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Unifying dynamic programming design patterns

N.V. Shilov

Abstract. Design and Analysis of Computer Algorithms is a must of Computer
Curricula. It covers many topics that group around several core themes including
algorithmic design patterns (ADP) like the greedy method, divide-and-conquer, dy-
namic programming, backtracking and branch-and-bound. These design patterns
are usually considered as Classics of the Past (going back to days of R. Floyd
and E. Dijkstra). However, ADP can be (semi)formalized as design templates,
specified by correctness conditions, and formally verified either in the Floyd-Hoare
methodology, by means of the Manna-Pnueli proof-principles, or in some other way.
This approach has lead to new insights and better comprehension of the design
patterns, of specification and verification methods. Formalization of backtracking
(BT) and branch-and-bound (B&B) ADP has been presented at TIME-2011 sym-
posium. In the present paper, we suggest and discuss a formalization of Dynamic
Programming. A methodological novelty consists in treatment (interpretation) of
ascending Dynamic Programming as least fix-point computation (according to the
Knaster-Tarski fix-point theorem). This interpretation leads to a uniform approach
to classical optimization problems as well as to problems where optimality is not
explicit. (Examples of the latter are the Cocke-Younger-Kasami parsing algorithm
and computation of inverse for a total function.) This interpretation leads also to
an opportunity to design, specify and verify (1) a unified template for imperative
Dynamic Programming, (2) a unified template for inverting Dynamic Program-
ming (in countable domains), and may lead to (3) a unified template for data-flow
implementation of Dynamic Programming. The present paper is a revised and ex-
tended version of the original publication in the Proceedings of the 3rd Workshop
on Metacomputation (2012) that focused on inverting Dynamic Programming.

1. Introduction

1.1. Dropping bricks from a high tower

Let us start with the following Dropping Bricks Puzzle1.

Let us characterize the mechanical stability (strength) of a brick
by an integer h that is equal to the height (in meters) safe for
the brick to fall down, while height (h+1) meters is unsafe (i.e.

1When this paper had been drafted, Prof. Teodor Zarkua (St. Andrew University of
Georgian Patriarch) informed the author that the problem is known already and had been
used for programming contests (check, for example, the problem at URL http://acm.

timus.ru/problem.aspx?space=1&num=1223). Some time ago a variant of the problem
has been added to Wikipedia article Dynamic Programming (available at http://en.

wikipedia.org/wiki/Dynamic_programming#Egg_dropping_puzzle).
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the brick breaks). You have to determine the stability of bricks
of a particular kind by dropping them from different levels of a
tower of H meters. (You may assume that mechanical stability
does not change after a safe fall.) How many times do you need
to drop bricks for it, if you have 2 bricks in the stock? What is
the optimal number (of droppings) in this case?

Basically, the question that we need to answer is how to compute the optimal
number of droppingsGH , if the height of the tower isH and you have 2 bricks
in the stock. In the next subsection, we will sketch a descending Dynamic
Programming solution of the above problem as a gentle introduction to
Dynamic Programming approach to optimization, design its implementation
in terms of the functional pseudo-code and give some historical remarks. At
the end of this section we are going to introduce what we call a scheme
of recursive descending Dynamic Programming and discuss in brief how to
improve the efficiency of recursive Dynamic Programming by memoization.

The rest of the paper is organized as follows. In Section 2, we will
translate recursive Dynamic Programming into the iterative form that corre-
sponds to the ascending Dynamic Programming. This translation is based on
the interpretation of the ascending Dynamic Programming as computations
of the least fix-point of a monotone functional. In turn, we get an opportu-
nity to design, specify and verify a unified template for ascending Dynamic
Programming. Two examples of the template applications/specializations
(solving finite games and context-free parsing) are presented in Section 3.
Problems with translation of recursive descending Dynamic Programming
to iterative ascending Dynamic Programming are discussed in Section 4: in
particular, we prove in this section that in the general case of Dynamic Pro-
gramming static memory is not enough and dynamic memory is needed, and
discuss backtracking vs. Dynamic Programming (by a study of the discrete
knapsack problem). In Section 5, we will suggest an approach of inverting
total functions defined by descending Dynamic Programming in countable
domains. In the last Section we conclude our paper with discussing topics
for further research and, in particular, the data-flow approach to ascending
Dynamic Programming.

The present paper is a revised and extended version of the original pub-
lication in the Proceedings of the 3rd International Valentin Turchin Work-
shop on Metacomputation (2012) [18]. That preliminary publication focused
on the problem of inverting recursive descending Dynamic Programming and
contained some minor errors that have been corrected in the present paper.

1.2. Recursive method for optimization problems

The Dropping Bricks Puzzle is a particular and explicit example of opti-
mization problems. Originally, Dynamic Programming was designed as a
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recursive search (or construction) of an optimal program (or plan) that re-
mains optimal at every stage. In particular, let us consider the puzzle below.

Any optimal method of defining the mechanical stability should start
with some step (command) that prescribes to drop the first brick from some
particular (but optimal) level h. Hence the following equality holds for this
particular level h:

GH = 1 +max{(h− 1), GH−h},

where (in the right-hand side)

1. 1+ corresponds to the first dropping,

2. (h − 1) corresponds to the case when the first brick breaks after the
first dropping (and we have to drop the remaining second brick from
the levels 1, 2, ... (h− 1) in the sequence),

3. GH−h corresponds to the case when the first brick is safe after the
first dropping (and we have to define stability by dropping the pair of
bricks from (H − h) levels in [(h+ 1)H]),

4. ‘max’ corresponds to the worst in cases 2 and 3 above.

Since the particular value h is optimal, and optimality means minimality,
the above equality transforms to the following one:

GH = min
1≤h≤H

(1 + max{(h− 1), GH−h}) = 1 + min
1≤h≤H

max{(h− 1), GH−h}.

Besides, we can add one obvious equality G0 = 0.
One can remark that the sequence of integers G0, G1, ... GH , ... that

meets these two equalities is unique since G0 is defined explicitly, G1 is
defined by G0, G2 is defined by G0 and G1, GH is defined by G0, G1, ...
GH−1. Hence it is possible to move from the sequence G0, G1, ... GH , ...,
to a function2 G : N → N that maps every natural H to GH and satisfies
the following functional equation for the objective function G:

G(H) = if H = 0 then 0 else 1 + min
1≤h≤H

max{(h− 1), G(H − h)}.

This equation has a unique solution as it follows from the uniqueness of
the sequence G0, G1, ... GH , ... Hence it can be adopted as a recursive
definition of a function, i.e. a recursive algorithm presented in a functional
pseudo-code. This is an example of the historically first face of Dynamic
Programming — a recursive method for optimization problems.

Dynamic Programming was introduced as a recursive method for opti-
mization problems by Richard Bellman in the 1950s [6]. At this time, the

2N is the set of of natural numbers {0, 1, 2, . . . }.
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noun programming had nothing in common with more recent computer pro-
gramming and meant planning (compare: linear programming). The adjec-
tive dynamic points out that Dynamic Programming is related to a change
of state (compare: dynamic logic, dynamic system). Functional equations
for the objective function similar to the above are called Bellman equations.
They formalize the following Bellman Principle of Optimality, which we
have used implicitly in the puzzle: an optimal program (or plan) remains
optimal at every stage.

At the same time, according to [8], R. Bellman, speaking about the 1950s,
explains:

An interesting question is, “Where did the name, dynamic pro-
gramming, come from?” The 1950s were not good years for
mathematical research. (...) Hence, I felt I had to do something
to shield [the Secretary of Defense] and the Air Force from the
fact that I was really doing mathematics inside the RAND Cor-
poration. (...) Let’s take a word that has an absolutely precise
meaning, namely dynamic, in the classical physical sense. It also
has a very interesting property as an adjective, and that is it’s
impossible to use the word dynamic in a pejorative sense. Try
thinking of some combination that will possibly give it a pejora-
tive meaning. It’s impossible. I thought dynamic programming
was a good name. It was something not even a Congressman
could object to. So I used it as an umbrella for my activities.

1.3. From recursion to iterative Dynamic Programming

If we analyze the recursive Dynamic Programming methodology accumu-
lated in the Bellman Principle (in particular, in the above recursive solution
for the Dropping Bricks Puzzle), it is possible to suggest the following scheme
of recursive (descending) Dynamic Programming :

G(x) = if p(x) then f(x) else g(x, hi(G(ti(x)), i ∈ [1..n(x)])), (1)

where function G : X → Y is the objective function, p ⊆ X is a known
predicate, f : X → Y is a known function, g : X∗ → X is a known function
with a variable (but finite) number of arguments to be defined by a known
function n(x) : X → N, and all hi : Y → X, ti : X → X, i ∈ [1..n(x)]
stays for known functions as well. In principle, here we understand the
scheme of recursive Dynamic Programming in the sense of the theory of
program schemata [10, 11], i.e. we assume that p, f , g, n, all hi and gi are
uninterrupted predicate and functional symbols that have to be interpreted
to define a functional program and/or a Bellman equation for a concrete
problem. From here on, we will make this difference implicit rather than



Unifying dynamic programming design patterns 139

implicit. In particular, for the Dropping Bricks Puzzle G(x) = if x =
0 then 0 else (1 + min 11≤i≤xmax{(i− 1), G(x− i)}), we have

1. predicate λx.(x = 0) is interpretation for p,

2. constant function λx.0 is interpretation for f ,

3. identical function λx.x is interpretation for n,

4. for every i ∈ [1..n(x)], function λx.(x− i) is interpretation for ti,

5. for every i ∈ [1..n(x)], function λt.max{(i− 1), t} is interpretation for
hi,

6. function λx.λw1 . . . λwn.(min1≤i≤xwi) is interpretation for g.

Let us compute the value of this function G for a particular argument
by exercising the above recursive algorithm in the left-recursive order:
G(4) = 1 +min1≤h≤4max{(h− 1), G(4− h)} =
= 1+min{max{0, G(3)} , max{1, G(2)} , max{2, G(1)} , max{3, G(0)}} =
= 1+min{max{0, 1+min{max{0, G(2)} , max{1, G(1)} , max{2, G(0)}}} ,

max{1, G(2)} , max{2, G(1)} , max{3, G(0)}} =
= 1+min{max{0, 1+min{max{0, 1+min{max{0, G(1)} , max{1, G(0)}}} ,

max{1, G(1)} , max{2, G(0)}}} , max{1, G(2)} , max{2, G(1)} ,
max{3, G(0)}} = . . . = 3.

One can remark that in the above example we recompute values of G for
some arguments several times (G(2) and G(1) in particular). This observa-
tion leads to an idea to compute function values for new argument values3

once, then save them , and instead of re-computation use them on demand.
This technique is known in Functional Programming as memoization [5].
One can distinguish functional and imperative styled memoization. Func-
tional memoization consists in extending the clause base by a new clause
G(i) = j as soon G(i) is computed and G(i) = j. Imperative memoization
consists in saving computed values in a hash-table, for example.

Some authors claim that Recursion + Memoization = Dynamic Pro-
gramming [5]. We do not share this view for the following reasons. The first
one is that the foundational paper [6] made no mention of memoization.
The second counterargument relies upon the observation that recursion in
Dynamic programming has a very special form (in particular, it never nests).
And finally, there exists also an iterative form of Dynamic Programming to
be discussed below. This form of Dynamic Programming does not rely upon
memoization but precomputes some values in advance.

3i.e. for argument values that have never occurred before
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2. Ascending Dynamic Programming template

2.1. Informal discussion

Let us consider a function G : X → Y that is defined by the scheme (1)
of recursive Dynamic Programming. For every argument value v ∈ X,
such that p(v) does not hold, let base be the following set bas(v) of values
{ti(v) : i ∈ [1..n(v)]}. Let us remark that for every argument value v, if
G(v) is defined, bas(v) is finite. Let us also observe that if the objective
function G is defined for some argument value v, then it is possible to pre-
compute (i.e. compute prior to the computation of G(v)) the support for
this argument value v, i.e. the set spp(v) of all argument values that occur
in the recursive computation of G(v) according to the following recursive
algorithm

spp(x) = if p(x) then {x} else {x} ∪ (
∪

y∈bas(x)

spp(y)). (2)

Another remark is that for every argument value v, if G(v) is defined, then
spp(v) is finite (since computation of G(v) terminates). Let us say that a
function SPP : X → 2X is an upper support approximation if for every
argument value v, the following conditions hold:

• v ∈ SPP (v),

• spp(u) ⊆ SPP (v) for every u ∈ SPP (v),

• if spp(v) is finite then SPP (v) is finite.

Let us consider the case when the support function or its upper approx-
imation is easier to compute, i.e. the (time and/or space) complexity of the
available algorithm to compute the support function or its upper approxima-
tion is better than the complexity of the available algorithm that computes
G. Then it makes sense to use iterative ascending Dynamic Programming
instead of recursive descending Dynamic Programming with memoization.

Ascending Dynamic Programming comprises the following steps.

1. Input argument value v and compute SPP (v). Let G be an array4

of Y indexed by values in SPP (v). Then compute and save values
of the objective function G for all values u ∈ SPP (v) such that p(u):
G[u] := f(u).

• For example, in the Dropping Bricks Puzzle, if we wish to com-
pute the value G(H), then spp(H) = [0..H] and 0 is the unique
value u ∈ spp(H) such that p(u), and the unique function value
that should be saved is G(0); save this value in the element G[0]
of the integer array G[0..H].

4That is (in Pascal style) var G : Y array of SPP (v).
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2. Expand the set of saved values of the objective function by values
that can be immediately computed on the basis of the set of saved
values: for every u ∈ SPP (v), if G(u) has not been computed yet,
but for every w ∈ bas(u) the value G(w) has already been computed
and saved in G[w], then compute and save G(u) in G[u]: G[u] :=
g(u, (hi(G(ti(u))), i ∈ [1..n(u)])).

• For example, in the Dropping Bricks Puzzle, if values G(0), ...
G(K) have been saved in the array G[0..H] in elements G[0], ...
G[K], 0 ≤ K < H, one can compute the value G(K+1) and save
it: G[K + 1] := 1 +min1leqk≤K max{(k − 1), G[K − k]}.

3. Repeat Step 2 until the moment when the value of the objective func-
tion for the argument v is saved.

• For example, for the Dropping Bricks Puzzle, Step 2 should be
executed H times and terminated after saving G[H].

Let us observe that the ascending Dynamic Programming does not have a
recursive form but an iterative one.

2.2. Formalization

Let us formalize iterative ascending Dynamic Programming by means of
an imperative pseudo-code annotated by precondition and postcondition
[9, 4, 17], i.e. by triples in the form {B}A{C}, where A is a pseudo-code of
some algorithm, B is a logical precondition, and C is a logical postcondition.
A triple {B}A{C} is said to be valid (or that the algorithm A is partially
correct with respect to precondition B and postcondition C), if every termi-
nating exercise of A for input data that satisfy B outputs data that satisfy
C.

Formalization of the ascending Dynamic Programming follows.
\\Precondition:
{D is a non-empty set5 of argument values,
2D is the corresponding powerset with the standard partial order ⊆,
S and P are “trivial” and “target” subsets in D,
F : 2D → 2D is a call-by-value total monotone function,
ρ : 2D×2D → Bool is a call-by-value total function monotone on the second
argument}

\\Peseudo-code:
var U := S, V : subsets of D;
repeat V := U ; U := F (V ) ∪ S until (ρ(P,U) or U = V )

5Note that we do not require any explicit representation for D; it is just assumed to
be a set (a virtual set).
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\\Postcondition:
{ρ(P,U) ⇔ ρ(P, T ),
where T is the least subset of D such that T = (F (T ) ∪ S)}

Here the first (initiating) assignment U := S corresponds to the first
step of the informal description of ascending Dynamic Programming, the
third assignment U := F (V ) in the loop body corresponds to the second
step, and loop condition ρ(P,U) corresponds to the condition at the third
step; an auxiliary variable V , the second assignment V := U and condition
U = V are used for termination in case no further progress is possible.

We would like to refer to this formalization as the iterative ascending
Dynamic Programming template, since (as we will see in the section 3) many
particular instances of ascending Dynamic Programming algorithms can be
generated from this template by specialization of the domain D, sets S and
P , function F and criterion ρ. (In the same way as many instances of
backtracking and branch-and-bound algorithms can be generated from the
unified template presented and verified in [16].)

Partial correctness of the formalized ascending Dynamic Programming
template follows from the Knaster-Tarski fix-point theorem [12]. Instead of
presenting an exact formulation of the theorem we would like to present the
following corollary.

Corollary 1. Let D be a non-empty set, G : 2D → 2D be a total monotone
function, and R0, R1, ... be the following sequence of D-subsets: R0 = ∅
and Rk+1 = G(Rk) for every k ≥ 0. Then there exists the least fix-point
T ⊆ D of the function G and R0 ⊆ R1 ⊆ R2 ⊆ . . . Rk ⊆ Rk+1 ⊆ · · · ⊆ T .

The following Propositions 1 and 2 are trivial consequences of the above
Corollary.

Proposition 1. Iterative ascending Dynamic Programming template is par-
tially correct

Proof. Let us assume that a particular instance of the template terminates
for some input data meeting the precondition. According to the above Corol-
lary, the value of T is the least fix-point of the following monotone function
G ≡ λQ.(S ∪ F (Q)) (that maps every Q ⊆ D to S ∪ F (Q)). Let R0 = ∅
and Rk+1 = G(Rk) for every k ≥ 0. Then for every k > 0, values of set
variables U and V immediately after k iterations of the loop are Rk+1 and
Rk, respectively, and, according to the Corollary, Rk ⊆ T . Hence, if the
repeat-loop terminates due to the condition ρ(P,U), then ρ(P, T ) due to the
monotonicity of ρ. If this loop terminates not due to the condition ρ(P,U)
(i.e. this condition is not valid), then it terminates due to another condition
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U = V implying that the final value of U is equal to the least fix-point T ,
and hence ρ(P, T ) is not valid. �

Proposition 2. Assume that for some input data the precondition of the
iterative ascending Dynamic Programming template is valid and the domain
D is finite. Then the algorithm generated from the template terminates after
|D| iterations of the loop.

Proof. is straightforward. �

3. Examples of ascending Dynamic Programming

3.1. Computing functions

Let us start with an application of the template and Propositions 1 and 2
to the Dropping Bricks Puzzle. Let

• D be an “initial segment” of the graph6 of the function G, i.e. the set
of all integer pairs (m,G(m)), where m represents a level (in [1..H]);

• S be a singleton set {(0, 0)} that consists of the unique trivial pair,
and P be another singleton set {(H,G(H))};

• F be λQ ⊆ D. {(m,n) ∈ D |
there exist integers

n0, . . . nm−1 such that (0, n0), . . . (m− 1, nm−1) ∈ Q
and n = 1 +min1≤k≤mmax{(k − 1), nm−k}};

• ρ(P,Q) be λP,Q.(P ⊆ Q).

One can object that in the above settings the loop condition P ⊆ U can not
be checked, because we do not know G(H) in advance. However, according
to definition of D as the initial segment of the graph of the function G, this
condition is equivalent to another one ∃n : (H,n) ∈ U that can be checked.
It easy to see that this specialization meets the precondition of the template
of the ascending Dynamic Programming and the domain D is finite. Hence
the algorithm resulting from this specialization is correct and terminates
according to Propositions 1 and 2; the final value of U includes (H,G(H))
since in this case the least fixpoint of F ∪ S is D.

The above discussion around the Dropping Bricks Puzzle can be gener-
alized for an arbitrary function G defined by recursive scheme 1. Let

• D be {(u,G(u)) : u ∈ SPP (v)}, where SPP (v) is an upper support
approximation;

6Remember that the graph of a function G : X → Y is the following set {(x,G(x)) :
x ∈ X} ⊆ X × Y .
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• S be {(u, f(u)) : p(u) and u ∈ SPP (v)} and P be a singleton
{(v,G(v))};

• F be λQ ⊆ D. {(u,w) ∈ D | n = n(u),
∃w1, . . . wn : (t1(u), w1), . . . (tn(u), wn) ∈ Q,

and w = g(u, h1(w1), . . . hn(wn))};
• ρ be λP,Q.(P ⊆ Q) (that is equivalent to λP,Q ⊆ D.(∃w : (v, w) ∈ Q)

in D).

Then, again, the algorithm resulting from the template after this specializa-
tion is correct and terminating according to Propositions 1 and 2.

3.2. Solving finite position games

The game theory has a variety of formalization game notions [3]; in this pa-
per we consider a particular class of formalized games called finite positional
games of two players, A (Alice) and B (Bob). A game of this kind is a tuple
G = (PA, PB,MA,MB, FA, FB), where

• PA and PB are disjoint finite sets of positions for Alice and Bob re-
spectively,

• MA ⊆ PA×(PA∪PB) and MB ⊆ PB×(PA∪PB) are admissible moves
of Alice and Bob respectively,

• FA ⊆ (PA ∪ PB) and FB ⊆ (PA ∪ PB) are disjoint winning positions
for Alice and Bob respectively.

Alice is said to be a counterpart for Bob and vice versa. Any game of the
above type (hereinafter, the game) can be considered as an oriented labeled
graph, where nodes are positions marked obligatorily either by PA or PB

and optionally by FA or FB, and edges are moves marked by MA or MB.
A play of a game is any finite or infinite sequence of positions p0, ...

pk, ..., where every pair (pk, p(k+1)) is a move of Alice or Bob. A complete
play of a game is an infinite play without instances of any winning position
or a finite play that has the unique instance of a winning position as the
last position of the play; Alice/Bob wins a finite complete play if the final
position of the play is a winning position of Alice/Bob, respectively. A
strategy for a player I ∈ {A,B} is any subset M ′ ⊆ MI ; a strategy M ′ for
a player I ∈ {A,B} is said to be a winning strategy if the player eventually
wins every play by applying this strategy, i.e. every finite play where I
applies M ′ can not be prolonged to a complete infinite play or to a finite
complete play that is winning for the counterpart. To solve a game G on
behalf of (or for) a player I ∈ {A,B} means to compute the set of positions
WI where the player has a winning strategy. From here on we will solve
finite position games on behalf of Alice; the case for Bob is similar.
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A game G = (PA, PB,MA,MB, FA, FB) can be solved on behalf of Alice
on basis of the following observation: WA is the least sets of positions that
satisfy the following equation:

WA = FA∪
∪ {p ∈ PA \ FB| ∃p′ : (p, p′) ∈ MA and p′ ∈ WA} ∪

∪ {p ∈ PB \ FB| ∀p′ : (p, p′) ∈ MB and p′ ∈ WA}.

Let us introduce the following function WinA on subsets of (PA ∪ PB):
WinA maps every Q ⊆ (PA ∪ PB) to

{p ∈ (PA ∪ PB) \ FB|
∃p′ : (p, p′) ∈ MA and p′ ∈ Q or

∀p′ : (p, p′) ∈ MB and p′ ∈ Q}.

Let D = (PA ∪ PB), S = FA, P = WA, F = WinA, ρ be λP,Q ⊆ D.(P ⊆
Q). According to Propositions 1 and 2, the algorithm resulting from the
template after this specialization terminates after |PA∪PB| iterations of the
repeat− until loop and computes WA.

3.3. Parsing context-free languages

The parsing theory for context-free (C-F) languages is a well established
and developed technology [1, 2, 17]. The first sound and efficient algorithm
for parsing C-F languages was developed independently by J. Cocke, D.H.
Younger and T. Kasami in the period from 1965 to 1970. Even though
more efficient and practical parsing algorithms have appeared since then,
the Cocke-Younger-Kasami algorithm (CYK algorithm) has preserved its
educational importance to this day7.

A context-free grammar (C-F grammar) is a tupleG = (N,E,R, s) where

• N and E are disjoint finite alphabets of non-terminals and terminals,

• R ⊆ N × (N ∪ E)∗ is a set of productions (or rules) of the following
form n → w, n ∈ N , w ∈ (N ∪ E)∗,

• s ∈ N is the initial non-terminal.

A C-F grammar is in the Chomsky Normal Form (CNF) if the initial symbol
does not occur in the right-hand side of any production and every production
has the form n → n′n′′ or n → e, where n, n′, n′′ ∈ N and e ∈ E.

Derivation in a C-F grammar G is a finite sequence of words w0,... wk,
w(k+1), ... wm in (N ∪ E)∗, m ≥ 0 such that every word wk+1 within this
sequence results from the previous wk by applying a production (in this
grammar). For any pair of words w′, w′′ ∈ (N ∪ E)∗ let us write w′ ⇒ w′′

if there exists a derivation that starts with w′ and finishes with w′′. The

7Recently M. Lange and H.F. Leiß suggested a generalized CYK algorithm [13].
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language L(G) generated by the grammar G is defined as follows: L(G) =
{w ∈ E∗ | s ⇒ w}.

Two C-F grammars are said to be equivalent if they generate equal lan-
guages. It is well-known that every C-F grammar that does not generate
the empty word is equivalent to some CNF grammar [1].

Assume that G = (N,E, P, s) is a given C-F grammar. The parsing
problem for L(G) can be formulated as follows: for the input word w ∈ E∗

construct the set of all pairs (n, u) where n ∈ N and u ∈ E∗ is a non-empty
subword of w such that n ⇒ u. From here on, we are discussing the the
parsing problem for CNF grammars only.

Let G = (N,E, P, s) be a CNF grammar, w ∈ E∗ be the input word,
L = L(G) be the corresponding language, D be the set of all pairs (n, u),
where n ∈ N and u ∈ E∗ is a non-empty subword of w and SA = {(n, u) ∈
D | n ⇒ u}. It is easy to see that SA is the least subset of D such that

SA = {(n, e) ∈ D| (n → e) ∈ R} ∪
∪ {(n, u) ∈ D | ∃(n′, u′), (n′′, u′′) ∈ SA : u ≡ u′u′′ and (n → n′n′′) ∈ R}.

Let us introduce the following function derive on subsets ofD: it maps every
Q ⊆ D to {(n, u) ∈ D| ∃(n′, u′), (n′′, u′′) ∈ Q : u ≡ u′u′′ and (n → n′n′′) ∈
R}. This function is total and monotone on 2D. Hence we can take {(n, e) ∈
D| e ∈ E, (n → e) ∈ R} as S, derive as F , and λP,Q ⊆ D.((s, w) ∈ Q) as ρ
in the ascending Dynamic Programming template. After this concretization
the template becomes CYK algorithm.

4. Limitations of descending dynamic programming

4.1. A need for dynamic memory

We demonstrated in Section 3.1 that every function G : X → Y defined
by the recursive scheme of Dynamic Programming 1 can be computed by
an iterative program with a dynamic array : for any argument v ∈ X, the
desired value G(v) may be computed by an iterative program with the aid of
an array with the size |spp(v)|. The advantage of the translation is the use
of an array instead of a stack required to translate a general case recursion:
an array is much better than a stack, because an array provides memory
access in constant time, and a stack provides sequential memory access that
requires linear time. Nevertheless the natural question arises: can finite
static memory suffice for computing the function G?

Unfortunately, this is not true because of the following Corollary ob-
tained by M.S. Paterson and C.T. Hewitt [14, 11].
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Corollary 2. The recursive scheme

F (x) = if p(x) then x else f(F (g(x)), F (h(x)))

is not equivalent to any standard program scheme (i.e. an uninterpreted
iterative program scheme with finite static memory).

This statement does not mean that dynamic memory is always required;
it just means that for some interpretations of uniterpreted symbols p, f , g
and h the size of required memory depends on the input data. But if p, f , g
and h are interpreted, it may happen that function G can be computed by
an iterative program with a finite static memory.

For example, it is possible to prove [19] that for the Dropping Bricks
Puzzle

G(H) = min{n ∈ N :
n× (n+ 1)

2
≥ H};

hence, the puzzle can be solved by the following simple iterative algorithm
with two integer variables:

var n := 0,H : integer;
input(H);

while n×(n+1)
2 < H do n := n+ 1 od;

output(n).

Two other examples of this kind are the factorial function and Fibonacci
numbers

Fac(n) = if n = 0 then 1else n× Fac(n− 1),

F ib(n) = if n = 0 or n = 1 then 1 else F ib(n− 2) + Fib(n− 1).

In both cases, three integer variables suffice to compute them:

Factorial function Fibonacci numbers
var n, f := 1 : integer; var n, f0 := 1, f1 := 1 : integer;
input(n); input(n);
while n > 0 while n > 0

do f := n× f ; do f1 := f0 + f1;
n := n− 1 f0 := f1− f0;

od; n := n− 1;
output(f). od;

output(f1).
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4.2. Backtracking vs. Dynamic Programming

The Knapsack Problem is classics of optimization and algorithms design [7].
The Knapsack Problem can be informally presented as follows:

Assume that you have a knapsack with the capacity of W > 0
kilograms, a set of goods G1, ... Gn, with weights W1, ... Wn

that cost P1, ... Pn. You need to collect in the knapsack as much
as possible (i.e. the gross weight cannot exceed the capacity W )
to maximize the total price of the collection.

The above problem statement can be refined in several different ways.
Two extreme formalizations known as the continuous and discrete knapsack
problems are presented below:

• if goods are infinitely dividable, the problem is to compute a real vector
(w1, . . . wn) = argmax{Σ1≤k≤nPk × wk

Wk
:

0 ≤ w1 ≤ W1, . . . , 0 ≤ wn ≤ Wn and Σ1≤k≤nwk ≤ W};
• if goods are undividable, the problem is to compute a Boolean vector

(c1, . . . cn) = argmax{Σ1≤k≤nPk × ck :
c1, . . . , cn ∈ {0, 1} and Σ1≤k≤nPk × ck ≤ W}.

Both problems can be formulated à la recursive descending Dynamic Pro-
gramming, but these formulations are not easy to translate to equivalent
iterative programs.

For the sake of simplification, let us consider related problems to compute
maximal gross prices that are possible to collect in continuous(C) and in
discrete (D) cases:

• C(W,n) = max{Σ1≤k≤nPk × wk
Wk

:

0 ≤ w1 ≤ W1, . . . 0 ≤ wn ≤ Wn and Σ1≤k≤nwk ≤ W};
• D(W,n) = max{Σ1≤k≤nPk × ck :

c1, . . . cn ∈ {0, 1} and Σ1≤k≤nPk × ck ≤ W}.

Corresponding Bellman equations are straightforward:

• C(z,m) = if m = 1 then P1 × min(z,W1)
W1

else
max0≤w≤min{z,Wm}(Pm × w

Wm
+ C((z − w), (m− 1));

• D(z,m) = if m = 1 then (if W1 > z then 0 else P1) else
(if Wm > z then D(z, (m− 1)) else
max{D(z, (m− 1)), Pm +D((z −Wm), (m− 1))}),

where z is real value in [0,W ] and m is integer in [1..n].
However, the first Bellman equation does not match the scheme of re-

cursive Dynamic Programming 1, because max0≤w≤min{z,Wm} is a function
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of an infinite “number” of arguments. The second equation matches the
scheme, but in this case it is not easy to compute support according to the
standard procedure

spp(z,m) = if m = 1 then {(z, 1)} else {(z,m)} ∪ spp(z, (m− 1)) ∪
∪ (if Wm > z then ∅ else spp((z −Wm), (m− 1))),

because the complexity of this computation is O(2m). So, in this case back-
tracking or branch and bound can be more helpful [7, 16] than iterative
ascending Dynamic Programming.

Nevertheless, there exists a very important special case of the discrete
knapsack problem, when translation to iterative ascending Dynamic Pro-
gramming can improve efficiency: if it is known that knapsack capacity W
as well as weights of all goods are integers (natural numbers), it makes sense
to use the following upper approximation SPP (z,m) = [1..z] × [1..m] in-
stead of spp(z,m). In this case, D(W,n) can be computed (according to
guidelines of Section 3.1) as follows:
var n : integer;
var D : integer array of [0..W, 0..n];
input(n);
for m := 0 to W do D[m, 0] := 0;
for m := 1 to W do

for k := 1 to n do
D[m, k] := if Wk > m then D[m, (k − 1)]

else max{D[m, (k − 1)], (D[(m−Wk), (k − 1)] + Pk)}
od

od;
output(D[W,n]).
Complexity of this algorithm is O(W × n). Hence this translation can help
only if W × n is less than 2n; otherwise backtracking or branch and bound,
again, can help better.

5. Inverting functions

Let us assume that some total functionG : X → Y is defined by the recursive
scheme of Dynamic Programming 1 where X is a countable set with some
fixed computable counting (enumeration) cnt : N → X. Let us also assume
that we have an abstract data type SubSet whose values are subsets of X
(i.e. all subsets, not just the finite ones) that has standard set-theoretic
operations union and intersection (computable when at least one argument
is finite) and a choice operation Fir : SubSet → X that computes, for every
set T ̸= ∅, the element of T with the smallest number (according to cnt).

Assume that we wish to design an algorithm that computes some inverse
of G, i.e. a function Ginv : Y → X having the following properties:
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• for every w ∈ Y , if w ∈ G(X) thenGinv(w) is defined andG(Ginv(w)) =
w;

• for every w ∈ Y , if w /∈ G(X) then Ginv(w) is undefined.

Let us remark that the inverse function is unique iff G is injective; otherwise,
G has several different inverse functions.

The simplest way to compute Ginv(w) for a given w ∈ Y is the brute-
force exhaustive search that proceeds one by one according to cnt:
\\ Precondition:
{G : X → Y is a total computable function,
X is countable and Fir : SubSet → X is a choice function, y ∈ Y }

\\ Pseudo-code:
let Ginv(Q : SubSet) = if (w = G(fir(Q)))

then fir(Q)
else Ginv(Q \ {fir(Q)})

in x := Ginv(X)
\\ Postcondition:
{G(x) = y}.
Partial correctness of this algorithm is straightforward, as well as termi-
nation in the case when y ∈ G(X). Without memoization, however, this
algorithm is extremely inefficient.

A more efficient algorithm can be derived for functions defined by the
recursive scheme of Dynamic Programming 1. Since we are looking for any
x ∈ X such that y = G(x), we can suggest the following recursive algorithm:
{G : X → Y is a total function defined by 1,
SPP : X → 2X is an upper support approximation for G, X is countable
and Fir : SubSet → X is a choice function, y ∈ Y }

let
let z = Fir(Q)
in Ginv(Q : SubSet) = if ∃u ∈ SPP (z) : y = G(u)

then (any u ∈ SPP (z) such that y =
G(u))

else Ginv(Q \ SPP (z))
in x := Ginv(X)

{G(x) = y}.
The above recursive algorithm uses tail recursion; hence it is equivalent

to the following iterative one (pre- and post- conditions remain the same):
var x, u, z : X;
var R := X, T : SubSet;
repeat z := Fir(R); T := SPP (z); R := R \ T ;
until (∃u ∈ T : y = G(u) or R = ∅);
if (∃u ∈ T : y = G(u)) then x := (any u ∈ T such that y = G(u))

else loop.
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The next step is the use of the ascending iterative Dynamic Programming
in validation of the loop condition ∃u ∈ T : y = G(u). The loop
repeat z := Fir(R); T := SPP (z); R := R \ T ;
until (∃u ∈ T : y = G(u) or R = ∅);
is equivalent to another loop
repeat z := Fir(R); T := SPP (z); R := R \ T ;

D := {(u, f(u))| p(u) and u ∈ T};
exercise |T | times :

D := D ∪ {(u,w)| n = n(u),
∃w1, . . . wn : ((t1(u), w1), . . . (tn(u), wn) ∈ D,

w = g(u, h1(w1), . . . hn(wn)))}
until (∃u : (u, y) ∈ D or R = ∅),
because after termination of the internal exercise-loop the set variable D
contains the graph of G on SPP (z) and is a subset of the graph of G. Hence
we get the following algorithm for computing the inversion that we call the
inverse Dynamic Programming template:
\\ Precondition:
{G : X → Y is a total computable function,
X is countable and Fir : SubSet → X is a choice function, y ∈ Y }

\\ Pseudo-code:
var x, u, z : X;
var R := X, T : SubSet;
repeat z := Fir(R); T := SPP (z); R := R \ T ;

D := {(u, f(u))| p(u) and u ∈ T};
exercise k times (for some k ∈ [1..|T |]) :

D := D ∪ {(u,w)| n = n(u),
∃w1, . . . wn : ((t1(u), w1), . . . (tn(u), wn) ∈ D,

w = g(u, h1(w1), . . . hn(wn)))}
until (∃u : (u, y) ∈ D or R = ∅),

\\ Postcondition:
{G(x) = y}.
(The parameter k can take any value in the specified range and, in particular,
it can be determined by supercompilation [20, 21].)

Proposition 3. Inverse Dynamic Programming template is partially cor-
rect.

Proof. One can proceed according to the Floyd-Hoare method [9, 4, 17]
and use the following (one and the same) invariant in both loops (i.e. for
the external repeat-loop and for the internal exercise-loop): D is a subset of
the graph of G. �
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Proposition 4. Assume that for some input data the precondition of the
inverse Dynamic Programming template is valid and that the input value y
belongs to G(X). Then the algorithm generated from the template eventually
terminates.

Proof. A standard way to prove algorithm (and program) termination is via
a potential (or bound) function [9, 4, 17], i.e. a function that maps states
of the algorithm into natural numbers so that every legal loop execution
reduces the value of the function. In particular, let n ∈ N be an integer
such that y = G(cnt(n)), let m =

∑
0≤i≤n |SPP (cnt(i))| and let π(D) =

m−|D| be a potential function; then every legal iteration of any loop of our
algorithm reduces the value of this function at least by one. �

As follows from Propositions 3 and 4, the inverse Dynamic Programming
really computes an inverse function for a function defined by the recursive
scheme for descending Dynamic Programming.

Let us give an example. It does not make sense to invert function G that
solves the Dropping Bricks Puzzle, since this function is not injective8. So
let us consider a simpler injective function F : N → N

F (n) = if (n = 0 or n = 1) then 1 else F (n− 1) + F (n− 2)

that computes Fibonacci numbers. Let us assume that cnt is the identical
function (i.e. enumeration just in the standard order). Then our Inverse
Dynamic Programming algorithm gets the following form:
var x, z : N;
var R := N, T : 2N;
var D := ∅ : 2N×N;
var k : integer;
repeat z := Fir(R); T := [0..z]; R := R \ [0..z];

D := D ∪ {(0, 1)| 0 ∈ [0..z]} ∪ {(1, 1) | 1 ∈ [0..z]};
exercise k ∈ [1..z] times :

D := D ∪ {(u,w) /∈ D| ∃w1, w2 : (u− 1, w1), (u− 2, w2) ∈ D,
(u− 1), (u− 2) ∈ [0..z], & w = w1 + w2}

until ∃u : (u, y) ∈ D;
if ∃u : (u, y) ∈ D then x := (u such that (u, y) ∈ D) else loop.
After some simplification one can get the following algorithm:
var x, z : N;
var T : 2N;
var D := ∅ : 2N×N;
var k : integer;
z := 0; D := {(0, 1), (1, 1)};

8It means that an inverted function will compute a height h for which n droppings
suffice, but not the largest admissible value of h.
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repeat z := z + 1;
D := D ∪ {(z, w1 + w2) |∃w1, w2 : (z − 1, w1), (z − 2, w2) ∈ D};

until ∃u : (u, y) ∈ D;
if ∃u : (u, y) ∈ D then x := (u such that (u, y) ∈ D) else loop
that just computes and saves the Fibonacci sequence in the “array” D and
checks whether there is y in the array already.

6. Concluding remarks

The author has no intension to make everyone think about Dynamic Pro-
gramming in terms of fix-point computations. He just believes that the
iterative ascending Dynamic Programming template presented in the paper
will help to teach and (maybe) automatize Algorithm Design. This approach
to teaching Dynamic Programming as well as the approach to backtracking
and branch and bound (presented in citeShilov11) have been in use in the
Master Program at the Information Technology Department of Novosibirsk
State University since 2003.

At the same time, a number of questions concerning further research arise
from our study. The first one is related to the inversion of partial functions
that are defined by the scheme of recursive Dynamic Programming over
countable domains. The second one is about the inversion of total functions
defined by the scheme over non-countable domains (real number for instant).

Another problem for further research refers to computer architecture for
parallel Dynamic Programming. The idea to use dataflow architecture is on
the surface. A dataflow computer is a collection of nodes of different kinds
or types that pass tokens to each other. Every token comprises data and an
address that define the type of the addressee and the context (identifying a
particular instance of the node of this type).

Let function G : X → Y be defined by the recursive scheme of descending
Dynamic Programming 1, x ∈ X be a particular argument value, and bas,
spp : X → 2X be the base and support for G. Then the dataflow graph
for computing G(x) consists of nodes of two types, step and start, that
correspond to the elements of {v ∈ spp(x) : ¬p(v)} and to the elements of
{v ∈ spp(x) : p(v)}, respectively, and edges (u, v) such that u ∈ bas(v):

node step (input : token1, . . . tokenn) node start
result := g(self, h1(token1.data), result := f(self);

. . . hn(tokenn.data));
if self = x if self = x
then send(result) to host then send(result) to host
else for each u that self ∈ bas(u) else for each u that self ∈ bas(u)

do send(result) do send(result)
to step(context : u) to step(context : u)

end step end start
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where self represents the context of the node itself and absence of input
means that the node is ready for immediate execution. Unfortunately,
dataflow parallelism is still in Virto, not in Vita yet.
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