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Solvability of inverse dynamic problems for
a one-dimensional system of Hopf-type equations

D.K. Salaev

Abstract. Inverse dynamic problems for a one-dimensional system of Hopf-type
equations are considered. Theorems on the solvability of the considered problems
in the class of analytic functions are proved.

It is known that a significant number of physical, geophysical, biolog-
ical, ecological and other processes are described by nonlinear differential
equations in partial derivatives. Practically important problems that arouse
interest in such equations lead to various kinds of direct and inverse problems
for them.

Interest in inverse problems arose at the beginning of the 20th century.
The first inverse problems were associated with the research of astrophysi-
cists and geophysicists (see [1, 2]). Later, prominent Soviet mathematicians
A.N. Tikhonov, M.M. Lavrentiev, and V.G. Romanov introduced the term
“inverse problem” (see [3–5]). At the same time, it turned out that most
of the inverse problems are not well-posed according to Hadamard. The
foundations of the theory and practice of studying ill-posed problems were
laid down and developed in the works of A.N. Tikhonov, M.M. Lavrentiev
and their followers.

The analysis and solution of inverse problems of many kinds has re-
cently expanded greatly because of their relevance in many applications:
elastography and medical imaging, seismology, potential theory, ion trans-
port problems or chromatography, finance, etc.; see, for example, [6–8].

This paper considers some inverse problems for non-linear non-stationary
PDEs of the Hopf type in one spatial domain of measurement.

1. Hopf type system of equations

Hopf-type systems of equations are a particular case of a system of equations
for a two-fluid medium [9, 10]. In the one-dimensional case, in the presence
of body forces, this system has the form [11, 12]:

∂u1
∂t

+ u1
∂u1
∂x

= −b(t)(u1 − u2) + f(x)g1(t), (1)
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∂u2
∂t

+ u2
∂u2
∂x

= εb(t)(u1 − u2) + f(x)g2(t), (2)

where f(x)g1(t) and f(x)g2(t) are body forces, ε =
ρ1
ρ2

is a dimensionless

positive constant, b(t) is a positive function.
The system (1), (2) differs from the system of two-velocity hydrody-

namics in the dissipative case due to the coefficient of friction, absence of
pressure, and incompressibility condition. For this reason, the problems
associated with a Hopf-type system will sometimes be referred to as two-
velocity hydrodynamics without pressure. Also in the case when the energy
dissipation occurs only due to the coefficient of interfacial friction, we will
call the inviscid Burgers-type system or the Hopf-type system, or we will also
call the Riemann-type system, which gives the simplest quasilinear system
of equations. When the friction coefficient disappears (b = 0), the system
(1), (2) passes to the well-known Hopf equation [13].

Zel’dovich proposed to consider an inviscid free system in the one-velocity
case in the absence of body forces as an equation describing the evolution
of a rarefied gas of noninteracting particles [14]. According to his idea, the
pure kinematics of the underlying particles can lead to singularities in the
distribution of mass and is responsible for the inhomogeneity of matter in
the universe.

Following [15], we denote by C(0, T ;Xs)–– the space of the analytic func-
tions u(z) in the disc CT = {z ∈ C : |z| < T}, bounded for |z| ≤ T and
taking values in the Banach space Xs. Having defined in it the norm

‖u‖C(0,T ;Xs) = sup
t∈[0,T ]

‖u‖s,t,

‖u‖s,t = sup
|z|=t
‖u(z)‖s, ‖ · ‖s = ‖ · ‖Xs ,

we obtain the Banach space.
Here Xs, s ∈ [0, 1], is a one-parameter family (scale) of the Banach spaces

such that Xs ⊆ Xs′ , for s′ < s, and the norm of the embedding operator
≤ 1, i.e. for all u ∈ Xs

‖u‖s′ ≤ ‖u‖s, s′ < s.

Let for any pair of the numbers s′, s ∈ [0, 1], s′ < s, the mapping V is
defined on the ball Cr,u0(0, T ;Xs) = {u ∈ C(0, T ;Xs) : ‖u−u0‖C(0,T ;Xs) < r}
with the center u0 ∈ C(0, T ;X1) and takes it to C(0, T ;Xs′). We call V the
Volterra operator of the class J(α, β,C), α > 0, β ≥ 0, if there exists a
number A > 0 such that for any u, v ∈ Cr,u0(0, T ;Xs), s

′ < s, t ∈ [0, T ], the
estimate is fulfilled:

‖V u− V v‖s′,t ≤ c (s− s′)−β(Jα‖u− v‖s,τ )(t),

where Jα is the integration operator of order α > 0,
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(Jαϕ)(t) = Γ−1(α)

∫ t

0
(t− τ)α−1ϕ(τ)dτ,

Γ(α) is the gamma function. In particular, for α = 1

(Jϕ)(t) =

∫ t

0
ϕ(τ) dτ, J ≡ J1.

Theorem 1 [15]. Let V ∈ J(α, β,C). Then:

1) the solution to the equation u = V u is unique in the ball Cr,u0(0, T ;Xs)
at s > 0;

2) if V u0 ∈ Cr,u0(0, T ;Xs) for some s ∈ (0, 1], then there is a number
a > 0 such that for any s′ < s the equation u = V u has the solution

u ∈ Cr,u0(0, T ′;Xs′), T ′ < a(s− s′), T ′ < T.

This theorem is the Volterra version of well-known theorems on the solv-
ability of the abstract Cauchy problem (see [16, 17] and the literature cited
therein). It is proved in essence in the same way as the Nishida theorem
in [16]. The more general case of the spaces Lp(0, T ;Xs) (1 ≤ p ≤ ∞) is
considered in detail in [18].

2. The inverse problems

Let us now turn to the formulation of inverse problems for a Hopf-type
system. Let the Cauchy data for the system (1), (2) be given:

uk|t=0 = u0k(x), k = 1, 2, (3)

Let also an additional information be given:

uk|x=0 = ϕk(t), k = 1, 2. (4)

The inverse problem is to determine the functions u1(x, t), u2(x, t), g1(t),
g2(t) from (1)–(4). In this case, the function f(x) is known and differs from
zero, the matching condition is satisfied

u0k(0) = ϕk(0), k = 1, 2. (5)

Let us apply the operator
∂

∂x
f−1(x) to both sides of equalities (1) and (2).

After simple transformations, we obtain
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∂u1
∂t
− ϕ′1(t) = − b(t)(u1 − u2) + b(t)(ϕ1 − ϕ2) +

b(t)

∫ x

0

f ′(ξ)

f(ξ)
(u1 − u2) dξ +

∫ x

0

f ′

f

(∂u1
∂t

+ u1
∂u1
∂ξ

)
dξ −∫ x

0

((∂u1
∂ξ

)2
+ u1

∂2u1
∂ξ2

)
dξ, (6)

∂u2
∂t
− ϕ′2(t) = εb(t)(u1 − u2)− εb(t)(ϕ1 − ϕ2)−

εb(t)

∫ x

0

f ′(ξ)

f(ξ)
(u1 − u2) dξ +

∫ x

0

f ′

f

(∂u2
∂t

+ u2
∂u2
∂ξ

)
dξ −∫ x

0

((∂u2
∂ξ

)2
+ u2

∂2u2
∂ξ2

)
dξ. (7)

Thus, studying the solvability of the inverse problem (1)–(4) was reduced
to studying the solvability of the direct problem (3), (6), (7). This direct
problem is equivalent to the system of integro-differential equations

u1 = u01(x) + ϕ1(t)− ϕ1(0)−∫ t

0
b(τ)(u1(x, τ)− u2(x, τ)− ϕ1(τ) + ϕ2(τ)) dτ +∫ t

0

∫ x

0

f ′(ξ)

f(ξ)

(∂u1(ξ, τ)

∂τ
+ u1(ξ, τ)

∂u1(ξ, τ)

∂ξ

)
dξdτ −∫ t

0

∫ x

0

((∂u1(ξ, τ)

∂ξ

)2
+ u1(ξ, τ)

∂2u1(ξ, τ)

∂ξ2

)
dξ dτ +∫ t

0
b(τ)

∫ x

0

f ′(ξ)

f(ξ)
(u1(ξ, τ)− u2(ξ, τ)) dξ dτ, (8)

u2 = u02(x) + ϕ2(t)− ϕ2(0) +

ε

∫ t

0
b(τ)(u1(x, τ)− u2(x, τ)− ϕ1(τ) + ϕ2(τ)) dτ +∫ t

0

∫ x

0

f ′(ξ)

f(ξ)

(∂u2(ξ, τ)

∂τ
+ u2(ξ, τ)

∂u2(ξ, τ)

∂ξ

)
dξ dτ −∫ t

0

∫ x

0

((∂u2(ξ, τ)

∂ξ

)2
+ u2(ξ, τ)

∂2u2(ξ, τ)

∂ξ2

)
dξ dτ −

ε

∫ t

0
b(τ)

∫ x

0

f ′(ξ)

f(ξ)
(u1(ξ, τ)− u2(ξ, τ)) dξ dτ. (9)

Introducing the vector function u = (u1, u2), this system can be written
down in the form u = V u, where the operator V is defined by the right-hand
sides of equalities (8), (9). Further, repeating the reasoning in the proof of
Theorem 2 [10], with allowance for the estimate



Solvability of inverse dynamic problems. . . 55

|D2u|s ≤ 2δ−1|u|s,

which follows from the fact that the analytic function reaches its maximum
at the boundary. Hence V ∈ J(1, 1,C). Thus, for small T , Theorem 1
implies the existence of the unique analytic solution u = (u1(x, t), u2(x, t))
of system (8), (9) in some complex neighborhood of zero. The functions
g1(t) and g2(t) are determined by the formulas

g1(t) =
1

f(x)

(∂u1
∂t

+ u1
∂u1
∂x

+ b(u1 − u2)
)
,

g2(t) =
1

f(x)

(∂u2
∂t

+ u2
∂u2
∂x
− εb(u1 − u2)

)
.

Thus, we have proved

Theorem 2. Let f(x), u01(x), u02(x) ∈ Cω(Y ), f(x) 6= 0. Then there
are functions u1(x, t), u2(x, t), g1(t), g2(t) that solve the inverse problem
(1)–(4), satisfying in some neighborhood of zero, such that in it u1(x, t),
u2(x, t), g1(t), g2(t) ∈ Cω.

The next inverse problem is to determine the functions u1(x, t), u2(x, t),
b(t), g2(t) from (1)–(4). In this case, the function f(x) is known and sepa-
rated from zero and ϕ1(t)−ϕ2(t) 6= 0, the matching condition (5) is satisfied.

Further, apply to both parts of equalities (1) and (2) the operators
∂

∂x
(u1 − u2)−1 and

∂

∂x
f−1(x), respectively. After simple transformations,

we obtain

∂u1
∂t

= ϕ′1(t) + (f(x)− f(0))g1(t)−
∫ x

0

((∂u1
∂ξ

)2
+ u1

∂2u1
∂ξ2

)
dξ −∫ x

0
(u1 − u2)−1

(∂u1
∂ξ
− ∂u2

∂ξ

)(
f(ξ)g1(t) +

∂u1
∂t

+ u1
∂u1
∂ξ

)
dξ, (10)

∂u2
∂t

= ϕ′1(t) +

∫ x

0

f ′

f

(∂u2
∂t

+ u2
∂u2
∂ξ

)
dξ +

ε(f(x)− f(0))g1(t)−
∫ x

0

((∂u2
∂ξ

)2
+ u2

∂2u2
∂ξ2

)
dξ +

ε

∫ x

0

(
(u1 − u2)−1

(∂u1
∂ξ
− ∂u2

∂ξ

)
+
f ′

f

)(∂u1
∂t

+ u1
∂u1
∂ξ

)
dξ. (11)

Consequently, the study of the solvability of the inverse problem of deter-
mining functions u1(x, t), u2(x, t), b(t), g2(t) from (1)–(4) has been reduced
to the study of the solvability of the direct problem (3), (10), (11). This
problem is equivalent to the system of integro-differential equations
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u1 = u01(x) + ϕ1(t)− ϕ1(0) + (f(x)− f(0))

∫ t

0
g1(τ) dτ −∫ t

0

∫ x

0

((∂u1
∂ξ

)2
+ u1

∂2u1
∂ξ2

)
dξ dτ −∫ t

0

∫ x

0
(u1 − u2)−1

(∂u1
∂ξ
− ∂u2

∂ξ

)(
f(ξ)g1(t) +

∂u1
∂t

+ u1
∂u1
∂ξ

)
dξ dτ,

u2 = u02(x) + ϕ2(t)− ϕ2(0) +

∫ t

0

∫ x

0

f ′

f

(∂u2
∂t

+ u2
∂u2
∂ξ

)
dξ dτ +

ε(f(x)− f(0))

∫ t

0
g1(τ) dτ −

∫ t

0

∫ x

0

((∂u2
∂ξ

)2
+ u2

∂2u2
∂ξ2

)
dξ dτ +

ε

∫ t

0

∫ x

0

(
(u1 − u2)−1

(∂u1
∂ξ
− ∂u2

∂ξ

)
+
f ′

f

)(∂u1
∂t

+ u1
∂u1
∂ξ

)
dξ dτ.

Repeating the arguments in the proof of Theorem 2, we have proved

Theorem 3. Let f(x), u01(x), u02(x) ∈ Cω(Y ), f(x) 6= 0 and ϕ1(t)−ϕ2(t) 6=
0. Then there are functions u1(x, t), u2(x, t), b(t), g2(t) solving the inverse
problem (1)–(4), satisfying in some neighborhood of zero, such that in it
u1(x, t), u2(x, t), b(t), g2(t) ∈ Cω. In this case, the unknown functions b(t)
and g2(t) are determined by the formula

b(t) =
1

u1 − u2

(
f(x)g1(t)−

∂u1
∂t
− u1

∂u1
∂x

)
,

g2(t) =
1

f(x)

(
ε
(∂u1
∂t

+ u1
∂u1
∂x

)
+
∂u2
∂t

+ u2
∂u2
∂x

)
− εg1(t).
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