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Randomized vector Gauss-Seidel algorithm with
black-red ordering for solving the elastostatics

Lamé equation∗

Karl K. Sabelfeld, Anastasiya Kireeva

Abstract. A stochastic iterative algorithm for solving the elastostatics Lamé equa-
tion in a two-dimensional domain is suggested. The Dirichlet boundary value prob-
lem for a system of two coupled second order elliptic equations for the displacement
vector components is considered. We approximate the Lamé equations with finite
differences and transform the resulting system of linear algebraic equations using
the red-black ordering of the Gauss-Seidel method. We solve this system using a
vector randomized algorithm. The idea behind these stochastic methods is a ran-
domized vector representation of matrix iterations that are performed by sampling
random columns only, avoiding matrix by matrix and matrix by vector multiplica-
tions. We test the developed iterative algorithm by a comparison of the simulation
results with the exact solution of the Lamé equation.

Keywords: elastostatics Lamé equation, matrix iterations, linear algebraic system,
Monte Carlo method, red-black ordering.

Introduction

Systems of linear algebraic equations arise in many scientific and engineer-
ing fields. Some practical problems require solving systems of very high
dimension. Therefore, fast efficient methods for solving large linear systems
are of high demand. Stochastic and randomization algorithms are currently
widely used in large-scale computing [1,2], including numerical methods for
solving linear systems [3, 4]. Monte Carlo algorithms are very efficient and
scalable on parallel platforms [5].

In [6], a new vector randomized algorithm for solving systems of linear
algebraic equations is suggested. The algorithm is based on iteration meth-
ods, for instance, a simple iteration represented as a von Neumann series
for matrix iterations. The calculation of the matrix iteration is based on
a special representation of the matrix through a special stochastic matrix
and sampling random columns instead of multiplying matrix by matrix and
matrix by vector.

In this paper, we apply the vector randomized algorithm to solve the
Lamé equation governing the static elasticity problem. Many of continuum

∗Supported by the Russian Science Foundation under Grant 19-11-00019.



58 K.K. Sabelfeld, A. Kireeva

mechanics problems are related to the elasticity theory [7]. Finite difference
and finite element methods solving the elasticity equations face some prob-
lems related to the fact that the components of the displacement vector are
strongly coupled [8–12].

We study the efficiency of the randomization algorithm by solving the
stationary Lamé equation for a two-dimensional square domain. Thus we
deal in this paper with a system of two coupled second order elliptic equa-
tions for the displacement vector components as functions of variables x
and y. Each equation involves a mixed second order partial derivative of
another component. The idea of the iterative algorithm we suggest in this
paper can be shortly described as follows: in the first equation, the mixed
partial derivative of the second component is moved to the right-hand side of
the equation. The same is done with the second equation. In this form, we
deal with two anisotropic diffusion equations where in the right-hand-sides
mixed partial derivatives are placed.

We approximate the Lamé equations with finite differences and trans-
form the resulting system of linear algebraic equations using the red-black
ordering of the Gauss-Seidel method. Red-black ordering increases the con-
vergence of the iterative method, and is also well suited for vector and par-
allel computations [13, 14]. As mentioned above, the solution of the Lamé
equations is calculated using an iteration algorithm. At each iteration, sys-
tems of linear algebraic equations for both components are solved by the
vector randomized algorithm, then the right-hand sides of the equations are
corrected for new computed solutions. In addition, we construct a parallel
implementation of the vector randomized algorithm.

The paper is organized as follows. Section 1 presents the Lamé equation
and the iterative algorithm for solving it, and also shows the systems of linear
algebraic equations obtained for this equation in the two-dimensional case.
Section 2 describes the vector randomized algorithm for solving systems of
linear algebraic equations. Section 3 presents the simulation results.

1. Iteration randomized algorithm for solving the Lamé
equation

1.1. Lamé equation. We consider the stationary Lamé equation with the
Dirichlet boundary condition:

µ∆u(r) + (λ+ µ)∇(∇ · u(r)) = 0, r ∈ G, (1)

u(r)|Γ = g(r),

where the Lamé coefficients µ ∈ R+ and λ ∈ R+ are positive real numbers,
the vector u(r) is the displacement at the point r, the components of the
vector g(r) are continuous functions on the boundary Γ.
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For simplicity, we solve the problem in a square domain. The equation
(1) in the two-dimensional case has the following form

µ
(∂2u1(r)

∂x2
+
∂2u1(r)

∂y2

)
+ (λ+ µ)

(∂2u1(r)

∂x2
+
∂2u2(r)

∂x∂y

)
= 0,

µ
(∂2u2(r)

∂x2
+
∂2u2(r)

∂y2

)
+ (λ+ µ)

(∂2u2(r)

∂y2
+
∂2u1(r)

∂x∂y

)
= 0,

u1(r)|Γ = g1(r),

u2(r)|Γ = g2(r).

(2)

1.2. Discretization of the Lamé equation. The Lamé equation (2)
is discretized into a linear system of algebraic equations by approximating
derivatives through a central finite difference of the second order. To dis-
cretize the domain G of size L×L, we introduce a uniform grid of points of
size N ×N .

Let {xi}, i = 0, . . . , N , and {yj}, j = 0, . . . , N , be uniform partitions of
the interval [0, L] in the x and y directions, respectively, such that xi = ih,
i = 0, . . . , N , and yj = jh, j = 0, . . . , N , where the spatial step size is
h = L/(N + 1). The continuous functions u1(r), u2(r) and g1(r), g2(r) are
replaced by the grid functions ū1(i, j), ū2(i, j) and ḡ1(i, j), ḡ2(i, j).

For all internal points, i.e. points that do not belong to the boundary of
the domain: i, j = 1, . . . , N − 1, the finite difference scheme for the Lamé
equation (2) is defined as follows.

c1(ū1(i− 1, j) + ū1(i+ 1, j)) + b1(ū1(i, j − 1) + ū1(i, j + 1)) + a1ū1(i, j)

= f1(i, j), (3)

c1 =
(2µ+ λ)

h2
, b1 =

µ

h2
, a1 =

(6µ+ 2λ)

h2
, (4)

f1(i, j) =
−(λ+ µ)

h2
(ū2(i, j)− ū2(i, j + 1)− ū2(i+ 1, j) + ū2(i+ 1, j + 1)),

(5)

c2(ū2(i− 1, j) + ū2(i+ 1, j)) + b2(ū2(i, j − 1) + ū2(i, j + 1)) + a2ū2(i, j)

= f2(i, j), (6)

c2 =
µ

h2
, b2 =

(2µ+ λ)

h2
, a2 =

(6µ+ 2λ)

h2
, (7)

f2(i, j) =
−(λ+ µ)

h2
(ū1(i, j)− ū1(i, j + 1)− ū1(i+ 1, j) + ū1(i+ 1, j + 1)).

(8)

For the points belonging to the boundary Γ, the values of the functions
ū1(r), ū2(r) are determined as follows
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ū1(i, j) = ḡ1(i, j), ū2(i, j) = ḡ2(i, j),

(i, j) ∈ {i = 0, N, j = 0, . . . , N or i = 0, . . . , N, j = 0, N},

Equations (3), (6) yield the (N − 1)2 × (N − 1)2 linear systems:{
A1ū1 = f1,

A2ū2 = f2,
(9)

where the solution vector and the right-hand side vector are as follows:

ūk = [uk(1, 1), . . . , uk(1, N − 1), uk(2, 1), . . . , uk(2, N − 1), . . . ,

uk(N − 1, 1), . . . , uk(N − 1, N − 1)]T , k = 1, 2,

f̄k = [fk(1, 1), . . . , fk(1, N − 1), fk(2, 1), . . . , fk(2, N − 1), . . . ,

fk(N − 1, 1), . . . , fk(N − 1, N − 1)]T , k = 1, 2.

The matrices A1 and A2 are symmetric five-diagonal matrices of size
M ×M , where M = (N − 1)2. The structure of the matrices A1 and A2

is shown in Figure 1. The coefficients ak, bk, ck, k = 1, 2, are given by the
formulae (4), (7).

Figure 1. Structure of matrix Ak, k = 1, 2
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1.3. The red-black ordering of the Gauss-Seidel method. To im-
prove the spectral properties of the matrices Ak, we use the red-black or-
dering of the Gauss-Seidel method.

The Gauss-Seidel method is an iterative method used to solve a system
of linear equations. However, we use this method not to solve the linear
systems (9), but only to transform the matrices A1 and A2.

The red-black ordering implies that, first, nodes are numbered, whose
sum of indices i+ j is equal to an even number:

nR = {(1, 1), (1, 3), . . . , (2, 2), (2, 4), . . . ,

(N − 1, 1 + odd), (N − 1, 2 + odd), . . .}, (10)

odd =

{
1, if N is odd number,

0, otherwise.

These nodes are called red nodes.

Then the nodes are numbered, the sum of indices i+ j of which gives an
odd number:

nB = {(1, 2), (1, 4), . . . , (2, 1), (2, 3), . . . ,

(N − 1, 1 + even), (N − 1, 2 + even), . . .}, (11)

even =

{
1, if N is even number,

0, otherwise.

These nodes are called black nodes.

The matrix Ak and the vectors ūk, fk are reordered according to the
new node numbering. For example, let us consider the matrix A for the grid
size N = 3: 

a b 0 c 0 0 0 0 0
b a b 0 c 0 0 0 0
0 b a 0 0 c 0 0 0
c 0 0 a b 0 c 0 0
0 c 0 b a b 0 c 0
0 0 c 0 b a 0 0 c
0 0 0 c 0 0 a b 0
0 0 0 0 c 0 b a b
0 0 0 0 0 c 0 b a


(12)

The matrix A, transformed according to the red-black ordering, looks like
this
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

a 0 0 0 0 b c 0 0
0 a 0 0 0 b 0 c 0
0 0 a 0 0 c b b c
0 0 0 a 0 0 c 0 b
0 0 0 0 a 0 0 c b
b b c 0 0 a 0 0 0
c 0 b c 0 0 a 0 0
0 c b 0 c 0 0 a 0
0 0 c b b 0 0 0 a


(13)

For any value of size N , the matrix has the following block form [17]:(
aE C
CT aE

)(
ūR
ūB

)
=

(
fR
fB

)
, (14)

where aE is a diagonal matrix in which all diagonal entries are equal to a.
The matrix C is a block of 5 × 4 elements in the upper right corner of the
matrix (13). The matrix CT is the transposed matrix C. The vectors ūR
and fR contain elements of the vectors ū and f corresponding to the nodes
of red color. The vectors ūB and fB contain elements of the vectors ū and
f corresponding to the nodes of black color.

The Gauss-Seidel iterations for the system (14) have the following form:
ū

(t+1)
R =

1

a
(fR − Cū(t+1)

B ),

ū
(t+1)
B =

1

a

(
fB −

1

a
CT (fR − Cū(t)

B )
)
.

(15)

Thus, at each iteration, the values of the vector ū are calculated first in
nodes of black color (ūB), then using these values in nodes of red color (ūR).

To write the Gauss-Seidel method in matrix form, we represent the ma-
trix Ak as Ak = Dk − Lk − Uk, where Dk is a diagonal matrix containing
diagonal elements of the matrix Ak, Lk is a lower triangular matrix, and Uk

is an upper triangular matrix. Then the Gauss-Seidel method is written as
follows:

ūt+1
k = Ãkū

t
k + bk, (16)

Ãk = (E −D−1
k Lk)−1D−1

k Uk, (17)

bk = (E −D−1
k Lk)−1D−1

k fk, (18)

where E is an identity matrix.
In [16, chapter 9, page 176], it is shown that for the red-black ordering

of the matrix A = L+U , the inverse matrix (E−L)−1 can be calculated as
(E−L)−1 = (E+L). Based on this property, we calculate (E−D−1

k Lk)−1 =

(E +D−1
k Lk) and obtain the matrix Ãk and the vector b. The matrix Ãk is
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a singular matrix, it contains zero elements corresponding to nodes of red
color. This is a consequence of the red-black ordering and corresponds to
the fact that first the system is solved for the black nodes, and then the
solution for the red nodes is calculated from these values.

1.4. Solving the Lamé equation. Thus, we have moved from the original
system (9) to the new system:{

ūt+1
1 = Ã1ū

t
1 + bt1,

ūt+1
2 = Ã2ū

t
2 + bt2.

(19)

The right-hand side bt1 of the first system of linear equations is a function
of the solution ūt

2 of the second system of linear equations. Similarly, the
right-hand side bt2 is a function of the solution ūt

1.
Therefore, we solve the system (19) by iterative method. At each iter-

ation, the solution ūt
1 and the right-hand side bt2 are calculated first, then

the solution ūt
2 and the right-hand side bt1 are computed. In addition, each

iteration is performed in two stages. In the first step, the solution ūk is
calculated in nodes of black color using the vector randomized algorithm
given in [6] (it will be given below in Section 2). In the second step, the
solution ūk is calculated in nodes of red color using the newly calculated
values in the black nodes.

Let us describe the iterative algorithm for solving the system (19) in
more detail:

1.5. Iterative algorithm for solving the Lamé equation

1. At the beginning, initialize the right-hand side with any non-zero val-
ues, for example, b0

1 = 1. Initialize t = 0.

2. Calculate the solution ūt+1
1 B for black nodes using the vector random-

ized algorithm.

3. Calculate the solution ūt+1
1 R for red nodes using the formula ūt+1

1 R =
1
a1

(bt1 R − C1ū
t+1
1 B).

4. Calculate the right-hand side bt+1
2 by the formulae (8) and (18) using

the new values of the vector ūt+1
1 .

5. Calculate the solution ūt+1
2 B for black nodes using the vector random-

ized algorithm.

6. Calculate the solution ūt+1
2 R for red nodes using the formula ūt+1

2 R =
1
a2

(bt2 R − C2ū
t+1
2 B).

7. Calculate the right-hand side bt+1
1 by the formulae (8) and (18) using

new values of the vector ūt+1
2 .
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8. Calculate the errors erk =
|ūt+1

k − ūt
k|

|ūt+1
k |

, k = 1, 2.

9. If er1 < ε and er2 < ε, where ε ∈ (0, 1) is the required accuracy of the
solution, then stop the iterations.

10. Otherwise, increase the iteration number t := t+ 1 and continue from
step 2.

2. The vector randomized algorithm for solving system of
linear algebraic equations

2.1. Random vector estimators for stochastic matrix iterations.
Let b ∈ Rn be a nonnegative stochastic vector, which means,

∑n
i=1 bi = 1.

Let A be a nonnegative n × n column stochastic matrix, which means,∑n
i=1 aij = 1 for j = 1, . . . , n. Further, we denote by Ak the kth column

of the matrix A.
In [6], the random unbiased vector estimators for the products Akb are

presented. In what follows the products Akb are called iterations.
For a stochastic matrix A and stochastic vector b an unbiased estimator

ξj1 for Ab is as follows.

Ab = Eξj1 = E{Ak | p = b}, (20)

where, E{Ak | p = b} means that the expectation is taken over random
columns chosen at random from the distribution p = b.

Next step, an unbiased estimator ξj2,j1 for the second iteration A2b is
constructed as follows:

A2b = Aξj1 = EE{Aj | p2 = Ak; p1 = b} = Eξj2,j1 . (21)

This means that in the double expectation we first choose a random column
Ak from the distribution p1 = b, and then choose a random column Aj from
the distribution p2 = Ak. The unbiased estimator for the third iteration
is obtained by the next random sampling of a random column Ai from the
distribution p3 = Aj , etc., and for the kth iteration we get

ξjk,jk−1,...,j1 = Ajk , (22)

where each next random column is sampled from the previously sampled
column.

In the case of an arbitrary vector b, we construct the unbiased estimator
for the kth iteration Akb as follows. Let p(j) be an arbitrary probability
distribution of indices j = 1, 2, . . . , n satisfying the condition p(j) 6= 0 if
bj 6= 0, j = 1, . . . , n. Then
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E
bj1
p(j1)

ξjk,jk−1,...,j1 = Akb, k = 1, 2, . . . , (23)

where j1 is a random index sampled from the density p.

2.2. Random vector estimators for iterations of positive or irre-
ducible nonnegative matrix. In [6] the randomized vector algorithm is
extended to positive or irreducible nonnegative matrices using transforma-
tion of nonnegative matrix A to a column stochastic matrix S.

Assume that a nonnegative matrix A has a positive eigenvalue λ and
a positive eigenvector z of the transpose matrix AT (AT z = λz) with its
positive components z1, . . . , zn. Let Z be a diagonal matrix defined by Z =
diag{z1, . . . , zn}. Then the matrix

S =
1

λ
ZAZ−1

is a column stochastic matrix.

This transformation allows to reduce the calculation of iterations Ak to
calculation of iterations Sk:

Ak = λkZ−1SkZ, k = 1, 2, . . .

We take the maximum eigenvalue of the matrix AT as a positive eigen-
value λ. It is calculated by the power method [18].

2.3. Solving of a linear system. According to [6], let us describe the
algorithm for calculating the solution of a system of linear algebraic equation

x = Ax + b. (24)

In the case when spectral radius of matrix A is less than unity ρ(A) < 1,
the solution of the system (24) can be represented as a Neumann series

x =
∞∑
k=0

Akb.

Transform (24) for a column stochastic matrix A = λZ−1SZ multiplying
it by Z and introducing y = Zx, b̃ = Zb. Then we arrive to the equation

y = λSy + b̃. (25)

The solution of the system (25) can be represented as a Neumann series
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y = b̃ +
∞∑
k=1

(λS)kb̃.

To achieve the target accuracy ε of the solution, a finite number of it-
erations K should be taken as K ∼ | log ε|. Thus, we calculate yK , the
approximation of y, from

yK = b̃ +
K∑
k=1

(λS)kb̃. (26)

The iterations (λS)kb̃ are calculated using the random vector estimators
described in Section 2.1 for the stochastic matrix and arbitrary vector (23).
We use Walker’s alias method [19] to sample from the discrete distributions
given by the columns of a stochastic matrix and vectors.

We introduce a vector V where we store the contributions for the iter-
ations Skb along the Markov trajectories. The contribution corresponding
to the kth iteration is calculated as follows

qk = wλkSjk . (27)

Here, w =
b̃j1
pj1

is a weight that occurs when using the formula (23), where j1

is a random element of the vector b̃; λk comes from the representation (26);
jk is a random column of the matrix S.

The Markov trajectories are constructed as follows:

2.4. Vector randomized algorithm for solving linear system

1. Choose the density p as follows: pi = |b̃i|∑n
j=0 b̃j

, i = 1, 2, . . . , n.

2. A random index j1 is sampled from the density p and contribution

q1 =
bj1
pj1
λSj1 is added to the j1th element of the vector V : Vj1 :=

Vj1 + q1.

3. A random index j2 is sampled from the column Sj1 and contribution

q2 =
bj1
pj1
λ2Sj2 is added to the j2th element of the vector V : Vj2 :=

Vj2 + q2,

4. etc., and the last state, a random index jK is sampled from the column

SjK−1 and contribution qK =
bj1
pj1
λKSjK is added to the jKth element

of the vector V : VjK := VjK + qK .

5. Repeat the steps 2–4 for M independent trajectories, and calculate
the result as

yK = b̃ +
1

M

n∑
i=1

Vi.
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3. Simulation results

In the Monte Carlo methods, the statistical error εs is measured by the
standard deviation

√
D/
√
M , where D is the variance, and M is the number

of trajectories [6]. Hence, the number of trajectories behaves like M ∼
D/ε2s. The trajectories are statistically independent and can be calculated in
parallel. The traditional method of parallel implementation of Monte Carlo
algorithms is the distribution of random trajectories among the available
supercomputer’s cores [5].

The vector randomized algorithm 2.4 takes up most of the computation
of the iterative algorithm 1.5 for solving the Lamé equation. Therefore,
we implement the vector randomized algorithm in parallel using the MPI
standard. In addition, the compressed sparse column format is used to
store the matrices C1, C2 (14) and Ã1, Ã2 (17), which reduces the amount
of memory needed to store data and the amount of calculations.

To verify the iterative algorithm 1.5, we solve the Lamé equation with a
known solution: {

u1(x, y) = x(x− 1)y(y − 1),

u2(x, y) = 2x(x− 1)y(y − 1).
(28)

After substituting the solution (28) into the equations (2), we get the
following system:

µ
(∂2u1(r)

∂x2
+
∂2u1(r)

∂y2

)
+ (λ+ µ)

(∂2u1(r)

∂x2
+
∂2u2(r)

∂x∂y

)
= f̃1(r),

f̃1(r) = 2(2µ+ λ)y(y − 1) + 2µx(x− 1) + 2(λ+ µ)(2x− 1)(2y − 1),

µ
(∂2u2(r)

∂x2
+
∂2u2(r)

∂y2

)
+ (λ+ µ)

(∂2u2(r)

∂y2
+
∂2u1(r)

∂x∂y

)
= f̃2(r),

f̃2(r) = 4(2µ+ λ)x(x− 1) + 4µy(y − 1) + (λ+ µ)(2x− 1)(2y − 1).
(29)

We solve the Lamé equation in a unit square. In this case, we deal with
zero boundary conditions:

u1(r)|Γ = 0, u2(r)|Γ = 0. (30)

After discretization of the equations (29), we obtain linear systems (9)
with the same matrices A1 and A2 as given in Section 1.3, and the following
right-hand sides:

v1(r) = f1(r) + f̃1(r),

v2(r) = f2(r) + f̃2(r),

where f1(r), f2(r) depend on the mixed derivatives of u1(r), u2(r), and
are calculated by the formulae (5), (8).
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We calculate the solution of the system for the grid size N = 100, the
space step h = 9.9 · 10−3. The spectral radius of the matrices Ã1, Ã2

(17) for this space step is ρ(Ãk) = 0.999, k = 1, 2. Due to the fact that
the spectral radius is close to unity, the vector randomized algorithm 2.4
converges slowly, and the number of iterations K must be large enough
to obtain the solution of linear systems (9) with sufficient accuracy. We
take K equal to 5 · 103. The maximum variance of the estimator for the
solution obtained by the algorithm 2.4 for N = 100 is 0.013 for the first
component u1(r) and 0.05 for the second component u2(r). We simulate
M = 107 trajectories to get the solution smooth enough to compute mixed
derivatives. These parameter values provide an average absolute error of the
linear system solution equal to 0.0002. The iterative algorithm of solving
the Lamé equation 1.5 converges in four iterations and gives the solution
with an absolute error of 0.0003 and a relative error of 0.01.

The partition “Cascade lake” of the cluster “MVS-10P” of the Joint
Supercomputer Center of RAS [20] is employed for calculations. The “Cas-
cade lake” node consists of two processors Intel Xeon Gold 6248R CPU 3.00
GHz, each containing 24 cores with 2 threads.

a b

c d

Figure 2. The right-hand sides (a, b) and solutions (c, d) of the Lamé equation
obtained using the iterative algorithm and calculated using the exact formulae
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The calculation time for solving one linear system is 13 seconds, and the
entire time for solving the Lamé equation is 102 seconds when using a single
node and 48 MPI processes.

Figure 2 shows the right-hand sides v1(r), v2(r) and solutions u1(r),
u2(r) obtained by the iterative algorithm (1.5) and calculated using exact
formulae (28), (29). As shown, the approximation of mixed derivatives,
which is included in the right part, is not smooth. However, the solution of
the Lamé equation is calculated with good accuracy.

Conclusion

A stochastic iterative algorithm for solving the Lamé equation in a two-
dimensional domain is presented. We deal with a system of two coupled sec-
ond order elliptic equations for the displacement vector components. Each
equation includes a mixed second order partial derivative of another com-
ponent. The iterative algorithm is based on the following idea: in the first
equation, the mixed partial derivative of the second component is moved
to the right-hand side of the equation. The same is done with the second
equation. We approximate the Lamé equations by finite differences and
transform the resulting system of linear algebraic equations using the red-
black ordering of the Gauss-Seidel method. The linear system is solved using
the vector randomized algorithm. We check the iterative algorithm for solv-
ing the Lamé equation with a known solution. The simulation results show
that the algorithm allows solving the Lamé equation with good accuracy.
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