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Convergence of quintic spline
interpolants
in terms of a local mesh ratio

A.Yu. Shadrin

In this paper we give an algorithm for finding the bounds for a ratio of two neighbouring
mesh steps which provide the convergence of odd-degree spline interpolants and their
derivatives. For the quintic splines numerical values are obtained which improve the
estimates by S.Friedland, C.Micchelli.

1. Introduction

In this paper we study the problems of convergence of spline interpolants
8y of degree 2m — 1 and deficiency 1 to functions from the classes C! in
terms of a local mesh ratio. The interpolating nodes, which are also the
spline breakpoints are given by the meshes

An=fa=t <t <...<t) = b},
the natural boundary value condition on splines are considered:
C sW(f,0)=0, t=0,1; p=m2m=2.
The local mesh ratio of a sequence A = {A,}{° is defined as
KM

= I -
ps(A) = lim jmax h},,),

where hgn} = S,':)l —#{ is the local step of the n-th mesh.
We are concerned with the following

Problem 1. Form,s € N and 0 <1 < m — 1 given, define the ezact upper

bound Pam—1ls Jor the values pym—1,,s, such that for any functiorn f € C J
and arbitrary sequence A

ps(A) < sz-l;z,, = ilf(') -0 e =0 (E(“) - 0).

n,2m-—
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For m = 2, | = @, the exact solution is

P30 = (3 +2‘/g) ~ (2.6180)’, (1)

as it was obtained in [9, 2, 5]. Earlier (see [1, p.29]) it was proved that for
m=21=1, '

* —
P311 = .

The case m > 2 was considered in [3, 8, 7] where the following bounds
for the value p3 ,_, ;; were found

Pam-141 < Pom—1,41 < Pam-1,,1- (2)

Moreover, the sufficient convergence conditions (the lower bound) were.
obtained in [3] only for ! = 0, and divergence examples (the upper bound)
were constructed in [8, 7] for 0 < ! < m — 2. The numbers Py,.q,,
and fom-1,1,s are defined as solutions of certain algebraic equations, their
numerical values are computed in [7] for m < 9.

The purpose of this paper is to improve the lower bound in (2) (i.e.,
the sufficient convergence conditions) for the interpolating quintic splines.
Our main result is :

Theorem 1. Let f € C', | = 0,1,2. Then for the quintic spline intr-
erpolants s, 5 defined on A = {A,}{° the implication

PG(A) < ﬁ5,l,a(M) = “f(l) - 3,(:,)5”0 -0 (R(") = 0).
is valid.

The values js;,) are given in the table along with the corresponding
values p and j from inequality (2):

! P51 P51 P51
1 1.1193 1.2018 1.4164
2 - 1.3584 1.8535
3 - 2.5071 -

This theorem was announced in [6], in this paper the proof is given.
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2. Preliminary results

This section contains the statements proved in [6].
Denote the set of null-splines as

S?m-l(An) = {0 € Sam-1(An) : 0(t;) = 0,1; € An}.

Further, for a proper number R = R(m) define the class Ug[0,1] of func-
tions u € C™[0, 1] with the properties

a) u(0)=0, u(l)=1;
w0y =u®(1)=0, p=T,m-1; (3)

b) [Ju®c[0,1]< R, p=Tm,.
For u € Ug[0,1], M € N and i =0, N, — M, set

uim(t) = w((t — )/ (tigm — 1)) - (4)

Lemma A. For M > m — 1 there is a number By = frp(m), such that for
arbitrary 0 € Sym—1(Ay), v € Ug[0,1]) and i = O, N,, — M,

[ o w0 o< @) . o)

Set
1

T - (6)

™ =1m(m) =1+
Bm
The following theorem is valid.
Theorem A. Let0<I<m-1, f € C'a,b]. Then

[}
IO = s, ille

Np=1 ;7 \m=I-1/2 _ 1, .
< ¢(M,m) St;p{ > (;‘:‘) 1 'mfh' "} 1 Olle,

1=0
where hj = max{h, : j <v < j+m~2}, and yu is defined in (5)-(6).
Set 1 . s
JaZm—l,l,a(M) = (’T;{H m=t= 2) . (7)

From Theorem A there follows



90 A.Yu. Shadrin

Theorem B. Let0 <! <m-1, f € C'. Then forany M > m — 1 and
any sequence A = {An}{°,

po(B) < prm-11a(M) = 1O = 83 msllo = o(1).
Remark. From (7) it is seen that

pam-1,0,(M) € pam-1,1,6(M) < ... £ pam-1,m-1,4(M),

i.e., the higher is the smoothness [ of a function f € c', the weaker are the
constrains providing the convergence of spline interpolants.

Thus, Problem 1 is reduced to finding sharp estimates for the values
yum defined in (6), i.e. to computing the exact constant far in inequality
(5) of Lemma 1.

The first way to such a computing is to optimize the value Sy with
respect to the functions u € Ug[0, 1].

Another way which will be considered in the next section consists in
reducing (5) to the equivalent relation between two quadratic forms

(C.‘E,‘,I;’) < ﬁM (Bz;,:n;), (8)

one of which (corresponding to the right-hand side (5)) is positive definite.
In such a case the smallest value By providing (8) (and, therefore, (5)) is
equal to the largest eigenvalue of the matrix B~1C. The required value
M can be also equated to an eigenvalue of a special matrix. '

3. Scheme of 7)s computation

Integrate the both sides of inequality (5) by parts. Using definitions (3)-(4)
of the function u; s and the fact that o is a null-spline of degree 2m — 1,
we obtain

m—1

Z(_l)v+1 o.(m-—V)(,)a(m-l-]-u)(_) Ih+m
v=1
m=—1
< B T (-1 I () gmmtin () ffem

v=1

Rewrite this relation in a vector form, for this pupose introduce the vectors
z; = (z},...22™"?) with the components

1 . m— —s—
zf = L—!o(“)(ti), t=0,N,, p=12m-2.
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It is known (see [3]) that these vectors are connected by the linear trans-
formation

T = AT

with the matrices A; of the form

A; = =D(h7') AD(k;), (9)

where, in turn,
D(h) = diag(h,h?,...,R2™~2), (10)
A={Cln-CEYIT O = gy (11)

If we define a symmetric matrix T by the relation

m-1

(Tz,z) = Z(—l)wrl(m —v)(m=1+4p) g™ vgm 1y, (12)

v=1

and set
CAiM = AigM-o1 X AigM—2 X o X A,

then the vector form of (5) will look like
(TAim ziy Aip i) < By (T Aiom 235 Aigm i) = (T2i, 23)]

or
(A} MT Aim i, 73) < B ([AI T Aim — T i, 23)

Finally, substituting z; = A'-"}‘(z‘-.,.f(, K = 0,M, to the latter formula we
obtain the following expression, which is equivalent to (5):

(At M-k TAib K M-K TitK, TisK)
< Bm ([A?+K.M-KTA£+K.M—K - (A.",}f)"‘TA.-_,}f] TitKs -'ﬂc'+K) » (13)

where it is implied A;o = F, A;; = A;, K =0, M.
The quadratic form standing in the right-hand side of (13) corresponds
to the right-hand side of (5), hence, the symmetric matrix

B = Al g m-xTAirxy—k — (ATL)TAZk

is a positive definite one. Thus, for any symmetric matrix C the smallest
value fps provided the inequality

(Cz,z) < Bm (Bz,z)
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is equal [4, p.290] to the largest eigenvalue of the matrix B~1C. The value

(see (6))
| B —1=7

coincides in this case with the smallest among those roots of the charac-

teristic equation

I(CT'B-E)-AE| =0

for the matrix C~1B — E which are greater than —1.
Applied to (13) this means that for computing yp we need to find the
roots of equation

| =147 kM- TAisxm-k) " A kT Aik] = AE| =0
or of the equivalent one
|| (A2 kT Aix] + MAT ke M-k T Airk M-K] | =o, (14)

and choosing among them the root Ap, closest to —1 from the right, equal-
ize
™M ==Xy - . (19)

4. Results for quintic splines

Here we will show how the above given scheme works for quintic' splines,
but beforehand for more clarity we consider the case of cubic spline inter-
polation.

4.1. Cubic splines

Set in (9)-(12) m = 2, M = 1, i.e., we are concerned with one interval
(£, ti+1], which can be ‘considered as unit one. We have

| 23 0 1/2
Ai‘ = Ai,l == 3 T=
12 \12 o

: 2 7/2
Ar,lTAhl == / .
772 6

Equation (14) where we consider K =0, Aio = E, takes the form
22 At}

1
o =12)% - 1A+ 1) =0,
§A +3 6
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whence

/\1_2 = —(7 * 4\/5) - —(2 + \/5)2,
Am(m) = M(2) = -(2 - V3)?,

and basing on (15)

Tm(m) = 1(2) = (2+ V3)~

Therefore, by virtue of (7) we can take in Theorem B the value

P30.(1) = (2+ V3)¥* ~ (2.4060)",

which is somewhat worse than (1).

4.2. Quintic splines

93

Set in (9)-(12) m = 3, M = 2, i.e., consider two neighbouring intervals
(tistisa], [tit1,tiv2] with lengthes h;, hity. In this case

4 3hin 2h?+1 h?+1
10k 9 Thip 4k,
A= L "
Shiy Shy 5h3, 4
4 -3h; 2R} A}
4 -10n7Y 9 —Th; 4k}
.'1 —3 .
1072 ~10A7' 9 —6h;
~5h7® 57 -5R7Y 4
0 -1
1/2
T =12 /
1/2
-1 0
The further scheme goes like that. Let
_’ii_ﬂ =a>0

h;

(16)
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Solving equation (14) we obtain the values fp(a) and yps(a), such that
the inequality (5) is valid with the intervals [t;,2;41], [tiz1, tig2], satisfying
(16). Now, if we take By = max, Ba(a), then (5) will be valid for two
interavals with arbitrary length ratio. By (6), the value 8pr = max, Bar(e)
corresponds to the value

M = min (@),
which we start now to compute.

Substituting in (14) with K =1, M = 2 the calculated matrices A;y1,1,
A7 11, T and omitting the factor 12 from the latter one, we find

60(A-a®)h 60(A+a®)h7H  50(A—a)h7} 29 (A +1)
60(A+a®)hl  60(A—a)h7, W (a+1) 30(A —a" ) hiys
50 (A —a) ki BLa+1) 8A-—aMhisr 26(A—a"?)h2,,
29(A+1) 30(A—a M) higr 26(A—a”?)hY, 16(A-a )Rl
1
= 41A‘+a(a),\“+[b(a)+1/2])"+a(a),\+ 3=0, (17)

where the functions a(a), b(a) have the following form:
a(a) =120{2(c®+ ™3 + 13(c? +a )+ 34(a+a 1) + 465551,
bla) =240 {7(c®+a®) +43(a® + a72) + 109 (a + ™) + 146535} .

The change y = A + A~! reduces (17) into the quadratic equation
1
7V ta(@y+ba)=0. (18)

One can be convinced that the value |ymin(e)| of the smallest absolute root
of the equation (18) takes the least (with respect to @) value for o = 1.
For such a equation (18) takes the form:

1
~y?+17281y+ 111361 =0,

4
whence
81 —
Yemin(1) = —2 (17281 — 2080v/65) = — 22+ V81 — 1/48
9+ /81 -1/48
Since, _

Ymin(1) = Am(m) + A3t (m),  yam(m) = =A3}(m),
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finally we obtain

(3)_\/E+1 _29+,/81-1/48 -
72 —ﬁ_—'l!’ T= 20 ]

and numerical value is the following:
¥2(3) ~ 6.2856.

The values 5, in Theorem 1 are derived from Theorem B and (7).
Now the comparison with known estimates is to our favour (see Table 1).

The numerical experiments show that the values pom-—1,,1(M) increase
monotonically with respect to M. For example, for ps0,1(M) we have such
a numerical computation:

M 3 6 | 9 12
psor(M) || 12653 | 1.3341 | 1.3541 | 1.3656

Since
s_lnllp ﬁzm_lJva(M) S p;m—l,l,’ ’

. these experiments make evidence to the conjecture [3] that

p;m-—l,l,a = (ﬁ?m;l,l,l)’ *
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