using estimate (2.72) we can show similar to [35] that

max
QT

|h(z, t)| ≤ C0, h(z, t) ∈ Cα, α/2(QT ),

‖u(z, t)‖ ◦
W

1,1
2 (QT )

≤ C1.
(2.76)

Let us now prove the uniqueness theorem about solvability of problem
(2.50)–(2.54).

Theorem 2.5. Problem (2.50)–(2.54) cannot have more than one general-
ized solution.

Proof. Let hn(z, t), un(z, t), n = 1, 2, be two solutions of problem (2.50)–
(2.54). It follows from the above-mentioned arguments that both these
solutions satisfy estimates (2.72), (2.76).

Introduce two functions v(z, t), w(z, t) by the formulas

v(z, t) = (h2(z, t)− h1(z, t))e−λt, w(z, t) = (u2(z, t)− u1(z, t))e−λt,

where λ is a positive number. Then the functions v, w will be the generalized
solution of the problem

vt + λv = (rvz)z − (h2wt + λh2w + u1,tv)z, (2.77)

wtt + 2λwt + λ2w = (ν2wz)z − p(h2vz + h1,zv), (2.78)
v(±l, t) = w(±l, t) = 0, (2.79)
v(z, 0) = w(z, 0) = wt(z, 0) = 0, (2.80)

provided with transmission conditions (2.54) with a natural substitution of
the functions v, w in the place of h, u. Thus the functions v, w satisfy the
integral equalities∫

QT

{−vηt + λvη + rvzηz − h2wtηz − λh2wηz − u1,tvηz} dz dt = 0,∫
QT

{−wtζt + 2λwtζ + λ2wζ + ν2wzζz + ph2vzζ + ph1,zvζ} dz dt = 0.

Reasoning as before we obtain∫
QT−k

{vk,tη̂ + λvkη̂ + (rvz − h2wt + λh2w − u1,tv)kη̂} dz dt = 0,∫
QT−k

{(wk,tt + 2λwk,t + λ2wk)ζ̂ + (ν2wz)kζ̂z} dz dt+ (2.81)∫
QT−k

(ph2vz + ph1,zv)kζ̂ dz dt = 0.

Assume
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η̂(z, t) =

{
η(z, t), if t ∈ (0, t1],
0, if t /∈ (0, t1],

ζ̂(z, t) =

{
ζ(z, t), if t ∈ (0, t1],
0, if t /∈ (0, t1],

where η = vk, ζ = wk,t, and t1 ∈ (0, T − k]. Using these functions we obtain
the following relations∫

QT−k

vk,tvk dz dt =
1
2

∫
Ω
v2
k dz

∣∣∣t=t1

t=0
,∫

QT−k

wk,ttwk,t dz dt =
1
2

∫
Ω
w2

k,t dz
∣∣∣t=t1

t=0
,∫

QT−k

wk,twk dz dt =
1
2

∫
Ω
w2

k dz
∣∣∣t=t1

t=0
.

Let us multiply the first equality in formulas (2.81) by p and sum up with
the second one. Using the latter formulas and the initial data (2.80) the
result in limiting case k → 0 can be transformed to the following form:

1
2

∫
Ω
{pv2(z, t1) + w2

t (z, t1) + ν2(z)w2
z(z, t1) + λ2w2(z, t1)} dz +∫

Qt1

{2λw2
t + λpv2 + prv2

z − pu1,tvzv − λph2wvz + ph1,zvwt} dz dt = 0.

Using the Cauchy inequality gives us∫
Qt1

{2λw2
t + λpv2 + prv2

z − pu1,tvzv − λph2wvz + ph1,zvwt} dz dt

≥ 2λ‖wt‖2
2,Qt1

+ pr0‖vz‖2
2,Qt1

+ λp‖v‖2
2,Qt1

− pC1 max
Qt1

|v| ‖vz‖2,Qt1
−

pmax
Qt1

|v| ‖h1,z‖2,Qt1
‖wt‖2,Qt1

− λpC1‖w‖2,Qt1
‖vz‖2,Qt1

.

Thus, for any λ ≥ 0 and almost all t1 ∈ [0, T ] the following inequality holds:

1
2
‖v(z, t1)‖2

2,Ω +
1
2
‖wt(z, t1)‖2

2,Ω +
λ2

2
‖w(z, t1)‖2

2,Ω +

2λ‖wt(z, t1)‖2
2,Ω + λp‖v‖2

2,Qt1
+ pr0‖vz‖2

2,Qt1

≤ pC1 max
Qt1

|v| ‖vz‖2
2,Qt1

+ λp‖vz‖2
2,Qt1

‖w‖2,Qt1
+

pC1 max
Qt1

|v| ‖wt‖2
2,Qt1

, (2.82)
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which is impossible for sufficiently large values of λ if ‖w(z, t1)‖2
2,Ω 6= 0. This

means the uniqueness of the solution to problem (2.50)–(2.54).
If w(z, t1) = 0 for almost all t1 ∈ [0, T ], then from (2.77), (2.79), (2.80)

we have

vt + λv = (rvz)z − (u1,tv)z, v(z, 0) = 0, v(±l, t) = 0.

Applying the uniqueness theorem for a parabolic equation gives us
v(z, t) ≡ 0.

2.4. The Cauchy problem for
the electromagnetoelasticity equations with
complete nonlinear interaction

In this section, following the original work [35] we will give some results of
solution of the Cauchy problem for electromagnetoelasticity equations when
the nonlinear terms describing interaction of electromagnetic and elastic
fields are presented in both Maxwell’s and the Lamè systems. We note that
some results of this section are novel. For example, there is a new proof of the
existence theorem for any value of the parameter p in contrast to smallness
of this parameter in the previous version of the existence theorem. Another
proof of the uniqueness theorem is presented, too.

The problem statement

Consider the equations

ht = (rhz)z−(hut)z−(rj)z, utt = (ν2uz)z−phhz+f, (z, t) ∈ RT , (2.83)

where RT = R× (0, T ). The functions r, ν, f , j are supposed to be smooth
functions with possible jumps in points zm: −∞ < z1 < z2 < · · · < zm <
+∞, r(z) ≥ r0 > 0; ν(z) ≥ ν0 > 0, p is a positive number.

The following Cauchy problem will be treated for equations (2.83) with
the initial data

h(z, 0) = h0(z), u(z, 0) = u0(z), ut(z, 0) = u1(z), z ∈ R. (2.84)

The Cauchy problem (2.83), (2.84) can be considered to be a diffraction
problem for parabolic-hyperbolic system (2.83), (2.84), i.e., a problem in
RT consisting of several media. The following transmission conditions are
supposed to be fulfilled on the boundaries of such media:
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[h(z, t)]z=zi = 0, [r(z)(hz(z, t)− j(z, t))]z=zi = 0,

[u(z, t)]z=zi = 0, [ν2(z)uz(z, t)]z=zi = 0, i = 1, . . . ,m.
(2.85)

Similar to the case of the previous Section 2.3 we can define the generalized
solution to the Cauchy problem (2.83)–(2.85) in the following form.

Definition 2.3. The functions h(z, t) ∈ V
1,1/2
2 (RT ), u(z, t) ∈ W 1,1

2 (RT ),
where RT = R × (0, T ), are called the generalized solution of the Cauchy
problem (2.83)–(2.85) if they satisfy the integral equalities

−
∫

RT

hηt dz dt+
∫

RT

rhzηz dz dt−
∫

RT

hutηz dz dt

=
∫

RT

rjηz dz dt+
∫

R
h0(z)η(z, 0) dz,

−
∫

RT

utζt dz dt+
∫

RT

ν2uzζz dz dt+
∫

RT

phhzζ dz dt

=
∫

RT

fζ dz dt+
∫

R
u1(z)ζ(z, 0) dz,

u(z, 0) = u0(z), z ∈ R, for any η(z, t), ζ(z, t) ∈W 1,1
2 (RT ) such that η(z, T ) =

ζ(z, T ) = 0.

Main results

Let us formulate the existence theorem about solvability of the Cauchy prob-
lem. For this purpose we assume that the functions r, ν, the free members
f , j, the constant p, and initial data h0, u0, u1 in the Cauchy problem
(2.83)–(2.85) satisfy the properties

a) the functions r, ν, f , j are supposed to be smooth functions with a
possible jump in the points zm: −∞ < z1 < z2 < . . . < zm < +∞,
r(z) ≥ r0 > 0; ν(z) ≥ ν0 > 0, and p is a positive number;

b) h0 ∈ Cα(R) ∩ L2(R), α ∈ (0, 1), and u0 ∈W 1
2 (R) and u1 ∈ L2(R).

Theorem 2.6. In the above-mentioned conditions the Cauchy problem
(2.83)–(2.85) has the solution h(z, t) ∈ V 1,1/2

2 (RT ), u(z, t) ∈W 1,1
2 (RT ).

The proof of Theorem 2.4 mentioned in Section 2.3 for the bounded
domain Ω = (−l, l) is based on estimates independent of l and, for this
reason, readily transfers to the case R.

It should be noted that the solution of the Cauchy problem (2.83)–(2.85)
can be constructed as a limit for l → +∞ of the initial boundary value
problem (2.50)–(2.54).
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There is the following uniqueness theorem about solvability of the Cau-
chy problem.

Theorem 2.7. The Cauchy problem (2.83)–(2.85) cannot have more than
one solution.

Demonstration of Theorem 2.7 is similar to the proof of Theorem 2.5 of
the previous section.



Chapter 3

Inverse problems

In this chapter, we present some results of solution to inverse problems for a
system of equations describing linear and nonlinear processes of interaction
of electromagnetic and elastic waves based on motion of particles.

3.1. One-dimensional inverse problem

In this section, we present some results of solution to inverse problems for
the equations of electromagnetoelasticity based on motion of particles. In
our exposition, we follow the work [24].

Let R3 and R3
± be a three-dimensional Euclidean space of the points

x = (x1, x2, x3) and the half-spaces {x ∈ R3 | ±x3 > 0}, respectively. We
assume the half-space R3

− to correspond to the Earth’s atmosphere with the
constant electromagnetic parameters ε0 > 0, µ0 > 0, and σ0 = 0. Let us
describe the propagation of electromagnetic waves in R3

− with the help of
the following Maxwell system:

ε0
∂E

∂t
= rot H, µ0

∂H

∂t
= − rotE, div H = 0. (3.1)

At the same time, in the half-space R3
+ corresponding to the Earth’s crust,

we observe the interaction of electromagnetic and elastic waves described by
the following system of electromagnetoelasticity:

J = rot H,
∂B

∂t
= − rotE, div B = 0, ρ

∂2u

∂t2
= Div T, (3.2)

where

Div T =
( 3∑

j=1

∂

∂xj
Tij

)3

i=1

.

For the stress tensor T , the vectors of electric and magnetic inductions
D and B, and the vector of the electric current density J , we have the
following defining relations:

T = λ trS · I + 2κS, B = µH, J = σ
(
E + µ

∂u

∂t
×H0

)
, (3.3)

where S is the strain tensor defined by the formula

Sij =
1
2

(∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, 2, 3,
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and I is the unit 3 × 3-matrix. In the above formulas, ρ, λ,κ : R3
+ → R+

are the density of the inhomogeneous medium (the Earth’s crust) and the
Lamé coefficients, respectively; ε, µ, σ : R3

+ → R+ are the dielectric and
magnetic permeabilities and the electrical conductivity of the crust, respec-
tively; and H0 is a constant vector characterizing the Earth’s magnetic field.
Equations (3.1)–(3.3) were derived from the general model of equations of
electromagnetoelasticity (1.20)–(1.25) for the case of an isotropic inhomoge-
neous earth by means of linearization in the neighborhood of the constant
solution (H0,E0,u0) = (H0, 0, 0) and discarding nonlinearities of orders
higher than one. We also assume that the propagation of electromagnetic
oscillations in the Earth’s crust R3

+ is described by the quasi-stationary ap-
proximation of the Maxwell equations. Knopoff has shown [23] that in this
case it is natural to neglect the reverse effect of the electromagnetic field
on the elastic waves propagation. We assume that the following matching
conditions are fulfilled on the Earth’s surface Γ = {x ∈ R3 | x3 = 0}:

[µHk] = [Ek] = 0, k = 1, 2, (3.4)

where the symbol [ · ] denotes a jump of the function across the surface,
where the coefficients of the problem have breaks. As a direct problem for
the system (3.1)–(3.4), we consider the Cauchy problem

(H,E,u)
∣∣
t<0

≡ 0 (3.5)

in the case, when the electromagnetic oscillations arise under the action of
a vertical elastic source concentrated on the Earth’s surface Γ:

Tk3(u)|Γ = δk3δ(t, x1, x2), k = 1, 2, 3. (3.6)

Here δ(·) is the delta-function concentrated at the point (t, x1, x2) = (0, 0, 0)
and δk3 is the Kronecker symbol. Since the propagation of electromagnetic
waves in the Earth’s crust R3

+ is described by the quasi-stationary approxi-
mation of the Maxwell equations, then, to single out the unique solution it
is natural to assume that the following radiation conditions at infinity are
fulfilled:

|H| → 0, |E| → 0 for |x| → ∞. (3.7)

Thus, the direct problem consists in finding the vectors (H,E,u) satis-
fying relations (3.1)–(3.7) provided the properties of the medium described
by the coefficients ε0, µ0, ε, µ, σ, ρ, λ, and κ, are known. The inverse
problem is understood as problem of finding the electromagnetic and elastic
parameters from equations (3.1)–(3.7) if we know some additional informa-
tion about the behavior of certain components of the vectors (H,E,u) on
the Earth’s surface Γ. As an illustration to the proposed approach we will
consider one of the simplest variants of the above inverse problem.
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Statement of a simplified problem

Let us focus our attention on a simple version of equations (3.1)–(3.7). In
this version, however, the main properties of more general models are kept.
Assume that all the coefficients in the problem depend only on one vari-
able x3; in the sequel, denoted by z. For this case, consider the system

∂2u

∂t2
= v2(z)

∂2u

∂z2
, (z, t) ∈ R+ × R, (3.8)

∂e

∂t
= c2(z)

∂2e

∂z2
+ µh0 ∂

2u

∂t2
, (3.9)

∂u

∂z

∣∣∣
z=0

= bδ(t), (3.10)( ∂

∂z
− c0

(c0
c

)2 ∂

∂t

)
e
∣∣∣
z=0

= 0, (3.11)

lim
z→∞

e = 0, (e, u)
∣∣
t<0

≡ 0. (3.12)

Here u = <Fx1x2(u3)
∣∣
ν1=ν2=0

, e = <Fx1x2(E1)
∣∣
ν1=ν2=0

are the values of
the generalized Fourier transforms with respect to the variables x1, x2 of the
functions u3 and E1, respectively, at ν1 = ν2 = 0; ν1, ν2 are the variables dual
to x1, x2; v(z) =

√
(λ+ 2κ)/ρ is the velocity of longitudinal elastic waves;

c(z) =
√
σµ is a characteristic of the process of diffusion of electromagnetic

waves in the Earth’s crust; c0 = (ε0µ0)−1/2 is the velocity of electromagnetic
waves in the Earth’s atmosphere; b = (λ(0)+2κ(0))−1; and h0 is the number
characterizing the constant magnetic field of the Earth.

System (3.8)–(3.12) is obtained by applying the Fourier transform to
system (3.1)–(3.7). Since the coefficients of the problem are known functions
in R3

−, the upper half-space was excluded from the consideration. For this,
we replaced its effect by the corresponding boundary condition (3.11).

Let us introduce the following class of functions:

Definition 3.1. Let us say that the functions c(z) and v(z) belong to the
class M if

a) there exist positive numbers cm, vm, zn, and z′n, m = 1, 2, . . . , k + 1,
n = 1, 2, . . . , k, such that

c(z) =

{
cm, z ∈ (zm−1, zm), m = 1, 2, . . . , k,
ck+1, z > zk,

v(z) =

{
vm, z ∈ (z′m−1, z

′
m), m = 1, 2, . . . , k,

vk+1, z > z′k,

where z′0 = z0 = 0;
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b) there exist positive constants τv and τc such that

τv =
z′1 − z′0
v1

=
z′2 − z′1
v2

= . . . =
z′k − z′k−1

vk
,

τc =
z1 − z0
c1

=
z2 − z1
c2

= . . . =
zk − zk−1

ck
.

We can now formulate the inverse problem.

Inverse Problem 3.1. The functions u0(t) and e0(t) and the constants
τv and τc are known. It is required to find the functions c(z), v(z) ∈ M, i.e.,
the set {cm, vm, zn, z

′
n; m = 1, . . . , k + 1; n = 1, . . . , k}, such that

u|z=0 = u0(t), e|z=0 = e0(t),

where u, e is the solution to problem (3.8)–(3.12).

Inverse problem for a system of ordinary differential
equations

To illustrate a possible approach to the solution of Inverse Problem 3.1 we
consider the following system. In equations (3.8)–(3.12), we formally replace
the derivative ∂e/∂t by the derivative ∂2e/∂t2, i.e., instead of equation (3.9)
we consider the equation

∂2e

∂t2
= c2(z)

∂2e

∂z2
+ µh0 ∂

2u

∂t2
.

To construct an algorithm for solving the so-modified problem we use the
generalized Fourier transform with respect to the variable t. For conve-
nience, we represent our problem in the form of the two subproblems:

d2u

dz2
+ ω2v−2u = 0, z ∈ R+, (3.13)

du

dz

∣∣∣
z=0

= hu(ω),
du

dz
− iωv−1u

z →∞−−−−→ 0, (3.14)

[u]
∣∣
z=z′m

=
[
v2du

dz

]∣∣∣
z=z′m

= 0, m = 1, 2, . . . , k, (3.15)

d2e

dz2
+ ω2c−2e = ω2c−2µh0u, z ∈ R+, (3.16)

de

dz

∣∣∣
z=0

= he(ω),
de

dz
− iωc−1e

z →∞−−−−→ 0, (3.17)

[e]
∣∣
z=zm

=
[
c2
de

dz

]∣∣∣
z=zm

= 0, m = 1, 2, . . . , k. (3.18)
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Here hu(ω) is the Fourier transform with respect to the variable t of the
corresponding boundary condition on the function u in equations (3.8)–
(3.12) and the function he(ω) will be defined later. Note that problems
(3.13)–(3.15) and (3.16)–(3.18) can be successively solved.

Inverse Problem 3.2. It is required to find a function v(z) ∈ M such that

u(0, ω) = Φu(ω), (3.19)

where Φu(ω) is a given function and u(z, ω) is the solution to problem (3.11).

If we know the solution to Inverse Problem 3.2, we can also determine the
function c(z) because in this case the right-hand side of equation (3.16) will
be a known function. Thus, we can consider the following inverse problem.

Inverse Problem 3.3. We know the functions Φe(ω) and u(z, ω). It is
required to find a function c(z) ∈ M such that

e(0, ω) = Φe(ω), (3.20)

where e(z, ω) is the solution to problem (3.16)–(3.18).

Remark 3.1. Since the function e(0, ω) is assumed to be known, then
we can also calculate the value of the derivative ∂e/∂t for z = 0. Thus,
under the assumption that we know the constant c1, the function he(ω) in
equations (3.16)–(3.18) is the Fourier transform with respect to the variable t
of the formula

c0

(c0
c1

)2 ∂e(0, t)
∂t

and thus can be calculated.

Summarizing the above considerations we can say that the original In-
verse Problem 3.1 was decomposed into two Inverse Problems 3.2 and 3.3.
Using the results of solution to the corresponding inverse problems, we can
propose the following recursive algorithm for the solution of Inverse Prob-
lem 3.2:

a) determine the numbers

ϕm =
∫ ω0+π/τv

ω0

h−1
u (ω) Φu(ω) exp(−2imωτv) dω, (3.21)

hm
n = hm

m−1h
m−1
m−n−1 + hm−1

n , n = 0, 1, . . . ,m− 2, m = 2, 3, . . . , k,

hm
m−1 = −γm−1, h1

0 = hm
m = 0, γ1 = ϕ1/2ϕ0,
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γm = (2ϕ0)−1
(
ϕm +

m−1∑
n=1

hm
n ϕm−n

)/ m−1∏
n=1

(1− γ2
n), m = 2, 3, . . . , k,

where ω0 is an arbitrary positive number;

b) determine the numbers

v1 =
π

τvϕ0
, vm+1 =

1 + γm

1− γm
vm, m = 1, 2, . . . , k. (3.22)

Using formulas (3.20), find the numbers z′m, m = 1, 2, . . . , k. This completes
the solution of Inverse Problem 3.2.

To construct a solution of Inverse Problem 3.3 let us consider the sets

(zm−1, zm) ∩ (z′n−1, z
′
n), m = 1, 2, . . . , k, n = 1, 2, . . . , k.

Since the function un(z, ω), n = 1, 2, . . . , k, on the right-hand side of the
differential equation (3.16) has the form

un(z, ω) = u1
n + u2

n = Bn
1 exp

( iωz
vn

)
+Bn

2 exp
(
− iωz
vn

)
,

then we can use the following representation for the solution of problem
(3.16)–(3.18):

em(z, ω) = e0m + e1m + e2m, (3.23)

where

e0m = Am
1 exp

( iωz
cm

)
+Am

2 exp
(
− iωz
cm

)
is the general solution to the homogeneous differential equation (3.16) and
ejm, j = 1, 2 are its particular solutions in the cases, when the function u on
the right-hand side is replaced by uj

m, j = 1, 2, respectively. These particular
solutions can be represented in the form

ejm = rj
m exp

{
(−1)j+1 iωz

vn

}
, j = 1, 2, (3.24)

where

rj
m = −

ω2v2
nh

0µBm
j

ω2(v2
n − c2m)

= −µh0Bm
j

(
1−

(cm
vn

)2
)−1

, j = 1, 2. (3.25)

It is known that for most of physical materials the ratio cm/vn is less
than 10−1, therefore, we can neglect the term (cm/vn)2 in (3.25) and set
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rj
m = −µh0Bm

j , j = 1, 2. (3.26)

Taking into account the fact that we can represent the boundary condition in
(3.17) in the form of recursive relationships with Bm

j , analogous formulas can
be derived from relations (3.16)–(3.18), (3.21)–(3.24), and (3.26). Thus, the
algorithm of solution of Inverse Problem 3.2 can also be used for solution of
Inverse Problem 3.3. There is only one difference in the use of the additional
information (3.20). We have

e1(0, ω) = e01(0, ω) + e11(0, ω) + e21(0, ω) = A1
1+A1

2− µh0(B1
1 +B1

2) = Φe(ω),
de1
dz

∣∣∣
z=0

= iωc−1
1 (A1

1 −A1
2)− iωv−1

1 µh0(B1
1 −B1

2) = he(ω).

Since
B1

1 +B1
2 = Φu(ω), iωv−1

1 (B1
1 −B1

2) = hu(ω),

then, the algorithm of solution of Inverse Problem 3.3 can be formulated as
follows:

a) find the numbers

ϕ′m =
∫ ω1+π/τc

ω1

(h′)−1(ω) Φ′(ω) exp(−2imωτc)dω, (3.27)

where ω1 is some positive number and

h′(ω) = he(ω) + µh0hu(ω), Φ′(ω) = Φe(ω) + µh0Φu(ω);

b) find the numbers

c1 =
π

τcϕ′0
, cm+1 = cm

1 + γm

1− γm
, m = 1, 2, . . . , k, (3.28)

where γm, m = 1, 2, . . . , k, are determined by formulas (3.21) with ϕm

replaced by ϕ′m.

The numbers zm are found by formulas (3.20). Thus, Inverse Problem 3.1
is solved by formulas (3.21), (3.22), (3.27), and (3.28).

Remark 3.2. In fact, we have formulated an algorithm for solution of
Inverse Problems 3.2 and 3.3 of reconstructing the parameters of a medium
from additional information of the form (3.21) about the solution of the
corresponding direct problems (3.13)–(3.15) and (3.16)–(3.18). Using the
relationship between the solutions to differential equations of the parabolic
and hyperbolic types, we can formulate a similar algorithm for solving the
original Inverse Problem 3.1. Since the corresponding formulas are very
bulky, we dwelt on demonstrating this approach in a simpler case, when we
have formally changed the type of the differential equation for e(z, t) from
parabolic to hyperbolic.
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3.2. Inverse problems for
the electromagnetoelasticity equations for
weakly conducting media

In this section, following the work [42], we present some results of solution
of inverse problems for a system of equations describing the linear process
of interaction of electromagnetic and elastic waves in a weakly conducting
elastic medium. The results of the Cauchy problem solution represented in
Section 2.1 will be sufficiently used.

Formulation of an inverse problem and main results

We now consider the case, when the coefficients of equations (2.12)–(2.15)
are known constants outside a finite domain D and are unknown functions
of x in D. We also assume that the magnetic permeability µ is constant
everywhere in R3. For simplicity we assume that all the coefficients are
functions of the class Cm(R3) with a sufficiently large m and are continuous
together with all their derivatives of order up to m on the boundary of the
domain D. Let S be some closed sufficiently smooth surface enclosing the
domain D. Assume that the function V 1 = (H1,E1,u1) (the solution to
the Cauchy problem (2.12)–(2.15)) is known on the set S × [0, T ], where T
is a sufficiently large positive number, and x0 is an arbitrary point of the
surface S, i.e.,

V 1 = F (x, t, x0), (x, t, x0) ∈ S × [0, T ]× S ≡ G.

Remark 3.3. In what follows it is convenient for us to mark the depen-
dence of functions on the variable x0 because in the inverse problems under
consideration the source position is a variable parameter which will be used.

Inverse Problem 3.4. Find the coefficients ε, σ, λ, ρ, and κ in the do-
main D if the function F (x, t, x0) is given.

In the sequel, we will assume that T ≥ d/m3, where d is diameter of the
domain D and m3 is the constant from formula (2.19). Using representation
(2.21) from the function F (x, t, x0) we can uniquely determine the following
quantities:

a) τk(x0, x), (x0, x) ∈ S × S, k = 1, 2, 3;

b) αi1
n (x0, x), βi1

n (x0, x), γi1
n (x0, x), (x0, x) ∈ S × S, i = 1, 2, 3, n ≥ −2.

Inverse Problem 3.4 is reduced to the successive solution of the inverse
kinematic problem of reconstructing the velocities ck(x), k = 1, 2, 3, inside
the domain D from the functions τk(x0, x), (x0, x) ∈ S × S, k = 1, 2, 3, and
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subsequent determination of the still unknown combinations of the sought
functions from the functions αi1

n (x0, x), βi1
n (x0, x), and γi1

n (x0, x) given on
S×S. The theory of solution of the inverse kinematic problem in the case of
isotropic media is developed sufficiently well (see, e.g., [39]). In particular, it
was established that in the case of simple metrics, the values of the functions
τk(x0, x), k = 1, 2, 3, on the set S × S uniquely define the functions ck(x),
k = 1, 2, 3, inside the domainD. Thus, we can think that the velocities ck(x),
k = 1, 2, 3, were determined inside the domain D as a result of solution to
the corresponding inverse kinematic problems. If we know the functions
ck(x), k = 1, 2, 3, then we know three nonlinear combinations of parameters
of the medium (see formulas (2.16)). Since the coefficient µ is assumed to be
known and constant everywhere, then the coefficient ε is uniquely defined
from these relations, and the elastic moduli can be expressed in terms of
the density of the medium ρ and the known velocities c2 and c3 only. Thus,
among the sought for parameters only the electrical conductivity σ and
the density of the medium ρ remain unknown. To find them, we use the
functions αi1

n (x0, x), βi1
n (x0, x), and γi1

n (x0, x).
It should be noted that this method of reducing an inverse problem to so-

lution of the inverse kinematic problem and the subsequent use of amplitudes
for determining the rest of the relations between the desired coefficients was
earlier applied by Romanov [38, 39, 40] and Yakhno [49] for investigation of
simpler inverse problems for hyperbolic equations of second order and for
equations arising in the theory of elasticity.

Consider one possible statement of the inverse problem of reconstructing
the parameters σ and ρ; we will use the function α11

−2(x
0, x) for its solution.

Assume that f0 = 0 and σ(x) ≡ σ0 for x ∈ R3 \ D and α 6= 0 for x ∈ D.
We will show that the problem under consideration can be reduced to the
following integral geometry problem. Consider the integrals∫

Γ1(x0,x)
(aη1 + b) ds = p1(x0, x), (x0, x) ∈ S × S, (3.29)∫

Γ1(x0,x)
aη2 ds = p2(x0, x), (x0, x) ∈ S × S. (3.30)

Assume that we know the functions pk(x0, x), k = 1, 2, with the weights ηk,
k = 1, 2, also known. It is required to determine the coefficients a and b
inside the domain D if they are known outside of D. The coefficients a and b
are related to the parameters of the medium σ and ρ by the formulas

a =
σα

2ρc1ε2 (c21 − c22)
, b = − σ

2c1ε
.

The weight functions ηk, k = 1, 2, are defined by the relations
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η1 = (h0 ·w0)2 |w0|−2 + ξ (h0 · ν)2,

η2 = (h0 ·w0)
(
h0 · (ν ×w0)

)
|w0|−2,

where ξ = (c21 − c22)/(c
2
1 − c23), ξ ∈ (0, 1); ν is a unit vector tangential to

Γ1(x0, x) at the point x; and w0 is the solution to problem (3.46)–(3.48);
this solution is completely defined by specifying the quantities j0 and c1(x).

Remark 3.4. The functions a and b uniquely define only σ and σ/ρ. Thus,
the density of a medium can be uniquely defined only at those points of
the domain D, where σ 6= 0. This characteristic feature of the problem
concerned is a consequence of the fact that we use the information about the
coefficient α11

−2. One can show that in the case, when α31
0 (x0, x), (x0, x) ∈

S × S, is used as additional information (provided f0 6= 0), the density of a
medium is uniquely defined in the domain D.

The fact that equalities (3.29) and (3.30) contain the weight functions ηk,
k = 1, 2, complicates the solution of the corresponding integral geometry
problem in the general case. So, we give only three special formulations of
the original problem.

1. Let c1 = const = c10, j0 = (1, 0, 0) · 4πc210, h0 = (1, 0, 1). Let S(z)
and D(z) denote cross-sections of the surface S and the domain D by
the plane x3 = z. In this case, the integral geometry problem splits to
a one-parameter family of planar problems for each cross-section of the
domain D by the plane x3 = z. The vector ν of the corresponding line
Γ1(x0, x), (x0, x) ∈ S(z) × S(z), can be characterized in this case by the
angular coordinate ϕ: ν = (cosϕ, sinϕ, 0). This coordinate is constant
along Γ1(x0, x) and, consequently, depends only on the boundary points
(x0, x) ∈ S(z) × S(z). Therefore, the weight functions ηk, k = 1, 2, can be
written down as η1 = 1 + ξ cos2 ϕ, η2 = sinϕ. Since the weight function η2

is constant along Γ1(x0, x), equation (3.30) can be written down as∫
Γ1(x0,x)

a ds = p′2(x
0, x), (x0, x) ∈ S × S, (3.31)

where p′2 = p2/sinϕ. The problem of determining the function a from
equation (3.31) is a standard integral geometry problem. Having found the
function a, we can calculate the integral of the product aη1 along Γ1(x0, x)
in formula (3.29). This yields a similar integral geometry problem for deter-
mining the coefficient b. The uniqueness of its solution is evident. A condi-
tional stability estimate is less evident because in the general case the weight
function η1 is not constant on Γ1(x0, x).

The following theorem holds.
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Theorem 3.1. Let (a, b) and (ā, b̄) be two solutions to equations (3.29),
(3.30) corresponding to the data (p1, p2) and (p̄1, p̄2), respectively, and co-
inciding outside the domain D. Then the following estimates hold for the
differences ã = a− ā, b̃ = b− b̄, p̃1 = p1 − p̄1, and p̃2 = p2 − p̄2:∫

D(z)
ã2 dx̄ ≤ 1

2π

∫
S(z)

dl′
∫

S(z)

∣∣∣∂p̃2

∂l
· ∂p̃2

∂l′

∣∣∣ dl, (3.32)∫
D(z)

b̃2 dx̄ ≤ 1
π

∫
S(z)

dl′
∫

S(z)

{
23
8

∣∣∣∂p̃2

∂l
· ∂p̃2

∂l′

∣∣∣ +
∣∣∣∂p̃1

∂l
· ∂p̃1

∂l′

∣∣∣} dl, (3.33)

where dx̄ = dx1dx2; ∂/∂l and ∂/∂l′ denote derivatives in the directions
tangential to S(z) at the points x0 and x, respectively; and dl and dl′ are
the length elements calculated at these points.

It is more convenient to give the proof of Theorem 3.1 later.

2. Consider a slightly modified 2D version of the problem. Namely, let
D be an infinite cylindrical domain with the ruling parallel to the axis x3:
D = D0×R, whereD0 is a cross-section of the domainD by the plane x3 = 0.
Assume that coefficients of the problem are independent of the variable x3.
Let Γ be a simple smooth closed curve enclosing the domain D0; and let
the vectors j0 and h0 be the same as in the previous case. In this case,
the geodesics Γ1(x0, x), (x0, x) ∈ S × S, are planar curves. Denoting the
unit vector tangential to Γ1(x0, x) at the point x by ν = (cosϕ, sinϕ, 0), we
conclude that in this case we also have η2 = sinϕ and η1 = 1+ξ cos2 ϕ. There
is an essential distinction between this and the previous cases; namely, the
weight function is not constant along a geodesic line. In this case, equation
(3.30) can be written down as∫

Γ1(x0,x)
a dx2 = p2(x0, x), (x0, x) ∈ S × S. (3.34)

Thus, p2 is an integral along Γ1(x0, x) of the simplest form of the first
degree. The problems of finding a form of the first degree from its inte-
grals along a family of geodesics of a Riemannian metric were considered in
[4, 39, 45].

Assume that there are two solutions a and ā to equation (3.34) corre-
sponding to the function p2 and coinciding outside the domain D0. Then
their difference ã = a− ā solves a homogeneous equation. It follows from [4]
that ∂ã/∂x1 = 0, x ∈ D0. Since ã = 0 outside the domain D0, we conclude
that ã = 0, x ∈ D0, i.e., a = ā. Thus, the following uniqueness theorem
holds:

Theorem 3.2. Specifying the functions p1 and p2 for (x0, x) ∈ S × S
uniquely defines the functions a and b in the domain D0.
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It should be noted that certain estimates of the conditional stability of
the solution to equations (3.29), (3.34) can be obtained from the estimates
given in [45].

3. Let us turn to the original formulation of the problem. We consider
the case, when the velocity c1 essentially depends on all three variables x1,
x2, and x3. Let j0 be a constant nonzero vector. We also assume that
the vector h0 may have two different values h0k, k = 1, 2, where h02 =
rh01, r2 6= 1, and that for each vector h0k the function α1

−2(x
0, x) and,

respectively, the functions pk(x0, x), (x0, x) ∈ S ×S, are known. We denote
by p1k, k = 1, 2, the function p1 corresponding to the vectors h0k, k = 1, 2.
From equality (3.29) for h0 = h0k, k = 1, 2, we readily obtain∫

Γ1(x0,x)
aη0 ds = p̄1(x0, x), (x0, x) ∈ S × S, (3.35)∫

Γ1(x0,x)
b ds = p̄2(x0, x), (x0, x) ∈ S × S, (3.36)

where
η0 = (h01 ·w0)2 |w0|−2 + ξ (h01 · ν)2,

p̄1 =
p11 − p12

1− r2
, p̄2 =

p12 − p11r
2

1− r2
.

Thus, using the data corresponding to two different values of the vec-
tor h0, we can split the original problem in two problems independent of each
other. The problem of determining the function b from equation (3.36) is
an integral geometry problem which has been studied in full (see Romanov,
1987).

The following conditional stability theorem (an analogue of estimate
(3.54) from [39]) holds for this problem.

Theorem 3.3. Let b and b′ be two solutions to equation (3.36) correspond-
ing to the right-hand sides p̄2 and p̄′2. Then the following inequality holds
for the differences b̃ = b− b′ and p̃2 = p̄2 − p̄′2:∫

D
c−1
1 b̃2dx ≤ 1

8π

∫
S

∫
S
|gradx p̃2 × n(x)| · |gradx0 p̃2 × n(x0)| ×( 3∑

k,j=1

( ∂2τ1
∂xk ∂x

0
j

)2
)1/2

dSxdSx0 ,

where n(x) is a normal vector to the surface S at the point x.

As concerns the properties of equation (3.35), their investigation requires
additional efforts.
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Reduction to an integral geometry problem

The differential and the integral equations considered here correspond to
Inverse Problem 3.4, which was formulated earlier. As the first step, let us
derive a differential equation for finding the function α11

−2(x). Let f0 = 0.
Then u0 ≡ 0 and, as consequence, α31

k = β31
k = γ31

k ≡ 0 for k < 0.
This means that the function u has no singular part. Let us substitute
representation (2.21) into equations (2.8)–(2.15). Equating the coefficients
at θn(S1), n = −3,−2, we obtain the following relationships between α10

−2,
α20
−2, α10

−1, α20
−1 and α11

−2, α21
−2, α11

−1, α21
−1, α31

0 :

grad τ1 ×α10
−2 + εα20

−2 = 0, grad τ1 ×α20
−2 − µα10

−2 = 0, (3.37)

grad τ1 ×α10
−1 + εα20

−1 − rotα10
−2 = 0,

grad τ1 ×α20
−1 − µα10

−1 − rotα20
−2 = 0,

(3.38)

grad τ1 ×α11
−2 + εα21

−2 = 0, grad τ1 ×α21
−2 − µα11

−2 = 0, (3.39)

grad τ1 ×α11
−1 + εα21

−1 − rotα11
−2 + αα31

0 × h0 + σα20
−2 = 0,

grad τ1 ×α21
−1 − µα11

−1 − rotα21
−2 = 0,

(3.40)

ρα31
0 − (λ+ 2κ) (α31

0 · grad τ1) grad τ1 +

κ
(
grad τ1 × (grad τ1 ×α31

0 )
)
− σµα20

−2 × h0 = 0. (3.41)

Using formulas (2.18), we can transform relations (3.37) and (3.39) to the
equalities

grad τ1 ·α10
−2 = 0, grad τ1 ·α20

−2 = 0,

grad τ1 ·α11
−2 = 0, grad τ1 ·α21

−2 = 0,

which express the principle of orthogonality of the electromagnetic field to
the direction of propagation of its main singularity. To derive equations for
the coefficient α10

−2 we proceed as follows. We take the vector product of the
first relation from (3.38) by grad τ1 and then eliminate the term grad τ1×α20

−1

with the help of the second relation from (3.38). Using the first equality from
(3.37), we eliminate α20

−2 and, finally, obtain

grad τ1 × (grad τ1 ×α10
−1) + εµα10

−1 −
ε rot

(
ε−1(grad τ1 ×α10

−2)
)
− grad τ1 × rotα10

−2 = 0.

For further simplification, we use the following equalities, which are well
known from the vector analysis:

c× (a× b) = a (c · b)− b (c · a),
rot(a× b) = a · div b− b · div a + (b · grad)a− (a · grad)b,

a× rot b = grad(a · b)− (b · grad)a− (a · grad)b− b× rota.

Taking into account formulas (2.18) for τ1 and the equality grad τ1 ·α10
−1 =

div α10
−2, which follows from the second relation from (3.38), we obtain
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Lα10
−2 ≡ 2 grad α10

−2 · grad τ1 + α10
−2

(
∆τ1 − grad ln ε · grad τ1

)
+

(grad ln ε ·α10
−2) grad τ1 = 0. (3.42)

The relations for α11
−2 are derived in a similar way:

Lα11
−2 = 2c−1

1 F , (3.43)

where
F ≡ −c1

2
grad τ1 × (αα31

0 × h0 + σα20
−2).

Using formula (3.41), we can find α31
0 :

α31
0 =

σ

ρ

[h0 ·α10
−2

c21 − c22
grad τ1 −

h0 · grad τ1
c21 − c23

α10
−2

]
.

Thus, the final formula for the function F takes the form

F = a
{

(h0 ·α10
−2)

[
h0 − c21 (h0 · grad τ1) grad τ1

]
+

ξc21 (h0 · grad τ1)2α10
−2

}
+ bα10

−2, (3.44)

where

a =
σα

2ρ (c21 − c22) ε2c1
, b = − σ

2c1ε
, ξ =

c21 − c22
c21 − c23

, ξ ∈ (0, 1). (3.45)

Equations (3.44) and (3.45) imply that the coefficient α11
−2 linearly de-

pends on σ and σ/ρ. Consequently, in this case the inverse problem can
be treated as problem of determining σ and σ/ρ or the coefficients a and b,
which is the same.

The equations for the geodesics Γ1(x0, x) can be written down as

dx

ds
= ν,

dν

ds
= − grad ln c1 + (grad ln c1 · ν) ν,

where s is the Euclidean length of the curve passing through the point x0

and ν = c1 grad τ1 is the unit vector tangential to Γ1(x0, x) at the point x
and oriented in the direction of increasing s.

Let us show that along the geodesic Γ1(x0, x) equations (3.42) and (3.43)
are ordinary differential equations. Indeed,

2
3∑

k=1

∂α10
−2

∂xk

∂τ1
∂xk

= 2c−1
1

dα11
−2

ds
.

Since the magnetic permeability µ is constant, grad ln ε = − grad ln c21.
Further in the treatment we use the equality
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∆τ1 + grad ln c21 · grad τ1 = 2c−1
1

d

ds
ln

[
τ1

(
det

∂g(x0, x)
∂x

)−1/2
]
,

which follows immediately from [39, p. 116, Eq. (4.18)]. The function
g(x0, x) defines the Riemannian coordinates of the point x in the metric
dτ1 = c−1

1 ds, which corresponds to the point x0 and in our case can be
found by the formula

g(x0, x) = −(2c21(x
0))−1 gradx0 τ2

1 (x0, x).

Under the above assumptions, this function is smooth in both variables,
namely g(x0, x) ∈ Cm−2(R6). In a homogeneous space we have g(x0, x) ≡
x− x0.

Let us introduce the new functions

w0(x0, x) = α10
−2(x

0, x) τ1(x0, x)
(
det

∂g(x0, x)
∂x

)−1/2
,

w(x0, x) = α11
−2(x

0, x) τ1(x0, x)
(
det

∂g(x0, x)
∂x

)−1/2
.

Then the differential equations for the functions w0(x0, x) and w(x0, x)
along the geodesic Γ1(x0, x) take the form:

dw0

ds
− (w0 · grad ln c1) ν = 0,

dw

ds
− (w · grad ln c1) ν = F , (3.46)

where

F = a
{

(h0 ·w0)
[
h0 − ν (h0 · ν)

]
+ ξ (h0 · ν)2 w0

}
+ bw0. (3.47)

The initial conditions at the point s = 0 can be found by comparing the
singularities of the solutions (H0,E0,u0) and (H,E,u) in a homogeneous
medium. Since the function H0 in a homogeneous medium is calculated by
the formula

H0 = rot
[ j0

4π |x− x0|
θ−1(S1)

]
,

then it follows that

w0 = (4πc10)−1j0 × grad τ1
∣∣
x=x0 = (4πc210)

−1(j0 × ν0), (3.48)

where ν0 is the unit vector tangential to Γ1(x0, x) at the point x0 and c10
is the value of the velocity c1 outside the domain D. Analyzing the solution
to problem (2.12)–(2.15), corresponding to the homogeneous medium (see
[41, Sec. 4]), we derive the following initial data for w:

w
∣∣
s=0

= (4πc210)
−1(j0 × ν0).
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It should be noted that the vector-functions w0 and w are orthogonal
to the vector ν(x0, x) = c1 grad τ1(x0, x). The first equation from (3.46)
implies that d|w0|2/ds = 0, i.e., the function |w0| is constant along the
geodesic Γ1(x0, x):

|w0| = (4πc210)
−1 |j0 × ν0|.

Let us represent the function w in the form

w = (1 + p1)w0 + p2(ν ×w0).

Trivial calculations bring about the following equations for defining the func-
tions p1 and p2:

dp1

ds
= aη1 + b, p1

∣∣
s=0

= 0, (3.49)

dp2

ds
= aη2, p2

∣∣
s=0

= 0, (3.50)

where
η1 = (h0 ·w0)2 |w0|−2 + ξ (h0 ·w0)2,

η2 = (h0 ·w0)
(
h0 · (ν ×w0)

)
|w0|−2.

Integrating equations (3.49) and (3.50) along Γ1(x0, x), (x0, x) ∈ S × S,
we arrive at:∫

Γ1(x0,x)
(aη1 + b) ds = p1(x0, x), (x0, x) ∈ S × S, (3.51)∫

Γ1(x0,x)
aη2 ds = p2(x0, x), (x0, x) ∈ S × S. (3.52)

Since the function α11
−2 is known for (x0, x) ∈ S×S, therefore, the functions

pk(x0, x), k = 1, 2, are also known for (x0, x) ∈ S × S. Consequently,
the problem of determining the functions a and b from equations (3.51) and
(3.52) is an integral geometry problem. In a special case, when c1 = const =
c10 and the geodesics Γ1(x0, x) are straight lines, this problem is a problem
of tomography.

Proof of Theorem 3.1. Note that estimate (3.32) was obtained in [32],
so we only need to prove estimate (3.33). Following the technique developed
in [32], we can write down the inequality as∫

D(z)

∫ 2π

0

[
(ãη1 + b̃)2 −

(
ã
∂η1

∂ϕ

)2]
dϕdx̄ ≤

∫
S(z)

∫
S(z)

∣∣∣∂p̃1

∂l
· ∂p̃1

∂l′

∣∣∣ dl dl′,
which is an analogue of inequality (3.32). Since
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(ãη1 + b̃)2 −
(
ã
∂η1

∂ϕ

)2
≥ 1

2
b̃2 − ã2 (η2

1 + η2
1ϕ)

≥ 1
2
b̃2 − ã2

[
(1 + cos2 ϕ)2 + sin2 2ϕ

]
,

we have ∫ 2π

0

[
(ãη1 + b̃)2 −

(
ã
∂η1

∂ϕ

)2]
dϕ ≥ π

(
b̃2 − 23

4
ã2

)
.

Consequently,∫
D(z)

(
b̃2 − 23

4
ã2

)
dx̄ ≤ 1

π

∫
S(z)

∫
S(z)

∣∣∣∂p̃1

∂l
· ∂p̃1

∂l′

∣∣∣ dl dl′. (3.53)

Estimate (3.33) follows immediately from inequalities (3.32) and (3.53). This
proves the theorem.

3.3. An inverse problem for
electromagnetoelasticity equations with
partially nonlinear interaction

In this section, following the original work [27], we present some results of
solution to inverse problems for a system of equations of electromagnetoe-
lasticity with partially nonlinear interaction between electromagnetic and
elastic fields. The results of the first initial boundary-value problem solu-
tion presented in Section 2.2 will be sufficiently used.

Formulation of inverse problem

Our main inverse problem consists in determining the function f from equa-
tions (2.26)–(2.33) by appropriate additional information about the solution
to direct problem 2.1.

Now we can formulate the inverse problem.

Inverse Problem 3.5. Determine a set of the functions

u : [0, T ]× Ω2 → R3, E,H : [0, T ]× Ω → R3, f : [0, T ] → R

such that

ρ
∂2u

∂t2
= Div T + f(t) g(t, x), (t, x) ∈ (0, T )× Ω2, (3.54)

u(0, x) = u0(x),
∂u

∂t
(0, x) = u1(x), x ∈ Ω2, (3.55)

u(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω2, (3.56)
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ε
∂E

∂t
+ σE + σµ

∂ũ

∂t
×H = rot H, (t, x) ∈ (0, T )× [Ω1 ∪ Ω2], (3.57)

µ
∂H

∂t
+ rotE = 0, divµH = 0, (t, x) ∈ (0, T )× [Ω1 ∪ Ω2], (3.58)

E(0, x) = E0(x), H(0, x) = H0(x), x ∈ Ω, (3.59)

n×E = 0, (t, x) ∈ (0, T )× ∂Ω, (3.60)

[E × n]∂Ω2 = [H × n]∂Ω2 = 0, (t, x) ∈ (0, T )× ∂Ω2, (3.61)

Φ[E] = φ(t), t ∈ [0, T ]. (3.62)

It is assumed that the functions ε, µ : Ω → R+, σ : Ω → R+, and E0,H0 :
Ω → R3 are continuous in the domain Ω \ ∂Ω2 with possible jumps on the
surface ∂Ω2. We also assume that the functions g : [0, T ]×Ω2 → R3, u0,u1 :
Ω2 → R3, and φ : [0, T ] → R are given and have sufficient smoothness. As
concerns the functional Φ, we assume that it is linear and depends only on
the spatial variables. For example, we may assume that the functional Φ
has the form

Φ[E] =
∫

Ω
K(x) ·E(x) dx, (3.63)

where K : Ω → R3 is a given sufficiently smooth vector-function.

Remark 3.5. It is the additional information (3.62) only that connects the
solutions to the Lamé equations and the Maxwell equations. If instead of
the additional information (3.62) we specify a certain information about the
vector-function u, for example, of the form

Φ[u] = φ(t), t ∈ [0, T ], (3.64)

then Inverse Problem 3.5 splits to the inverse problem of determining the
function f(t) from equations (3.54)–(3.56) and (3.64) and then the direct
problem (3.57)–(3.62).

Solution to inverse problem (3.54)–(3.62)

We now can prove solvability of the inverse problem. We assume that the
function f in the free term of equation (3.54) is unknown and the function g
is known. By Theorems 2.2 and 2.3, our inverse problem (3.54)–(3.62) is
equivalent to the following problem: find a function f ∈ Lp((0, T ); R) such
that

Φ[E(f)(t, ·)] = φ(t), ∀t ∈ [0, T ]. (3.65)

To prove solvability of problem 3.65 we require the fulfillment of the fol-
lowing regularity conditions for the data φ, the function g, and the kernel K
of the functional Φ:
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φ ∈W 2,p
(
(0, T0); R

)
,

g ∈ Lp′
(
(0, T0);H2(Ω2; R3) ∩H1

0 (Ω2; R3)
)
, T0 > 0;

(3.66)

‖g(t, ·)‖2,2,Ω ≤ C6(T1) t−α (3.67)

for almost all t ∈ (0, T1) and certain α ∈ (0, 1/p′) and T1 ∈ (0, T0); and

ε−1K ∈ H(rot; Ω), n×K = 0, ∀x ∈ ∂Ω. (3.68)

Remark 3.6. The first assumption in (3.68) is equivalent to the require-
ment that K ∈ H(rot; Ω1) ∩H(rot; Ω2) and n× [ε−1K]∂Ω2 = 0.

Using the results of [46] and formulas (3.63) and (3.68) we easily obtain
the relation

Φ[ε−1 rotH(t, ·)] =
∫

Ω
H(t, x) · rot(ε−1K)(x)dx := Φ1[H(t, ·)]. (3.69)

Replacing u in equations (3.54) and (3.57) by u(f), applying the linear
functional Φ to both sides of equation (3.57), and using the information
(3.65), we obtain

φ′(t) = Φ1[H(f)(t, ·)]− Φ
[σ
ε
E(f)(t, ·)

]
−

Φ2

[σµ
ε

∂

∂t
U(f)(t, ·)×H(f)(t, ·)

]
, ∀t ∈ [0, T ], (3.70)

where
Φ2[E] =

∫
Ω2

K(x) ·E(x) dx. (3.71)

Equations (3.65) and (3.70) imply that the data (u1,E0,H0, φ) should
satisfy the following consistency conditions:

φ(0) = Φ[E0], φ′(0) = Φ1[H0]− Φ
[σ
ε
E0

]
− Φ2

[σµ
ε

U1 ×H0

]
. (3.72)

On the contrary, if the function f ∈ Lp((0, T ); R) solves equation (3.70),
then, using formulas (3.69) and (3.71), we can conclude that the function f
solves the equation

∂

∂t

{
Φ[E(f)(t, ·)]− φ(t)

}
= 0, ∀t ∈ [0, T ]. (3.73)

Using equation (3.73) and the first condition from (3.72), we can easily
show that the function f is a solution to equation (3.65). Differentiating
equation (3.70) once again with respect to the variable t and taking into
account relation (3.54), we finally obtain
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φ′′(t) = Φ1

[ ∂
∂t

H(f)(t, ·)
]
− Φ

[σ
ε

∂

∂t
E(f)(t, ·)

]
−

Φ2

[σµ
ε

∂

∂t
u(f)(t, ·)× ∂

∂t
H(f)(t, ·)

]
−

Φ2

[σµ
ερ

Div T (u(f)(t, ·))×H(f)(t, ·)
]
−

f(t) Φ2

[σµ
ερ

g(t, ·)×H(f)(t, ·)
]
, for a.a. t ∈ (0, T ). (3.74)

Note that according to the assumptions (3.66)–(3.68) and Theorems 2.2
and 2.3, each term in (3.74) has a sense.

On the contrary, if f ∈ Lp((0, T ); R) is a solution to equation (3.74),
then f should be a solution to the equation

∂

∂t

{
φ′(t)− Φ1[H(f)(t, ·)] + Φ

[σ
ε
E(f)(t, ·)

]
+

Φ2

[σµ
ε

∂

∂t
U(f)(t, ·)×H(f)(t, ·)

]}
= 0, for a.a. t ∈ (0, T ). (3.75)

However, as follows from (3.75) and from the last condition in (3.72),
the function f is a solution to equation (3.70). Thus, we have shown that
the solutions to equations (3.65) and (3.74) are equivalent.

In order that it were possible to rewrite equation (3.74) in the form of
an equation with a stationary point for f , we assume that g and H0 satisfy
the condition∣∣∣∫

Ω2

σ(x)µ(x)
ε(x) ρ(x)

K(x) ·
[
g(t, x)×H0(x)

]
dx

∣∣∣
=

∣∣∣Φ2

[σµ
ερ

g(t, ·)×H0

]∣∣∣ ≥ 2m, for a.a. t ∈ (0, T ), (3.76)

where m is a certain positive constant.
Now we can formulate our main result.

Theorem 3.4. Let ρ, λ,κ and ε, µ, σ satisfy conditions (2.34), (2.35), and
(2.42); and let the functions u0,u1,E0,H0 and g, φ,K satisfy conditions
(2.36)–(2.38), (2.43), (2.44), (3.66)–(3.68), and (3.72). Then there exists a
number T ∗ ∈ (0,min{T0, T1}) for which Inverse Problem (3.54)–(3.62) has
the unique solution (u,E,H, f) satisfying conditions (2.36), (2.39), (2.45),
and (2.46) for every T ∈ (0, T ∗).

Remark 3.7. We can also show that the solution (u,E,H, f) of Inverse
Problem (3.54)–(3.62) continuously depends on the data (u0,u1,E0,H0,
g, φ) in the norms of respective spaces. For this, we need to prove a contin-
uous dependence of the solution on the data, just as was done in the case of
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solutions to direct problems (3.54)–(3.56) and (3.57)–(3.61). Since the proof
is very bulky, we omit this part.

Proof of Theorem 3.4. Introduce the family X(M,T ) of complete met-
ric subspaces in Lp((0, T ); R), this family depending on the two positive
constants M and T :

X(M,T ) =
{
f ∈ Lp((0, T ); R)

∣∣ ‖f‖T,0,p ≤M
}
.

If we assume that f ∈ X(M,T ) is a solution to the operator equation
(3.74), then we can write it in the following form which is convenient for
application of the theorem about a stationary point:

f(t) =
(
Φ2

[σµ
ερ

g(t, ·)×H(f)(t, ·)
])−1

×{
−φ′′(t) + Φ1

[ ∂
∂t

H(f)(t, ·)
]
− Φ

[σ
ε

∂

∂t
E(f)(t, ·)

]
−

Φ2

[σµ
ε

∂

∂t
u(f)(t, ·)× ∂

∂t
H(f)(t, ·)

]
−

Φ2

[σµ
ερ

Div T (u(f)(t, ·))×H(f)(t, ·)
]}

:= N(f)(t) (3.77)

for a.a. t ∈ (0, T ).
Our task is to show the local solvability of equation (3.77). For this, we

set T3(M) = min{T0, T1, T2(M)}, where T2(M) is the unique positive root
of the equation

‖K‖0,2,Ω2

[
C2(T0) + TC3(T0,M)

]
C6 γρ

−1
0 ‖σ‖0,∞,Ω2 ‖µ‖0,∞,Ω2 T

1−α = m.

Using estimate (2.47) and condition (3.76), we can show that each func-
tion f ∈ X(M,T ) satisfies the following basic inequality for a.a. t ∈ (0, T ) ⊂
(0, T3(M)):∣∣∣Φ2

[σµ
ερ

g(t, ·)×H(f)(t, ·)
]∣∣∣

≥
∣∣∣Φ2

[σµ
ερ

g(t, ·)×H0

]∣∣∣− ∣∣∣∣Φ2

[σµ
ερ

g(t, ·)×
∫ t

0

∂

∂t
H(f)(s, ·)ds

]∣∣∣∣
≥ 2m− ‖K‖0,2,Ω2 γρ

−1
0 ‖σ‖0,∞,Ω2 ‖µ‖0,∞,Ω2 ‖g(t, ·)‖0,∞,Ω2 ×∥∥∥ ∂

∂t
H(f)(t, ·)

∥∥∥
T,∞,0,2

· t

≥ 2m− ‖K‖0,2,Ω2

[
C2(T0) + TC3(T0,M)

]
C6γρ

−1
0 ‖σ‖0,∞,Ω2 ×

‖µ‖0,∞,Ω2 T
1−α ≥ m. (3.78)

Taking into account formulas (2.39), (2.47), and (3.78) and the embed-
ding H1(Ω2; R) · H1(Ω2; R) ↪→ L2(Ω2; R) (where the dot denotes the func-
tional product), we can estimate the nonlinear operator N :



58 Chapter 3. Inverse problems

‖N(f)‖T,0,p ≤
1
m

{
‖φ′′‖T0,0,p + ‖rot(ε−1K)‖0,2,Ω

∥∥∥ ∂
∂t

H(f)(t, ·)
∥∥∥

0,2,Ω
+

γ ‖σ‖0,∞,Ω ‖K‖0,2,Ω

∥∥∥ ∂
∂t

E(f)(t, ·)
∥∥∥

0,2,Ω
+

γ ‖σ‖0,∞,Ω2 ‖µ‖0,∞,Ω2 ‖K‖0,2,Ω

(∥∥∥ ∂
∂t

u(f)(t, ·)
∥∥∥

0,∞,Ω2

∥∥∥ ∂
∂t

H(f)(t, ·)
∥∥∥

0,2,Ω2

+

ρ−1
0 C7

(
‖λ‖0,∞,Ω2 , ‖κ‖0,∞,Ω2 ,Ω2

)
‖u(f)(t, ·)‖3,2,Ω2 ‖H(f)(t, ·)‖1,2,Ω2

)}
≤ 1
m

{
‖φ′′‖T0,0,p +

(
1 + ‖g‖T0,p′,2,2 + ‖K‖0,2,Ω2 + ‖rot(ε−1K)‖0,2,Ω

)
×[

C8(T0) + TC9(T0,M)
]}
, ∀T ∈ (0, T3(M)]. (3.79)

Let us choose a pair of numbers (M,T ∗) from the conditions

M =
2
m

{
‖φ′′‖T0,0,p + C8(T0)

(
1 + ‖g‖T,0,p′,2,2 +

‖K‖0,2,Ω + ‖rot(ε−1K)‖0,2,Ω

)}
, (3.80)

1
m

(
1 + ‖g‖T0,p′,2,2 + ‖K‖0,2,Ω + ‖rot(ε−1K)‖0,2,Ω

)
C9(T0,M)T ∗ ≤M,

T ∗ ∈ (0, T3(M)]. (3.81)

Formulas (3.79)–(3.81) imply that the operator N maps X(M,T ) into itself
for all T ∈ (0, T ∗].

Now we estimate the difference N(f2) − N(f1) for arbitrary functions
f1, f2 ∈ X(M,T ), T ∈ (0, T ∗]. To this end, we consider the equation

N(f2)(t)−N(f1)(t)

=
(
Φ2

[σµ
ερ

g(t, ·)×H(f2)(t, ·)
])−1

{
Φ1

[ ∂
∂t

H(f2)(t, ·)−
∂

∂t
H(f1)(t, ·)

]
−

Φ
[σ
ε

( ∂
∂t

E(f2)(t, ·)−
∂

∂t
E(f1)(t, ·)

)]
−

Φ2

[σµ
ε

( ∂
∂t

U(f2)(t, ·)−
∂

∂t
u(f1)(t, ·)

)
× ∂

∂t
H(f2)(t, ·)

]
−

Φ2

[σµ
ε

∂

∂t
u(f1)(t, ·)×

( ∂
∂t

H(f2)(t, ·)−
∂

∂t
H(f1)(t, ·)

)]
−

Φ2

[σµ
ερ

Div T
(
u(f2)(t, ·)− u(f1)(t, ·)

)
×H(f2)(t, ·)

]
−

Φ2

[σµ
ερ

Div T (u(f1)(t, ·))×
[
H(f2)(t, ·)−H(f1)(t, ·)

]]}
−
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(
Φ2

[σµ
ερ

g(t, ·)×H(f2)(t, ·)
])−1

×

Φ2

[σµ
ερ

g(t, ·)×
[
H(f2)(t, ·)−H(f1)(t, ·)

]]
N(f1)(t), (3.82)

for a.a. t ∈ (0, T ).
Using formulas (2.40), (2.41), (2.47), (2.48), (3.79), and (3.82), we can

easily derive the estimate∣∣N(f2)(t)−N(f1)(t)
∣∣

≤ C10(T0,M,m−1)
(
1 + ‖g‖T0,p′,2,2 + ‖K‖0,2,Ω2 + ‖rot(ε−1K)‖0,2,Ω

)
×(∫ t

0
h1(t− s) ‖f2 − f1‖s,0,p ds+ ‖f2 − f1‖t,0,p

)
, ∀t ∈ [0, T ], (3.83)

where
h1(t) = exp

{
t ‖σ‖0,∞,Ω + C6(T0)M‖g‖T,0,p′,2,2,Ω2

}
.

Estimate (3.83) implies the inequality∥∥N(f2)−N(f1)
∥∥

t,0,p

≤ C10(T0,M,m−1)
(
1 + ‖g‖T0,p′,2,2 + ‖K‖0,2,Ω2 + ‖rot(ε−1K)‖0,2,Ω

)
×

[1 + T0h1(T0)]
∫ t

0
‖f2 − f1‖s,0,p ds

:= C11(T0,M,m−1)
∫ t

0
‖f2 − f1‖s,0,p ds, ∀t ∈ [0, T ]. (3.84)

Inequality (3.84) enables us to establish the following estimate for the iter-
ations Nn of the operator N :∥∥Nn(f2)−Nn(f1)

∥∥
t,0,p

≤ Cn
11(T0,M,m−1)

(n− 1)!

∫ t

0
(t− s)n−1‖f2 − f1‖s,0,p ds

for a.a. t ∈ (0, T ), ∀n ∈ N.

We now apply the generalized contraction mapping principle (see
[43, p. 103]). This ensures equation (3.74) to have a unique solution f ∈
X(M,T ) for every T ∈ (0, T ∗), which proves the theorem.

3.4. An inverse problem for
electromagnetoelasticity equations with
complete nonlinear interaction

In this section, we present the new results of the solution to an inverse prob-
lem for a electromagnetoelasticity system in the case of complete nonlinear
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interaction of electromagnetic and elastic waves. The results of the first
initial boundary value problem solution, presented in Section 2.3, will be
sufficiently used. Some of these results were announced in short communi-
cation [36].

Formulation of an inverse problem

Let us consider one of possible formulations of inverse problems for the direct
problem earlier considered in Section 2.3. Let us now formulate the inverse
problem to be be studied.

Inverse Problem 3.6. Determine a set of the functions

h : QT → R, u : QT → R, φ : [0, T ] → R

such that
ht = (rhz)z − (hut)z − (rj)z, (z, t) ∈ QT , (3.85)

utt = (ν2uz)z − phhz + φ(t)g(z, t), (z, t) ∈ QT , (3.86)

h(±l, t) = 0, u(±l, t) = 0, t ∈ [0, T ], (3.87)

h(z, 0) = h0(z), u(z, 0) = u0(z), ut(z, 0) = u1(z), z ∈ Ω, (3.88)∫
Ω
ρ(z)hhzdz = −1

2

∫
Ω
ρzh

2dz = ψ(t), t ∈ [0, T ], (3.89)

where ρ ∈
◦
W 1

2(Ω), QT = Ω× [0, T ] and Ω = (−l, l).

The functions r, ν, φg, j are supposed to be smooth functions with
possible jumps at the points zm : −l < z1 < z2 < . . . < zm < l, r(z) ≥ r0 >
0; ν(z) ≥ ν0 > 0, p is a positive number; and∫

Ω
ρ(z)g(z, t) dz ≥ ρ0 > 0, t ∈ [0, T ]. (3.90)

At the points of discontinuity we assume the fulfillment of the following
transmission conditions

[h(z, t)]z=zi = 0, [u(z, t)]z=zi = 0, (3.91)

[r(z)(hz(z, t)− j(z, t))]z=zi = 0,

[ν2(z)uz(z, t)]z=zi = 0, i = 1, 2, . . . ,m.
(3.92)

The solution of the direct problem (3.85)–(3.88) and the transmission condi-
tions (3.92) are understood in the generalized sense (see Section 2.3). Con-
ditions (3.91) are valid in the classical sense because h, u are continuous
functions. Let us introduce the function f(z, t) = φ(t)g(z, t) and repeat the
formulation of the direct problem.
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Definition 3.2. The functions h(z, t) ∈
◦
V 2(QT ), u(z, t) ∈

◦
W

1,1
2 (QT ) are

called the generalized solution of the direct problem (3.85)–(3.88), (3.91),
(3.92) if for almost all t1 ∈ [0, T ] they satisfy the equalities

−
∫

Qt1

hηt dz dt+
∫

Qt1

rhzηz dz dt−
∫

Qt1

hutηz dz dt

=
∫

Qt1

rjηz dz dt+
∫

Ω
h0(z)η(z, 0) dz −

∫
Ω
h(z, t1)η(z, t1) dz, (3.93)

−
∫

Qt1

utζt dz dt+
∫

Qt1

ν2uzζz dz dt+
∫

Qt1

phhzζ dz dt

=
∫

Qt1

fζ dz dt+
∫

Ω
u1ζ(z, 0) dz dt−

∫
Ω
ut(z, t1)ζ(z, t1) dz, (3.94)

u(z, 0) = u0(z), z ∈ Ω, where Qt1 = Ω× (0, t1), η(z, t), ζ(z, t) ∈
◦
W

1,1
2 (QT ).

As was demonstrated in Section 2.3, direct problem (3.85)–(3.88), (3.91),

(3.92) for the known function φ(t) has the solution h(z, t) ∈
◦
V 2 (QT ),

u(z, t) ∈
◦
W

1,1
2 (QT ) satisfying the inequalities

1
2

∫
Ω
{ph2(z, t1) + ν2(z)u2

z(z, t1) + u2
t (z, t1)} dz +

1
2

∫
Qt1

r(z)h2
z(z, t) dz dt

≤ C1

(
1 + t1

∫
Qt1

f2(z, t) dz dt
)

for almost all t1 ∈ [0, T ] and

‖u(z, t)‖ ◦
W

1,1
2 (QT )

≤ C1(1 + ‖f‖2,QT
), max

QT

|h(z, t)| ≤ C1.

In addition, the integral equality (3.86)–(3.88) can be rewritten in a different
form if utt ∈ L2(0, T ;H−1(Ω)). Here H−1(Ω) is the space dual to H1

0 (Ω) =
◦
W 1

2 (Ω). Setting with 〈·, ·〉 the scalar product between elements of H−1(Ω)
and H1

0 (Ω) it is easy to establish from (3.94) the following equalities

〈utt, ξ(z)〉+
∫

Ω
ν2(z)uz(z, t)ξ(z) dz +

∫
Ω
ph(z, t)hz(z, t)ξ(z) dz

=
∫

Ω
f(z, t)ξ(z)dz, ut(z, 0) = u1(z), u(z, 0) = u0(z). (3.95)

Note that from conditions (3.95) follows the estimate [19, Chapter VII,
p. 318–385]
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max
t∈[0,T ]

{‖u‖H1
0 (Ω) + ‖ut‖2,Ω + ‖utt‖L2(0,T ;H−1(Ω))}

≤ C2{‖hhz‖2,QT
+ ‖f‖2,QT

+ ‖u0‖H1
0 (Ω) + ‖u1‖2,Ω}. (3.96)

Consider the direct problem (3.85)–(3.88), (3.91), (3.92) for two different
functions fk, k = 1, 2. The solutions corresponding to these functions will
be marked as hk(z, t), uk(z, t), k = 1, 2. To solve the Inverse Problem 3.6
we need to estimate the differences h2 − h1 and u2 − u1. As was done in
Theorem 2.5, we introduce two functions v, w by the formulas

v = (h2 − h1)e−λt, w = (u2 − u1)e−λt,

where λ is a positive number. The functions v, w are the generalized solution
of the problem

vt + λv = (rvz)z − (h2wt + λh2w + u1,tv)z, (3.97)

wtt + 2λwt + λ2w = (ν2wz)z − ph2vz − ph1,zv + (f2 − f1)e−λt, (3.98)

with boundary conditions (3.87), zero initial data and transmission condi-
tions (3.91), (3.92) formulated for the functions v, w. This difference was
estimated when demonstrating of the uniqueness theorem 2.5 for the case
f2 − f1 ≡ 0. Setting t1 = τ we obtain the formula similar to (2.82) with the
right-hand side

∫
Qτ
wt(f2 − f1) dz dt:

1
2
‖v(z, τ)‖2

2,Ω +
1
2
‖wt(z, τ)‖2

2,Ω +
λ2

2
‖w(z, τ)‖2

2,Ω + 2λ‖wt(z, τ)‖2
2,Ω +

λp‖v‖2
2,Qτ

+ pr0‖vz‖2
2,Qτ

− pC1 max
Qτ

|v|‖vz‖2
2,Qτ

−

λp‖vz‖2
2,Qτ

‖w‖2,Qτ − pC1 max
Qτ

|v|‖wt‖2
2,Qτ

≤
∣∣∣∣ ∫

Qτ

wt(f2 − f1) dz dt
∣∣∣∣ ≤ 1

2ε
‖wt‖2

2,Qτ
+ ε‖f2 − f1‖2

2,Qτ
.

We have the following inequalities ‖wt‖2,Qτ ≤ ‖wt‖2,Qt1
and ‖f2−f1‖2,Qτ ≤

‖f2 − f1‖2,Qt1
for τ ∈ [0, t1]. Applying Theorem 7.1 from [25, Chapter III,

p. 181] for parabolic equation (3.97) we obtain

max
Qτ

|v(z, t)| ≤ C3(‖w2
t ‖1,r,Qτ + λ‖w2‖1,r,Qτ ),

where r = 2/(1−2κ), κ ∈ (0, 1/2). However the first term in the right-hand
side of the latter inequality can be estimated as follows:

‖w2
t ‖1,r,Qτ ≤ ‖w2

t ‖1,r,Qt1
=

(∫ t1

0

(∫
Ω
w2

t dz

)r

dt

)1/r

=
(∫ t1

0
‖wt(z, τ)‖2r

2,Ωdτ

)1/r

≤ t
1/r
1 max

τ∈[0,t1]
‖wt(z, τ)‖2

2,Ω.
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In the same manner we obtain

‖w2‖1,r,Qτ ≤ t
1/r
1 max

τ∈[0,t1]
‖w(z, τ)‖2

2,Ω,

‖wt‖2,Qt1
≤ t

1/2
1 max

τ∈[0,t1]
‖wt(z, τ)‖2,Ω, ‖vz‖2,Qt1

≤ 2C1.

By the above reason the following inequality takes place

max
τ∈[0,t1]

{p
2
‖v(z, τ)‖2

2,Ω+
1
2
‖wt(z, τ)‖2

2,Ω+
ν2
0

2
‖wz(z, τ)‖2

2,Ω+λ2‖w(z, τ)‖2
2,Ω

}
+

2λ‖wt‖2
2,Qt1

+pr0‖vz‖2
2,Qt1 +λp‖v‖2

2,Qt1
−C4t

1/rλ max
τ∈[0,t1]

‖wt(z, τ)‖2
2,Ω−

C4t
1/rλ max

τ∈[0,t1]
‖w(z, τ)‖2

2,Ω − 2C2
1pλt

1/2
1 max

τ∈[0,t1]
‖w(z, τ)‖2

2,Ω

≤ t1
2ε

max
τ∈[0,t1]

‖wt(z, τ)‖2
2,Ω + ε‖f2 − f1‖2

2,Qt1
.

Let us choose t1, λ satisfying the inequalities

λ2

2
> C4pt

1/rλ+ 2C2
1pt

1/2λ,
1
8
> C4pt1, 2ε =

√
t1 <

1
8
.

For these values of t1, λ the following inequality is valid

max
τ∈[0,t1]

{p
2
‖v(z, τ)‖2

2,Ω+
1
2
‖wt(z, τ)‖2

2,Ω+
ν2
0

2
‖wz(z, τ)‖2

2,Ω+λ2‖w(z, τ)‖2
2,Ω

}
+

2λ‖wt‖2
2,Qt1

+ pr0‖vz‖2
2,Qt1

≤
√
t1‖f2 − f1‖2

2,Qt1
.

Therefore the following estimate holds:

max
t1∈[0,T ]

{‖u2 − u1‖H1
0 (Ω)+‖u2,t − u1,t‖2,Ω+p‖h2 − h1‖2,Ω+‖h2,z − h1,z‖2,Ω}

≤ C5

√
T‖f2 − f1‖2,QT

. (3.99)

The following inequality takes place for any function ξ ∈ H1
0 (Ω),

‖ξ‖H1
0 (Ω) ≤ 1:

〈u2,tt − u1,tt, ξ〉 ≤ C3T‖φ2 − φ1‖2 + |〈f2 − f1, ξ〉|
≤ C3T‖φ2 − φ1‖2 + C4

√
T‖φ2 − φ1‖2

≤ C6

√
T‖φ2 − φ1‖2, (3.100)

where ‖ · ‖2 means the usual L2(0, T )-norm. From formulas (3.89), (3.90),
(3.95) we obtain the following equation for the definition of the function
φ(t):
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φ(t) =
〈utt, ρ(z)〉+

∫
Ω ν

2(z)uz(z, t)ρ′(z) dz +
∫
Ω ph(z, t)hz(z, t)ρ(z) dz∫

Ω ρ(z)g(z, t) dz
.

(3.101)
Let us mark as W (φ) : L2(0, T ) 7→ L2(0, T ) the operator defined by the
formula

W (φ) =
〈utt, ρ〉+

∫
Ω ν

2uzρ
′ dz + pψ∫

Ω ρg dz
, (3.102)

where u = u(z, t;φ), h = h(z, t;φ) are the solution of Inverse Problem 3.6
and ψ is the additional information (3.89).

The main results

Now we are ready to formulate and prove our main results.

Theorem 3.5. Let the function φ(t) be a fixed point of the operator W (φ),
i.e., φ = W (φ). Then the functions u(z, t;φ), h(z, t;φ), φ(t) are the solution
of Inverse Problem 3.6. The reciprocal statement is valid: let u(z, t;φ),
h(z, t;φ), φ(t) be the solution of Inverse Problem 3.6, then φ = W (φ).

Proof. Let the function φ be a fixed point of the operator W . Then for
the function φ(t) equality (3.101) is valid. Taking into account (3.101) we
obtain equality (3.89), i.e., the functions u(z, t;φ), h(z, t;φ), φ(t) are the
solution of Inverse Problem 3.6. The opposite statement is obtained in a
similar way.

The following theorem of existence and uniqueness holds.

Theorem 3.6. For sufficiently small values T > 0, Inverse Problem 3.6
has the unique solution, which can be obtained by the method of successive
approximations.

Proof. Using formula (3.102) we arrive at:

W (φ2)−W (φ1) =
〈ũtt, ρ〉+

∫
Ω ν

2ũzρ
′ dz∫

Ω ρg dz
,

where
ũ = u(z, t;φ2)− u(z, t;φ1).

Application of estimates (3.96), (3.99), (3.100) implies that for sufficiently
small values T > 0 this mapping is a contracted one, which together with
Theorem 3.5 proves our statement.



Chapter 4

Numerical solution of inverse
problems

In this chapter, we present some results of the numerical solution to inverse
problems for a system of equations describing the linear processes of inter-
action of electromagnetic and elastic waves based on motion of particles.

Basic equations

The first attempts to apply theory of electromagnetoelasticity to the study
of the process of wave propagation in elastic conductive media were made
in [16, 23]. Knopoff studied the influence of electromagnetic fields on the
propagation of elastic waves and arrived at the conclusion that in the class of
geophysical problems the effect of electromagnetic phenomena on the process
of propagation of elastic waves is negligible, at least, in case of comparatively
small electromagnetic disturbances.

We assume that the model under consideration satisfies the basic hy-
potheses of continuum mechanics: continuity, Euclidity, and absoluteness of
time. The first hypothesis means that an uninterrupted continuum is con-
sidered, the second one implies the possibility to introduce a Cartesian frame
of reference for all points, and according to the third hypothesis relativistic
effects are not taken into account. Moreover, the model is inapplicable in
the case of strong magnetic fields. We also assume that electromagnetoe-
lastic waves arise due to the action of mechanical perturbations, and that
one can neglect the effect of electromagnetic waves on the process of prop-
agation of elastic oscillations and also neglect the displacement currents as
compared with conduction currents. Finally, we will consider the case of
small perturbations.

Now we can write the governing equations. The assumption that we
consider the fields of small perturbations allows us to consider the linearized
statement of the problem when the vector of the magnetic field intensity,
the vector of the electric field intensity, and the displacement vector can be
represented in the form

(h0,0,0) + (H,E,u),

where (h0,0,0) is the value related to the unperturbed state of the medium
(h0 is a constant vector); and the vectors H = (H1,H2,H3),
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E = (E1, E2, E3), and u = (u1, u2, u3) correspond to small perturbations of
the electromagnetic and elastic fields. Besides, in view of our assumptions,
one can reckon that the process of elastic wave propagation is described by
the usual system of differential equations of the theory of elasticity:

ρ
∂2u

∂t2
= Div T, (4.1)

where the stress tensor T is defined in terms of the components ui of the
displacement vector and in the case of an isotropic electromagnetoelastic
medium such tensor has the form

T = λ trS · I + 2κS,

Sij =
1
2

(∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, 2, 3.

(4.2)

Propagation of electromagnetic waves through an elastic conductive
medium is described in our case by the following system:

rotH = J ,
∂B

∂t
= − rotE, div B = 0, (4.3)

where, in virtue of our assumptions, the constitutive relations are written
as

B = µ(h0 + H), J = σ
(
E + µ

∂u

∂t
× h0

)
. (4.4)

Now we proceed to the statement of the direct problem for differential
equations (4.1)–(4.4). Consider the rectangular Cartesian frame of reference
(x1, x2, x3) = x. Let the plane x3 = 0 be the interface of two media of the
types “air” (x3 < 0) and “conductive ground” (x3 > 0). Electromagnetic
and elastic characteristics of the ground are described by piecewise constant
functions with break planes parallel to the plane x3 = 0. We assume that
elastic oscillations arise under the action of a force source concentrated at
the origin

Tk3

∣∣
x3=0

= δk3f(t) δ(x1, x2), k = 1, 2, 3, (4.5)

where δ(·) stands for the Dirac’s mass.
As concerns the force source and initial data, we assume that the function

f(t) and the electromagnetoelastic field are absent before the moment t = 0,
i.e.,

(H,E,u, f)
∣∣
t<0

≡ 0. (4.6)

To single out the unique solution to the direct problem, it is necessary
to add the radiation condition at infinity:
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|H| → 0, |E| → 0 for |x| → ∞. (4.7)

Moreover, on the planes where the coefficients of the problem have breaks
we assume the standard interface conditions

[Hk] = [Ek] = [um] = [Tm3] = 0, k = 1, 2, m = 1, 2, 3. (4.8)

Thus, the direct problem consists in finding the vector functions H, E,
and u which satisfy equations (4.1)–(4.8), provided the elastic and electro-
magnetic characteristics of the medium, and the constant vector h0 charac-
terizing the external magnetic is known.

Our main task consists in showing the possibility of applying the op-
timization approach to the simultaneous determination of electromagnetic
and elastic characteristics of the medium and the function f(t) from system
(4.1)–(4.8), basing on some additional information about the components of
the vector functions E and u. We shall study a special case of this problem
which, however, will reflect many principal points of the more general case.

As concerns the form of a sensing signal (i.e., the function f(t)), in most
cases of real geophysical investigations, is either unknown or is given only
approximately, while its accurate estimate is necessary for practical solution
of many inverse problems.

4.1. The first inverse problem

Now let us state the first inverse problem (see Avdeev, Goryunov, and Pri-
imenko, 1996, 1997). Let z denote the variable x3. Consider the functions

v(z) =
(λ+ 2κ

ρ

)1/2
, c(z) =

( 1
σµ

)1/2
,

where v(z) is the velocity of longitudinal waves and c(z) is the rate of the
diffusion process of electromagnetic waves.

We shall say that the functions v(z), c(z), and f(t) belong to the class
M if there exist positive constants vm, cm, fm, zm, z′m, and tm such that

V (z) =

{
vm, z ∈ (z′m−1, z

′
m), m = 1, k + 1,

vk+1, z > z′k+1,

c(z) =

{
cm, z ∈ (zm−1, zm), m = 1, n+ 1,
cn+1, z > zn+1,

f(t) =

{
fm, t ∈ (tm−1, tm), m = 1, l + 1,
0, t > tm+1,

where z0 = z′0 = t0 = 0 and n, k, l ∈ N.
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Henceforth we will always assume that the functions v(z), c(z), and f(t)
belong to the class M.

Consider the functions

u(z, t) = <Fx1x2(u3)
∣∣
ν1=ν2=0

, e(z, t) = <Fx1x2(E1)
∣∣
ν1=ν2=0

,

where Fx1x2(·) stands for the generalized Fourier transform with respect
to the variables x1, x2; and (ν1, ν2) are the dual variables. Starting with
equations (4.1)–(4.8), we can write down the system of relations for the
functions u and e in the domain z ≥ 0 as follows:

∂2u

∂t2
= v2(z)

∂2u

∂z2
, (t, z) ∈ R× Ω′, (4.9)

u
∣∣
t<0

≡ 0,
∂u

∂z

∣∣∣
z=0

= F (t), (4.10)

[u]z=z′m =
[∂u
∂z

]
z=z′m

= 0, m = 1, k + 1, (4.11)

∂e

∂t
= c2(z)

∂2e

∂z2
+ µh0∂

2u

∂t2
, (t, z) ∈ R× Ω, (4.12)

e
∣∣
t<0

≡ 0, lim
z→∞

e = 0,
∂e

∂z

∣∣∣
z=0

= 0, (4.13)

[e]z=zm =
[∂e
∂z

]
z=zm

= 0, m = 1, n+ 1, (4.14)

where
Ω′ = R+ \

{
z = z′m, m = 1, k + 1

}
,

Ω = R+ \
{
z = zm, m = 1, n+ 1

}
,

F (t) = (λ(0)+2κ(0))−1f(t), and h is a constant characterizing the external
magnetic field.

Now let us formulate the first inverse problem that will be studied below.

Inverse Problem 4.1. Find the functions v(z), c(z), f(t) ∈ M (i.e., a set
of the numbers vm, cm, and fm) if the following additional information on
the solutions to problems (4.9)–(4.11) and (4.12)–(4.14) is known:

u
∣∣
z=0

= u0(t), (4.15)

e
∣∣
z=0

= e0(t), t ∈ R+, (4.16)

and the numbers µ and h are known, too.

Remark 4.1. Without loss of generality, we assume that µ = µ0, where
µ0 is the magnetic permeability of vacuum.
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To solve Inverse Problem 4.1 numerically, an optimization approach was
used based on minimizing data misfit functionals.

At the first stage, the initial boundary value problem (4.9)–(4.11) de-
scribing elastic waves propagation in a vertically inhomogeneous medium
was considered.

In this model, the medium is assumed to be a stack of homogeneous
layers over a homogeneous half-space.

Concerning system (4.9)–(4.11), we considered the inverse problem of
reconstructing the functions v(z), f(t) ∈ M from the additional information
(4.15).

Applying the Fourier transform with respect to the variable t, we rewrite
the original statement (4.9)–(4.11), (4.15) in the following form:

d2

dz2
u(z, ω) + ν2u(z, ω) = 0, z ∈ Ω′, (4.17)

du(z, ω)
dz

∣∣∣
z=0

= F (ω), (4.18)

[u(z, ω)]z=z′m =
[du(z, ω)

dz

]
z=z′m

= 0, m = 1, k + 1, (4.19)

where ν2 = ω2v−2(z) and

F (ω) =
∫ +∞

0
F (t) exp(−iωt) dt.

To single out the unique solution, we assume the principle of the limit
absorption to be satisfied, i.e.,

u(z, ω) = lim
ε→+0

u(z, ω − iε), (4.20)

where
lim

z→+∞
u(z, ω − iε) = 0. (4.21)

The additional information (4.15) can be represented as u(z, ω)
∣∣
z=0

=
u0(ω).

We seek for the solution to the inverse problem as a minimum point of
the functional

Φ1[n(z), F (ω)] =
∫ ω2

ω1

∣∣u0(ω)−B1[n(z), F (ω)](ω)
∣∣2dω, (4.22)

where (ω1, ω2) is the range of temporal frequencies defined by the spectral
contents F (ω) of a sensing signal, and B1[n(z), F (ω)] is a nonlinear operator
mapping the functions n(z) = v−2(z) and F (ω) into the trace of the solution
to the direct problem (4.17)–(4.21) at the point z = 0.
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One can prove the Fréchet differentiability of functional (4.22) with re-
spect to its arguments n(z) and F (ω) and then obtain the following expres-
sions for its gradients:

∇n(z)Φ1[n(z), F (ω)](ξ)

= −2<
∫ ω2

ω1

(ω + iε)2 F (ω)×[
u0(ω)−B1[n(z), F (ω)](ω)

]
Ḡ1(ξ, ω) dω, (4.23)

∇F (ω)Φ1[n(z), F (ω)](ω)

= −2<
[
u0(ω)−B1[n(z), F (ω)](ω)

]
Ḡ1(ξ, ω)−

2i=
[
u0(ω)−B1[n(z), F (ω)](ω)

]
Ḡ1(ξ, ω), (4.24)

where G1(ξ, ω) is the solution to problem (4.17)–(4.21) with F (ω) ≡ 1 and
the bar over the symbol of the function denotes complex conjugation.

Assume that there exists a point (ns, Fs), at which the gradients of the
functional vanish. Then from (4.23) and (4.24) one can easily obtain the
following expression:

Fs(ω) =
Ḡ1(0, ω)u0(ω)
|G2

1(0, ω)|2
, (4.25)

where G1(0, ω) is the trace of the solution to problem (4.17)–(4.21) with
F (ω) ≡ 1 and n(z) = ns(z) calculated at the point z = 0.

In [15], it was proposed to use a formula similar to (4.21) for calculation
of the impulse Fk(ω) on the k-th iteration when solving the inverse problem
of the VSP (vertical seismic profiling). In [6], application of this algorithm
to solution of the inverse dynamic seismic problem with an unknown source
in the case, where the whole wave field is measured on the free surface z = 0,
was described.

Using expressions (4.23) and (4.25), we can apply the optimization meth-
ods of steepest descent of first order to search for a minimum point of func-
tional (4.22), i.e., to reconstruct the unknown functions v(z) and F (t). If we
succeed in reconstructing these functions, then, having solved direct prob-
lem (4.17)–(4.21), we can determine the spectrum of the wave field u(z, ω)
in the whole of the half-space under study, i.e., find the right-hand side in
the differential equation for the electric field in problem (4.12)–(4.14).

At the second stage, the initial boundary value problem (4.12)–(4.14) is
considered, which, in terms of Fourier images with respect to the variable t,
can be written down as

d2

dz2
e(z, ω) + η2(z)e(z, ω) = iωµ0h

0η2(z)u(z, ω), z ∈ Ω, (4.26)

de(z, ω)
dz

∣∣∣
z=0

= 0, (4.27)
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[e(z, ω)]z=zm =
[de(z, ω)

dz

]
z=zm

= 0, m = 1, n+ 1, (4.28)

where η2(z) = −iωc−2(z).
The additional information (4.16) is rewritten as

e(z, ω)
∣∣
z=0

= E0(ω). (4.29)

We seek the solution to inverse problem (4.26)–(4.29) as a minimum
point of the object functional

Φ2[σ(z)] =
∫ ω2

ω1

∣∣e0(ω)−B2[σ(z)](ω)
∣∣2dω, (4.30)

where B2[σ(z)] is a nonlinear operator mapping the function σ(z) (the ”test”
value of conductivity) into the trace of the solution to the direct problem
(4.26)–(4.28) at z = 0.

The gradient of the object functional (4.30) with respect to conductivity
is written down as follows:

∇σΦ2[σ(z)](ξ) = A1(ξ) +A2(ξ), (4.31)

where

A1(ξ) = 2µ2
0H<

∫ ω2

ω1

ω2
[
e0(ω)−B2[σ(z)](ω)

]
Ḡ2(ξ, ω) ū(ξ, ω)dω, (4.32)

A2(ξ) = 2µ2
0H=

∫ ω2

ω1

ω3
[
e0(ω)−B2[σ(z)](ω)

]
×

Ḡ2(ξ, ω)
∫ +∞

0
σ(τ) Ḡ2(τ, ω) ū(τ, ω)dτdω, (4.33)

and G2(ξ, ω) is the Green function for problem (4.26)–(4.28).
Using formulas (4.31)–(4.33), we can apply the optimization methods of

the first order for the search for the minimum point of functional (4.30), i.e.,
for reconstruction of unknown conductivity σ(z).

To carry out numerical experiments rather a complex model of a verti-
cally inhomogeneous medium was chosen. This model incorporated sharp
changes in the values of parameters. The reconstruction of the medium was
carried out up to a depth of 1.75 km. The medium below this depth was
assumed to be homogeneous. All the medium from the surface to the depth
1.75 km was partitioned into 9 layers of equal width.

As a sensing signal, an impulse with a “bell-shaped envelope” was chosen
(the dominating frequency f = 20 Hz):
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F (ω) =
[
exp

(
−

(ω − 2πf
πf

)2 )
+ exp

(
−

(ω + 2πf
πf

)2 )]
exp(−i · 1.75ω/f).

Computations were made for temporal frequencies from 5 to 40 Hz.
To compute the whole wave field u(z, ω) and the electrical field intensity

E(z, ω), the numerical-analytical method was used.
To calculate the impulse Fj(ω) on the j-th iteration, we use the condition

of the vanishing gradient of functional (4.22) with respect to the function
Fj on the current velocity vj(z), i.e., expression (4.25).

Figure 4.1

In Figure 4.1, the velocity model of
a medium (solid line) and the initial
approximation (dashed line) are shown.
Figure 4.2 represents the spectrum F (ω)
of the input signal impulse F (t) (thick
line) and its first approximation (thin
line) obtained by formula (4.25). In Fig-
ure 4.3, the function F (t) (thick line)
and its first approximation (thin line)
are shown. As a result of 35 iterations
by the conjugate gradients method we
succeeded in reconstructing with a good

accuracy both the velocity distribution for this medium and the functions
F (ω) and F (t). The results of calculations are plotted in Figures 4.4–4.6.

Here and in the sequel, by pointing out the number of iterations made,
we mean a practically complete stop of the iteration process at the stage
concerned. The quality of the approximations obtained was estimated by
closeness of the values of the corresponding functional to zero.

Figure 4.2
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Figure 4.3

Figure 4.4

Figure 4.5
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Figure 4.6

Figure 4.7 Figure 4.8

At the next stage, using the reconstructed functions v(z) and F (t), we
calculated the spectrum of the wave field u(z, ω) in the whole of the half-
space under study, i.e., the right-hand side in problem (4.26)–(4.28) was
determined.

In Figure 4.7, the “true” function σ(z) (solid line, see also the same solid
line in Figure 4.8) and its initial approximation (dashed line) are shown.
The final approximation computed by 68 iterations of the conjugate gradient
method is plotted in Figure 4.8 (dashed line).

4.2. The second inverse problem

Let z denote the variable x3. Consider the functions
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vp(z) =

√
λ(z) + 2κ(z)

ρ(z)
, vs(z) =

√
κ(z)
ρ(z)

, c(z) =

√
1

σ(z)µ(z)
,

where vp(z) is the velocity of longitudinal waves, vs(z) is the velocity of
transverse waves, c(z) is the rate of the diffusion process of electromagnetic
waves.

Now let us formulate the inverse problem to be studied below (for details,
see [9, 11, 12]).

Inverse Problem 4.2. Find the functions vp(z), vs(z), and c(z) if the
following additional information on the solution to the direct problem is
known:

u|z=0 = u0(x1, x2, t), H|z=0 = H0(x1, x2, t).

We assume that µ and h0 are also known.

Remark 4.2. Without loss of generality, we will assume that µ = µ0,
where µ0 is magnetic permeability of the air, and ρ is a known constant.

To solve the direct problem, the following “numerical-analytical” algo-
rithms are used [31].

Applying the Fourier transforms with respect to the variables x1, x2,
and t (marked by ∼ over corresponding functions), we rewrite the original
system of equations (4.1)–(4.4) in the following form:

ũ1,zz −
(v2

p

v2
s

ν2
1 + ν2

2 −
ω2

v2
s

)
ũ1 − ν1ν2

v2
p − v2

s

v2
s

ũ2 + iν1

v2
p − v2

s

v2
s

ũ3,z = 0, (4.34)

ũ2,zz − ν1ν2

v2
p − v2

s

v2
s

ũ1 −
(
ν2
1 +

v2
p

v2
s

ν2
2 −

ω2

v2
s

)
ũ2 + iν2

v2
p − v2

s

v2
s

ũ3,z = 0, (4.35)

ũ3,zz +
v2
p − v2

s

v2
s

i(ν1ũ1,z + ν2ũ2,z)−
(v2

s

v2
p

(ν2
1 + ν2

2)− ω2

v2
p

)
ũ3 = 0, (4.36)

H̃1,zz + r2H̃1 = ωc−2
(
ν2(h0

1ũ2 − h0
2ũ1) + i(h0

3ũ1,z − h0
1ũ3,z)

)
, (4.37)

H̃2,zz + r2H̃2 = ωc−2
(
ν1(h0

2ũ1 − h0
1ũ2) + i(h0

3ũ2,z − h0
2ũ3,z)

)
, (4.38)

H̃3,zz + r2H̃3 = ωc−2
(
ν1(h0

3ũ1 − h0
1ũ3) + ν2(h0

3ũ2 − h0
2ũ3)

)
. (4.39)

The solution to system (4.37)–(4.39) is sought for in the form

H̃l = Cj
1le

τjz + Cj
2le

−τjz + ϕj
l , l = 1, 2, 3,

where j is the number of a layer.
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If the solutions ϕj
l , l = 1, 2, 3, to the system are known, the constants

Cj
kl, k = 1, 2, can be determined with the help of wide spread (for such prob-

lems) recurrent formulas through the boundary conditions and the interface
conditions for layers.

It is non-trivial to find a particular solution of system (4.34)–(4.36);
the difficulties of construction of an analytical, in every layer, solution to
equations of elasticity by the matrix methods are well known [31]. To solve
equations (4.34)–(4.36), a modification of the factorization method is used.

Numerical solution of the direct problem enables us to consider some
dynamic features of seismomagnetic waves. Each kind of seismic waves
generates an electromagnetic wave associated with it and propagating with
the same velocity. The electromagnetic wave, generated by a seismic wave
of a given kind, is called the seismomagnetic wave of the same kind (e.g.,
Rayleigh seismomagnetic wave, longitudinal seismomagnetic wave, trans-
verse seismomagnetic wave, etc.). As compared to the longitudinal wave, the
seismomagnetic wave is transverse, just as any other electromagnetic wave is.
However, the longitudinal seismomagnetic wave propagates with a velocity
close to that of the longitudinal seismic wave. The basic dynamic features
of seismomagnetic waves for homogeneous elastic media were considered in
[31]. Further, we convert components of both seismic and seismomagnetic
fields from x1, x2, z to the spherical coordinate system for stratified elastic
media. We transform all the components into dimensionless form. We nor-
malize all the components of the seismomagnetic field and the seismic field
to have a unit maximum amplitude in both cases; for this, we divide them
by proper numbers.

Figure 4.9 shows the radial and the tangential components of the elastic
wave displacement at the point r0 = 3λ, where λ is the dominant P -wave-
length in the elastic medium, and the radial and tangential components of
the seismomagnetic field at the same point for different angles θ̂. Here θ̂ is
the angle between the strength vector of the external magnetic field h0 and
the vertical axis z. The elastic model is used with an explosive point source
located near the point z = 0; in this case, the transverse components of all
waves are equal to zero. The parameters of the model are the following:
vp1 = 1000 m/s, vp2 = 2000 m/s, vsi = Vpi/1.73, i = 1, 2, the depth of the
layer h = λ, the strength of the geomagnetic field h0 = 40 A/m, and the
conductivity σ = 0.01 S/m. Figure 4.9 shows that the phase and the first
arrivals of geomagnetic variations coincide with the analogous characteristics
of the seismic waves. The first wave is the longitudinal wave P , the second
wave is the Rayleigh wave, and the third wave is the wave reflected from the
boundary of the layer. The radial and the tangential components of the P -
and the Rayleigh seismomagnetic waves have the same circular polarization.
The amplitude of the P -seismomagnetic wave decreases with an increase in
the angle θ̂, while the amplitude of the Rayleigh wave increases.
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Figure 4.9

Figure 4.10

Figure 4.10 shows radial, tangential, and transverse components of the
elastic displacements and seismomagnetic waves. The elastic model and
its parameters are the same as in Figure 4.9. A point source located near
z = 0 is a source of the horizontal type force. In this case we have nonzero
radial, tangential, and transverse components of all waves. The amplitude
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of P s̄eismomagnetic wave decreases with an increase in the angle θ̂, while
the amplitude of the Rayleigh wave increases.

To solve the inverse problem numerically, an optimization approach was
used, which is based on minimizing the data misfit functionals of the ob-
served data and the data computed when solving “test” direct problems.

We will seek for the functions vp(z) and vs(z) as a minimum point of the
functional

Φ1[vp, vs] =
∫ ω2

ω1

∫ ν1,2

ν1,1

∫ ν2,2

ν2,1

∣∣ũ0(ν1, ν2, ω)−B1[vp, vs](ν1, ν2, ω)
∣∣2dν1dν2dω,

where (ω1, ω2) is the range of temporal frequencies defined by the spectral
contents f(ω) of a sensing signal, (ν1,1, ν1,2) and (ν2,1, ν2,2) are the ranges
of spatial frequencies, and B1[vp, vs] is a nonlinear operator mapping the
functions vp(z) and vs(z) into the solution of the appropriate direct problem
at the point z = 0.

If we succeed in reconstructing the functions vp(z) and vs(z), then, hav-
ing solved the direct problem, we can determine the spectrum of the wave
vector ũ(ν1, ν2, z, ω) in the whole of the half-space under study, i.e., we
can find the right-hand side in the system of differential equations for the
magnetic fields.

Then we seek for the conductivity function σ(z) as a minimum point of
the object functional

Φ2[c(z)] =
∫ ω2

ω1

∫ ν1,2

ν1,1

∫ ν2,2

ν2,1

∣∣H̃0(ν1, ν2, ω)−B2[c(z)](ν1, ν2, ω)
∣∣2dν1dν2dω,

where B2[c(z)] is a nonlinear operator mapping the function c(z) (the “test”
value of conductivity) into the solution of the appropriate direct problem at
the point z = 0.

To arrange the interactive process of the search for the minimum points
of the object functionals we used the quasi-Newton method.

The reconstruction of the medium was carried out up to a depth of
0.5 km. The medium below this depth was assumed to be homogeneous.
The whole medium from the surface to the depth of 0.5 km was partitioned
into layers of equal width.

As a sensing signal, an impulse with a “bell-shaped envelope” was chosen
with the dominating frequency f = 25 Hz. All computations were made for
temporal frequencies from 5 to 50 Hz.

The real model distributions for the functions vp(z), vs(z), and σ(z)
are shown in Figure 4.11 by solid lines. The initial approximations for the
functions vp(z), vs(z), and σ(z) are shown by dashed lines.

The results of reconstruction are presented in Figure 4.12. These re-
sults were obtained for the functions vp(z) and vs(z) (59 iterations) and the
function σ(z) (38 iterations).
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Figure 4.11

Figure 4.12
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