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Stable patterns formation by totalistic
cellular automata∗

Anastasia Sharifulina

Abstract. Evolution of totalistic cellular automata (CA) with weighed templates
are studied. As a result of simulation various stable patterns are obtained and in-
vestigated. Both synchronous and asynchronous modes of CA operation are tested.
As a result of simulation by synchronous and asynchronous CA, different stable pat-
terns emerging from one nucleation cell are obtained and classified. The influence of
weight matrix entries on stable patterns is studied. The theorem about the stable
patterns dependence on the ratio of positive to negative entries of a weight matrix
is proved. Stable patterns formed of two nucleation cells are also investigated.

1. Introduction

Many of the phenomena and processes in physics, chemistry, biology and so-
ciology are associated with emergence of stable patterns. Concentric, spiral
spatial waves are observed in different chemical reactions. Well-known ex-
amples of stable patterns in living systems are the pigment spots and stripes
on the animals’ skin. Studying the stable patterns arising in self-organizing
complex systems is important both from fundamental and practical points
of view. For example, in chemistry, the investigation of self-organizing pro-
cesses on catalysts makes possible to develop new materials with unique
properties, in medicine studying self-organization of neurons has great im-
portance to diagnostics of the brain activity.

There are many publications devoted to studying the patterns formation
in dissipative non-equilibrium systems. The foundations of spatially stable
patterns are laid by A. Turing in his study of reaction–diffusion morphogen
systems in 1952 [1]. The first CA of the Turing pattern formation based on
an activator–inhibitor interaction was proposed by D.A Young [2]. The pat-
tern formation occurs in many well-known catalytic reactions, for instance,
the carbon monoxide oxidation reaction over platinum metal [3] and the
Belousov–Zabotinskii reaction [4]. Many examples of the stable patterns
formation in different physical, chemical and biological systems are pre-
sented in [5, 6]. In [7, 8], the cellular automata (CA) approach to describing
the self-organizing processes and patterns formation is proposed. Cellular
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automata are most suitable for describing the complex systems dynamics,
because they make possible to simulate spatial heterogeneous nonlinear pro-
cesses by simple local transition rules.

The objective of the paper is to investigate the stable patterns formed by
evolution of cellular automata with weighted templates with a single initial
nucleation cell.

Section 2 contains a formal definition of cellular automata with weighted
templates. Section 3 presents the dependence of stable patterns formation
on weight matrix entries. Results of computing experiments performed by
synchronous and asynchronous CA are given in Section 4.

2. Definition of cellular automaton with weighted templates

The totalistic cellular automaton (CA) with weighted templates is defined
by the four notions [9]:

ℵ = 〈A,X,Θ, ρ〉, (1)

where A = {0, 1} is a cells state alphabet, X = {(i, j) : i = 1, . . . ,Mi, j =
1, . . . ,Mj} is a set of names, Θ is a local operator defined by the cells tran-
sition rules, ρ ∈ {σ, α} is a mode of operations. A cell is a pair (u, (i, j)),
where u ∈ A is a state of the cell, (i, j) is a name of the cell. On the set
of names X, the template T (i, j) is introduced. The template defines the
nearest neighbors of each cell. Further, the template T7(i, j) having the size
of 7× 7 cells is used:

T7(i, j) = {(i+ k, j + l) : k, l = −3, . . . , 0, . . . , 3}. (2)

In the CA model, a weight matrix W7×7 is associated with the template
T7(i, j). The weight matrix W7×7 contains positive and negative entries.
The positive entries are called activators and are responsible for the growth
of patterns. The negative entries are inhibitors, they impede the pattern
growth. The structure of a weight matrix, used in the sequel, is the following:

wkl =

{
p, |k| ≤ 2 ∧ |l| ≤ 2,
n, otherwise,

⇒ W7×7 =


n n . . . n n
n p . . . p n
. . . . . . . . . .
n p . . . p n
n n . . . n n

 , (3)

where n < 0 is an inhibitor, p > 0 is an activator. The presence of activators
and inhibitors in a system allows supporting the process in an equilibrium
state, and provides conditions for the stable patterns formation [2, 5].

The local operator Θ changes a cell state (i, j) depending on the states
of the neighboring cells allocated by the template T7(i, j):
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Θ(i, j) : (a, (i, j))→ (a′, (i, j)), (4)

where

a′ =

{
1, s > 0,
0, otherwise,

s =
∑

k,l=−3,...,3

wkl · ai+k,j+l.

Here wkl are defined by (3) and ai+k,j+l are states of neighbor cells
covered by the template T7(i, j). The term totalistic CA means that a new
cell state is a function of the sum or a weighted sum of states of the cells
belonging to the template.

There are two modes of application of a local operator to the cells of a
CA: synchronous σ and asynchronous α modes. In the synchronous mode,
a local operator is applied to all the cells of the CA, all being updated si-
multaneously. Whereas the asynchronous mode of CA prescribes a local
operator to be applied to a randomly chosen cell, changing its state imme-
diately. Application of a local operator to all the cells of the CA is named
iteration. An iteration transfers the cellular array Ω(t) into Ω(t+ 1), where
t is an iteration number. The sequence ℵ(Ω) = Ω(0),Ω(1), . . . ,Ω(tfin) is
named evolution.

Simulation is performed for the initial cellular array Ω(0) with one and
two nucleation cells. A nucleation cell is a cell in a state a = 1. A nucleation
cell is situated in the center of the cellular array, other elements of the array
being equal to zero.

3. The stable patterns formation by CA evolution

The above-defined CA exhibits self-organization properties. This means
that after a number of iterations, the CA evolves to a steady state, notably,
such that does not change or changes in no more than some number of cells
[10, 11]. If the states a = 1 in Ω(t) are marked with black color and a = 0––
with white one, then Ω(t) is displayed as a black-and-white pattern. Some
patterns of ℵ evolution are shown in Figure 1.

The main parameters affecting the CA evolution are the initial state Ω(0)
and the weight matrix. The number of initial nucleation cells essentially
affects the patterns formation. Further, the patterns formed with a single
initial nucleation cell are investigated, although some patterns formed of
two nucleation cells are presented in Section 4. It is revealed that for a fixed
array size and initial state, the pattern is uniquely determined by the ratio
of activator to inhibitor:

Theorem. Evolution of the totalistic CA with weighted templates for a
specified initial state and a cellular array size is uniquely determined by the
ratio p

n
. Identical patterns are formed for the same value of p

n
.
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a b

c d

Figure 1. Patterns formed by ℵ evolution from one nucleation cell for the syn-
chronous mode: a) n = −1, p = 0.56, b) n = −1, p = 0.9 and asynchronous mode:

c) n = −1, p = 0.5, d) n = −1, p = 1

Proof. Let us consider application of Θ(i, j) to a cell (i, j) ∈ X. According
to (4), a new state of the cell (i, j) depends on the sign of s:

s = n
3∑

k=−3

(
ai−3,j+k + ai+3,j+k + ai+k,j−3 + ai+k,j+3

)
+ p

2∑
k=−2

2∑
l=−2

ai+k,j+l

= nΣout + pΣin. (5)

Then a new state of the cell (i, j) is as follows:

a′ =

{
1, s > 0,
0, otherwise,

⇒ a′ =

 1, Σout +
p

n
Σin < 0,

0, otherwise.
(6)

Consequently, a new value of the cell state depends on the ratio p

n
and does

not depend on the specific values of activator and inhibitor.
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4. Results of computational experiments

Computational experiments were performed for a cellular array of the size
of Mi ×Mj = 500 × 500 cells. The initial state is a single nucleation cell
in the center of cellular array. Periodic boundary condition is used. Both
synchronous and asynchronous modes were tested.

According to the theorem, the key parameter of the patterns formation
process is the absolute value of the coefficients ratio p

n
. Identical ratios form

identical patterns. Therefore, it is sufficient to investigate the dependence
of CA evolution on values of p assuming n = −1.

Stable patterns formed as a result of the evolution of the synchronous
CA ℵσ for different values of p are shown in Figure 2. A steady state of
the synchronous CA is alternation of two patterns on each iteration. For
example, alternation of two geometric figures–– a square and a cross–– arises
at p ∈ (0.4, 0.5]. In this case evolution is as follows. On first iteration, a
square is formed of a nucleation cell. On the next iteration, a cross is formed
of the square. Then the square is formed again, etc. Such an alternation
occurs also for fancy figures and strips, though in this case a few cells states
change, but not the whole pattern (Figure 3). Many different crosses are
formed by the evolution of ℵσ. These crosses are named as it is shown in

Figure 2. Stable patterns formed as a result of the synchronous CA
evolutions for different values of p

a b

Figure 3. Alternation of two fancy figures for p = 0.501: a) the pattern formed
on even iteration and b) the pattern formed on odd iteration
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Figure 4. Stable patterns formed as a result of the asynchronous CA evolutions
for different values of p

Figure 2. For example, the pattern name “crosses 5–21” denotes alternation
of the cross of 5 ones and the cross of 21 ones. The range p ∈ (0.5625, 0.8751)
comprises some small ranges of various geometric figures alternation.

Stable patterns formed by the evolution of the asynchronous CA ℵα for
different values of p are shown in Figure 4. These patterns consist of strokes,
which are formed as a result of application of the local operator to randomly
chosen cells. The steady state of ℵα is a coverage of the whole array with
patterns such as figures formed of strokes, strips and points against the black
background. For example, fancy figures consisting of strokes and points are
formed for p < 0.1429.

To analyze and to classify all patterns, the following quantitative char-
acteristics are introduced:

• The number of ones N1 and the number of zeros N0.

• Convergence C is the number of iterations which is needed for the
evolution to become stable.

• The number of connected components for ones L1 and zeros L0. A
connected component is a maximal subset of cells in the state “one”
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(“zero”), all having a path to each cell in this subset. Here the path
is a sequence of cells in the state “one” (“zero”) such that each next
cell is neighboring for a previous one.

• Percolation along ones P1 and zeros P0 in the vertical and horizon-
tal directions. Percolation is the number of connected components
containing two cells belonging to different borders of a cellular array.

• Tortuosity Tor is the number of angles on the borders of the connected
components.

Analyzing the evolutions of synchronous CA ℵσ, three modes of behavior
can be identified:

Mode 1. Alternation of two geometric figures (p ∈ [0, 0.5]∪(0.5625, 0.8751));

Mode 2. Formation of various fancy figures and strips spreading over the
whole cellular array (p ∈ (0.5, 0.5625] ∪ [0.8751, 1.125]);

Mode 3. Filling the whole array with ones (p > 1.125).

For asynchronous CA ℵα, the following modes of behavior are identified:

Mode 1. Formation of black patterns against the white background, N0 >
N1, p ∈ [0, 1];

Mode 2. Formation of white patterns against the black background, N0 <
N1, p ∈ (1, 1.5];

Mode 3. Filling the whole cellular array with ones, p > 1.5.

In Table 1, some quantitative characteristics of the stable patterns are
presented. For the synchronous CA, characteristics of fancy figures and
strips are considered. These patterns are shown in Figures 1b and 3a. For
the asynchronous CA, characteristics of patterns formed for p = 0.6 and 1
are given. These patterns are shown in Figure 5.

The fancy figures formed by ℵσ for p = 0.501 and the pattern formed
by ℵα for p = 0.6 have similar values of N1. But other their characteristics
are very different. As well as pattern formed by ℵσ for p = 0.9 considerably
differs from that formed by ℵα for p = 1. As a result of comparing char-
acteristics of stable patterns formed by the evolutions of synchronous and
asynchronous CA (see Table 1), the following conclusions are made:

Table 1. Quantitative characteristics of the stable patterns formed by
the evolution of CAs

CA Stable patterns p N1 C P0 P1 L1 L0 Tor

ℵσ fancy figures 0.501 76025 293 206 0 40637 25 162117
ℵσ strips 0.9 116202 524 3 51 105 64 5102
ℵα strokes and spots 0.6 76312 80 386 0 13547 108 21035
ℵα strips of ones 1.0 121056 78 220 211 1317 582 18568
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p = 0.6 p = 1

Figure 5. Some stable patterns formed by asynchronous CA

1. The convergence rate for an asynchronous CA is less than those for a
synchronous one;

2. The number of connected components and the tortuosity for fancy
figures are greater than those for other patterns;

3. The percolation and the number of connected components for strips
formed by an asynchronous CA are greater than those for a syn-
chronous one.

All the above-considered stable patterns are formed of one nucleation
cell. More than one nucleation cell allows us to create patterns that are
absolutely different from the above-considered patterns. Depending on a
distance between nucleation cells, various patterns are formed. Computer
experiments have shown that nucleation cells, located at any distance, affect
the formation of patterns spreading over the whole array (fancy figures,
stripes formed by ℵσ and all patterns formed by ℵα).

For example, fancy figures formed from two nucleation cells located at
the distance along a horizontal axis Sx = 100 and along a vertical axis
Sy = 100 are shown in Figure 6a. The neighboring nucleation cells affect
the geometric figures formation (Mode 1 of ℵσ) if the distance between them
is less than the template size (S ≤ 7). Therefore, more complex patterns
are formed.

In Figure 6b and 6c, the stable patterns formed for p = 0.45 of ℵσ of the
two neighboring nucleation cells are shown. In Figure 6b, the stable state of
the CA evolution for the nucleation cells situated at Sx = 2 and Sy = 3 is
given. Alternation of two CA states on even and odd iterations is observed.
In Figure 6c, alternation of geometric figures, formed of nucleation cells
located at the distance along a horizontal axis Sx = 3 and along a vertical
axis Sy = 4, is presented.
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a

b c

Figure 6. Stable patterns formed of the two neighboring nucleation cells located
at the distance a) Sx = 100 and Sy = 100 for p = 0.501, b) Sx = 2 and Sy = 3 for

p = 0.45, and c) Sx = 3 and Sy = 4 for p = 0.45

5. Conclusion

In this paper, the evolution of the totalistic CA with weighted templates
for one nucleation cell in the initial condition is investigated. The variety
of stable patterns such as fancy figures, spots, strips, diamonds, crosses and
other geometric figures is obtained by computer experiments. The depen-
dence of stable patterns on values of weight matrix coefficients is studied.
It has been revealed and proved that for the fixed array size and initial state,
the pattern formation is uniquely determined by the ratio p

n
.

To analyze stable patterns, the quantitative characteristics such as con-
vergence, the number of connected components, the percolation and the
tortuosity were calculated for various values of p. As a result of studying
evolutions of ℵ, three modes of behavior for ℵσ and ℵα have been defined.

The stable patterns formed by ℵσ and ℵα essentially differ. A distin-
guishing feature of stable patterns formed by the asynchronous mode is the
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pattern spreading over the whole cellular array for any value of p. Whereas
in terms of the synchronous mode, for the majority of values p, formation
of bounded geometric figures is observed.

The stable patterns formation for two neighboring nucleation cells is
studied as well. It is obtained that stable patterns formed of two nucleation
cells are essentially different from those formed of one cell. The dependence
of the nucleation cells location on the patterns formation is investigated.

Studying patterns formed by the evolution of CA with weighted tem-
plates is useful for understanding the basic mechanisms of the formation of
spatial structures in complex non-equilibrium systems.
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