
Bull. Nov. Comp.Center, Comp. Science, 32 (2011), 107–126
c⃝ 2011 NCC Publisher

Make formal semantics easy and useful∗†

N.V. Shilov

Abstract. We start with a “make easy” approach to popularize formal semantics
for software engineers. It is based upon a toy language with “exoteric” operational,
denotational and axiomatic semantics. Then we present a realistic and practical
operational, denotational and axiomatic semantics for a simple programming lan-
guage. We hope that our approach will help better education to bridge a cultural
gap between Formal Methods theories and Software Engineering practice.

1. Introduction

More than 40 years have passed since Robert W. Floyd published the first
research that explicitly discussed formally how to “assign meaning to pro-
grams”, i.e. program formal semantics [2]. More than a decade has passed
already since David A. Schmidt published an appeal On the Need for a Pop-
ular Formal Semantics (in ACM SIGPLAN Notices, 1997, Vol. 32). These
four decades (as well as the last one) have generated number of individual
formal semantics, their theories, and more experts, but fewer general users
(due to D.A. Schmidt). Meanwhile we could see a great activity (of differ-
ent kinds) in the field of formal semantics in the last decade. Let us just
mention below two research on formal semantics emerged since year 2000
that attempted to comprehend the universe of formal semantics.

Peter D. Mosses promoted The Varieties of Programming Language Se-
mantics And Their Uses (in particular at A.P. Ershov International Con-
ference on Perspectives of System Informatics in 2001). He wrote (Lect.
Notes Comput. Sci., Vol. 2244): “This paper surveys the main frameworks
available for describing the dynamic semantics of programming languages.
... The paper is intended to be accessible to all computer scientists. Fa-
miliarity with the details of particular semantic frameworks is not required,
although some understanding of the general concepts of formal semantics is
assumed.”

Patrik Cousot constructed a hierarchy of formal semantics in the paper
Constructive Design of a Hierarchy of Semantics of a Transition System by

∗This work is supported by the RFBR grant 09-01-00361-a.
†Disclaimer: This paper is not research in Computer Science or Software Engineer-

ing, but a personal experience report on teaching of a particular topic — introduction to
formal semantics. Hence it does not make sense to count citations in this paper as research
citations that may contribute to citation and h-indexes (so popular and valuable nowa-
days). Due to this reason, the paper does not provide formal references to contemporary
papers, but only to the real classics of the past.

108 N.V. Shilov

Abstract Interpretation (Theor. Comput. Sci., 2002, Vol. 277(1–2)). The
hierarchy includes the maximal trace semantics of a transition system, big-
step semantics, termination and nontermination semantics, Plotkin’s natu-
ral, Smyth’s demoniac and Hoare’s angelic relational semantics and equiva-
lent nondeterministic denotational semantics, D. Scott’s deterministic deno-
tational semantics, generalized and Dijkstra’s conservative/liberal predicate
transformer semantics, generalized/total and Hoare’s partial correctness ax-
iomatic semantics. In the cited paper, “all the semantics are presented in a
uniform fixpoint form and the correspondences between these semantics are
established through composable Galois connections, each semantics being
formally calculated by abstract interpretation of a more concrete one using
Kleene and/or Tarski fixpoint approximation transfer theorems.”

Unfortunately, these and other attempts to comprehend the universe of
formal semantics lag behind the pace of developing formal semantics. For
example, in this decade a new formal semantics — so-called game seman-
tics — has been designed and developed by Samson Abramsky and C.-H.
Luke Ong. They (altogether with Dan R. Ghica and Andrzej S. Murawski)
believe that the state of the art is mature for Applying game semantics to
compositional software modeling and verification (Lect. Not. in Comp. Sci.,
Springer, 2004, v.2988).

Recently, David L. Parnas have called once again to “question the as-
sumptions underlying the well-known current formal software development
methods to see why they have not been widely adopted and what should
be changed” in a feature article Really Rethinking “Formal Methods” (IEEE
Computer, 2010, Vol.43, N 1).

Things are right where they started a decade ago? Not at all, since
industrial applications of formal methods and formal semantics are not the
unique measure of success. Let us discuss another dimension below.

A very popular (in Russia) aphorism of Mikhail (Mikhaylo) Vasilyevich
Lomonosov says1: “Mathematics should be learned just because it disci-
plines the mind”. This aphorism is a real classic of the past, but we do not
know the exact reference: it is so popular in Russia that nobody cares about
the reference. Nevertheless, there are at least two good reasons to quote the
above aphorism here.

The first one is the tercentenary of M. V. Lomonosov that was celebrated
November 19, 2011. Semen S. Kutateladze wrote in a recent paper The
Mathematical Background of Lomonosov’s Contribution: “Lomonosov is the
Russian titan of the epoch of scientific giants” (J. App. & Ind. Math., 2011,
Vol.5(2)).

The second reason is related to the educational value of Mathematics: it
disciplines minds for general education. We do believe that Formal Methods

1translated by the authors

Make formal semantics easy and useful 109

(and Formal Semantics in particular) discipline minds in Computer Science.
We would not like to say that educators should not care about industrial
applications of Formal Methods and Formal Semantics (quite the opposite,
we should care!). We just want to say that a mental discipline is valuable
for better education. At the same time, Formal Methods education helps to
bridge the cultural gap [1] between Mathematics and Computer Science.

The problem is how to overcome a stable allergy to Formal Methods
(Formal Semantics in particular): many people think Formal Methods are
too pure in theory but too poor in practice. We do believe that the basic
reason behind this allergy is the absence of primary, elementary level. It is
not wise to start teaching arithmetics from Peano axiomatic, but it is com-
mon sense to start from elementary problems about the number of apples,
pencils, etc. For example, nobody teaches first graders to prove in Peano
axiomatic

⊢ ∀x.∀y.∀z : ((x+ y) + z) = (x+ (y + z)),

but everyone teaches to solve elementary problems like the following one:

I gave 5 apples to Peter, and he gave 2 apples to John. How
many apples did Peter have after that?

(If you think that he had 3 apples, you are not right, since he had 3 at least.)
In our vision, part of the reason why there is no demand for Formal

Methods among students and engineers is that FM-experts do not care
about primary education in this field at an early stage of higher educa-
tion. In particular, many courses on Formal Semantics start with fearful
terms like state machine, predicate transformer, logic inference, operational
semantics, denotational semantics, axiomatic semantics without elementary
explanations of the basic notions. We would like to present some examples
of elementary explanations of basic notions in the following sections. They
were used in one-semester course for the first-year students Programming-
I (Introduction to Computer Science and Programming Languages) at the
Mathematics and Mechanics Department of Novosibirsk State University in
2008-2010.

It is worth to remark that there is a trend in Formal Methods community
to popularize individual Formal Methods via puzzles, competitions and chal-
lenging contests. For example, a decade ago Kwangeun Yi and the author
of the present paper published the article Engaging Students with Theory
through ACM Collegiate Programming Contests (CACM, 2002, v.45(9)) and
then the introductive paper How to find a coin: propositional program log-
ics made easy (Current Trends in Theoretical Computer Science by World
Scientific, 2004, v.2). Recently, Yury G. Karpov has published a compre-
hensive textbook (in Russian) Model checking: Verification of parallel and
distributed program systems (BHV-Petersburg, 2010), where a variety of

110 N.V. Shilov

⟨program⟩ ::= ⟨assignment⟩ | (⟨program⟩) | ⟨program⟩ ; ⟨program⟩
|

| if ⟨condition⟩ then ⟨program⟩ else ⟨program⟩ |

| while ⟨condition⟩ do ⟨program⟩
⟨assignment⟩ ::= ⟨variable⟩:= ⟨expression⟩
⟨condition⟩ ::= ⟨(in)equality⟩ | (⟨condition⟩) | ¬⟨condition⟩ |

| ⟨condition⟩ ∧ ⟨condition⟩ | ⟨condition⟩ ∨ ⟨condition⟩
⟨(in)equality⟩ ::= ⟨expression⟩ = ⟨expression⟩ |

| ⟨expression⟩ < ⟨expression⟩ | ⟨expression⟩ ≤ ⟨expression⟩
|

| ⟨expression⟩ > ⟨expression⟩ | ⟨expression⟩ ≥ ⟨expression⟩
⟨expression⟩ ::= ⟨constant⟩ | ⟨variable⟩ | (⟨expression⟩) |

| ⟨expression⟩ + ⟨expression⟩ | ⟨expression⟩ − ⟨expression⟩ |

| ⟨expression⟩ ∗ ⟨expression⟩

Figure 1. BNF definition of the ToL syntax

puzzles are solved by encoding them in SPIN model checker. Also, there
are some other examples. And yet we think that this educational approach
should be preceded by much more elementary examples of formal methods,
since nowadays too many students are weak in mathematics.

2. A toy language ToL

A programming language is any artificial computer language designed for
the organization of automatic data processing, i.e. data and process repre-
sentation, handling and management. For natural and artificial languages
(including computer languages), the terms syntax, semantics and pragmatics
are used to categorize descriptions of language characteristics. The syntax
is the orthography of the language. The meaning of syntactically-correct
constructs is provided through the language semantics. Pragmatics is the
practice of using the meaningful syntactically-correct constructs.

2.1. Formal syntax, informal semantics, and pragmatics of ToL

A language ToL (Toy Language) is described below. It is not a programming
language as specified in the above paragraph, but it looks like a programming
language due to its syntax.

The definition of the ToL syntax is given in Figure 1. (It assumes ac-
quaintance with Backus-Naur notation.) Variables and constants can be
defined in the standard manner: the former are identifiers, the latter are
numbers (integer or rational) in any number system. An example of a cor-
rect ToL program is given in Figure 2; let us refer to this program as the
sample program SP throughout the paper.

Make formal semantics easy and useful 111

if z<0 then z:= -1

else (x:= 0 ; y:= 0 ;

while y≤z do (y:= y + 2*x + 1 ; x:= x + 1) ;

x:= x - 1)

Figure 2. A sample ToL program SP

Semantics of the language is non-conventional and non-programming it
is artificial. It can be defined informally as follows: semantics of a ToL
program is an integer that is the length (the number of assignments) in
the shortest path throughout the program flowchart (i.e. from start to
end). (For example, semantics of the above sample ToL program is 1.) This
semantics is not for program execution or verification, but for illustrating
and explaining what is semantics and what kinds of semantics are in use.
Nevertheless, let us continue to call “programs” all syntactically correct
words of ToL (in spite of non-conventional non-programming semantics).

Thus ToL pragmatics is to illustrate and explain what are operational,
denotational and axiomatic semantics, what good properties they have (but
not why they are good), and what is the nature of Formal Semantics.

2.2. Ways to assign meanings to ToL

2.2.1. Operational semantics: a machine that computes.

Operational semantics translates programs to corresponding machines (of a
certain class) whose operations are (conventionally) “executable”: seman-
tics of a program is defined, in a way, by all admissible executions of the
corresponding machine.

In the case of ToL, the target class of machinery consists of recursive
algorithms without input that compute integer values; a recursive algorithm
that corresponds to a program α (and the value that it computes) is denoted
by Fα; the translation (the correspondence) is defined as follows:

1. F⟨assignment⟩ = 1;

2. F(β) = Fβ;

3. Fβ;γ = Fβ + Fγ ;

4. Fif ⟨condition⟩ then β else γ = min{Fβ, Fγ};
5. Fwhile ⟨condition⟩ do β = 0.

In particular, the operational semantics of the sample program SP is

Fif z<0 then z:=−1 else(x:=0;y:=0; while y≤z do(y:=y+2∗x+1;x:=x+1);x:=x−1) =
= min{Fz:=−1, Fx:=0;y:=0; while y≤z do(y:=y+2∗x+1;x:=x+1);x:=x−1} =

= min{1, Fx:=0 + Fy:=0; while y≤z do(y:=y+2∗x+1;x:=x+1);x:=x−1} =

112 N.V. Shilov

= min{1, 1 + Fy:=0 + Fwhile y≤z do(y:=y+2∗x+1;x:=x+1);x:=x−1} =
= min{1, 1 + 1 + . . . } = 1,

which can be routinely computed in full details.
Let us remark that as soon as a formal semantics is provided for a lan-

guage, it induces an equivalence relation on programs. For example, ToL
programs α and β are said to be equivalent if they have equal semantics,
i.e. Fα = Fβ. Of course, if a language has several semantics, then these
semantics can induce different (disjoint maybe) equivalences.

2.2.2. Denotational semantics: an algebra for calculations.

An algebra is a set of objects with operations on them. For example, natu-
ral numbers N with operations ‘0’ and ‘1’ of zero-arity (constants), binary
operations ‘+’ (i.e. λx, y.(x+ y)) and ‘−’ (i.e. λx, y.max{0, (x− y)}) form
an algebra. The same set N with a constant ‘0’, unary operations ‘+1’ (i.e.
λx.(x+1)) and ‘I’ (for Identical function λx.x), and a binary operation ‘min’
(i.e. λx, y.min{x, y}) form another algebra, since it uses a different set of
available operations.

Denotational semantics assigns (in a consistent compositional manner)
the elements of some algebra to programs and the operations of this algebra
to program constructs; usually the assigning function is denoted by [[]].

For example, let us consider the following algebra ⟨N , 0, 1, I, +, min⟩
and the following assignment of its elements to ToL programs and its op-
erations to ToL program constructs (‘(...)’, ‘;’, ‘if-then...else...’,
‘while-do...’):

1. [[⟨assignment⟩]] = 1;

2. [[(...)]] = I;

3. [[;]] = + ≡ λx, y.(x+ y);

4. [[if− then...else...]] = min ≡ λx, y.min{x, y};
5. [[while− do...]] = 0;

6. [[prog constr(α, β, . . .)]] = [[prog constr]]([[α]] , [[β]] , . . .)
for every prog constr∈ { (...), ; , if− then...else..., while− do...}.

In particular, the denotational semantics of the sample program SP can
be calculated in the algebra ⟨N , 0, 1, +, min⟩ as follows:
[[if z<0 then z:= -1

else (x:= 0 ; y:= 0 ;

while y≤z do (y:= y + 2*x + 1 ; x:= x + 1) ;

x:= x - 1)]] =
= [[if− then...else...]]

([[z:= -1]] , [[x:= 0 ; y:= 0 ;

Make formal semantics easy and useful 113

while y≤z do (y:= y + 2*x + 1 ; x:= x + 1)

;

x:= x - 1]]) =
= min{ 1 , [[;]]([[x:= 0]] , [[y:= 0 ;

while y≤z do (y:= y + 2*x + 1 ; x:= x + 1)

;

x:= x - 1]])} =
= min{ 1 , 1 + [[;]]([[y:= 0]] ,

[[while y≤z do (y:= y + 2*x + 1 ; x:= x + 1)

;

x:= x - 1]])} =
= min{ 1 , 1 + (1 + . . .)} = 1.

Let us remark that denotational semantics assigns meanings to programs
as well as to program constructs (in contrast to operational semantics).

Operational and denotational semantics of ToL are closely related.

Statement 1. Fα = [[α]] for every ToL program α.

Proof hint: induction on the program structure. �
Let us refer to the property stated in the above statement 1 as (mutual)

soundness of operational and denotational semantics of ToL. Soundness im-
plies that operational and denotational ToL semantics induce one program
equivalence. In the general case, relations between operational and denota-
tional semantics can be much more complicated.

2.2.3. Axiomatic Semantics: code-driven proof.

An axiomatic system is a calculus, i.e. a set of syntactic inference rules
for deriving (“proving”) new “facts” (that are called theorems) from axioms
(i.e. inference rules without premises).

Axiomatic semantics for ToL is an axiomatic system for assertions of the
following form ⟨constant⟩ ≤ ⟨program⟩ ≤ ⟨constant⟩, where each constant
is a non-negative integer or infinity ∞, but the former should not be greater
than the latter.

ToL axiomatic semantics comprises the axioms and inference rules pre-
sented in Table 1. An example of derivation in this system of the assertion
1 ≤ SP ≤ 1 for the sample program is depicted in Figure 3.

An assertion m ≤ α ≤ n is said to be valid, if m ≤ [[α]] ≤ n (or, according
to the soundness of ToL semantics, m ≤ Fα ≤ n). Axiomatic semantics is
said to be sound if every derivable assertion is valid; if every valid assertion
is derivable, then semantics is said to be complete.

Statement 2. Tol axiomatic semantics is sound and complete.

114 N.V. Shilov

Table 1. ToL axiomatic semantics

Assignment axiom:
1≤⟨assignment⟩≤1

Loop axiom:
0≤while...do...≤0

Block rule:
m≤α≤n
m≤(α)≤n Stretching rule:

m′≤α≤n′

m≤α≤n , m ≤ m′, n′ ≤ n

Composition rule:
m′≤α≤n′ m′′≤β≤n′′

m≤α;β≤n , m = m′ +m′′, n = n′ + n′′

Then rule:
m≤α≤n m≤β≤∞
m≤if...then α else β≤n Else rule:

m≤α≤∞ m≤β≤n
m≤if...then α else β≤n

Proof hint: induction on the program structure (completeness) and in-
duction on the length (height) of derivation (soundness). �

In particular, it is not a surprise that a valid assertion 1 ≤ SP ≤ 1 is
proveable in the axiomatic semantics, as we have seen in Figure 3.

3. Making Toy Programming Language ToyPL

As we have already stated explicitly, the toy language ToL is not a pro-
gramming language at all, but a language where correct words just look like
programs. Now we want to make a programming language with the same
syntax as ToL by providing a programming semantics for it. As a result,
we will get another language that we would refer to as Toy Programming
Language ToyPL: its syntax is the same, but ToyPL and ToL are different
languages since they have different semantics. Here we are speaking not
about a set of closely related semantics of different kinds (like operational,
denotational and axiomatic semantics for ToL), but disjoint semantics of
similar kinds. Thus pragmatics of ToyPL is to illustrate a programming
semantics of operational, denotational and axiomatic type.

Since a programming language is a language for organizing automatic
data processing, the best way to represent programming language is to de-
scribe its implementation semantics, how it works on a “computer”, and
what processes of data transformation are defined by its programs on this
platform. Since we have no any particular target platform in mind, we have
to define the ToyPL virtual machine.

A virtual machine is an abstract “computer” with an instruction set
executable (interpretable) at any conventional computer platform. Mendel

Make formal semantics easy and useful 115

Figure 3. An example of an inference in ToL

Rosenblum wrote (in ACM Queue, 2004, v.2):

The term virtual machine initially described a 1960s operating
system concept: a software abstraction with the looks of a com-
puter system’s hardware (real machine). Forty years later, the
term encompasses a large range of abstractions — for example,
Java virtual machines that don’t match an existing real machine.
Despite the variations, in all definitions the virtual machine is a
target for a programmer or compilation system. In other words,
software is written to run on the virtual machine.

The instruction set of ToyPL virtual machine (ToyPL-VM in the sequel)
consists of (labeled) operators of the following two kinds:

• assignment “⟨label⟩: ⟨variable⟩:= ⟨expression⟩ goto ⟨label⟩;”
• and choice “⟨label⟩: ⟨condition⟩ then ⟨label⟩ else ⟨label⟩;”

where labels are natural numbers (including 0) in any fixed numeric system
(decimal hereafter). A program (or a byte-code) of/for ToyPL-VM is a finite
set of operators marked by disjoint labels. A sample program for ToyPL-
VM is presented in Figure 4; let us refer to this program TP throughout the
paper.

Let N ≥ 1 be some fixed integer parameter that characterizes the bit-size
of our virtual machine’s word. Assume that S is a program of ToyPL-VM

116 N.V. Shilov

0: if z<0 then 1 else 2;

1: z:= -1 goto 8;

2: x:= 0 goto 3;

3: y:= 0 goto 4;

4: if y≤z then 5 else 7;

5: y:= y+2*x+1 goto 6;

6: x:= x+1 goto 4;

7: x:= x-1 goto 8;

Figure 4. A sample program TP for ToyPL-VM

and let V AR(S) be the set of all variables that occur (have instances) in S.
A state (of S) is a total function s : V AR(S) → Z/2N that assigns every
variable x ∈ V AR(S) some residuals in Z/2N , i.e. an integer number s(x) ∈
[0...(2N − 1)] that is called the value of x in the state s. A configuration (of
S) is a pair of the form (label, state), where label has instance(s) in S (i.e.
marks any operator, or occurs after goto, then or else in some operator)
and state is a state2.

Let l: x:= t goto l′; be an assignment within S (i.e. l and l′ are labels,
x is a variable, and t is an expression). A firing of the assignment is any
pair of configurations (l, s), (l′, s′), where s and s′ are states such that3

s′ = upd(s, x, s(t)), i.e. for every variable y within S the following holds:

s′(y) ={
s(y), if y ≡/ x (i.e. y is not x),
s(t), i.e. the value of the expression t in the state s, if y ≡ x (i.e. y is x),

where all arithmetic computations (in t) are carried out modulo 2N .
Let l: ϕ then l+ else l− be a choice within S (i.e. l, l+, and l− are

labels, ϕ is a condition). A firing of the choice is any pair of configurations
(l, s), (l′, s), where s is a state and l′ is a label in {l+, l−} such that

l′ =

{
l+, if s |=Z/2N ϕ (i.e. ϕ holds in the state s),

l−, if s 2Z/2N ϕ (i.e. ϕ does not hold in the state s),

where all arithmetic computations (in ϕ) are carried out modulo 2N and
then the resulting values are compared as natural numbers4.

Let a computational step (of S) be a firing of any assignment or choice
within this program. Let a computation (of S) be any finite or infinite se-
quence of configurations (l0, s0), . . . (li, si), , (l(i+1), s(i+1)), . . . such that ev-
ery pair of consequent configurations (li, si), (l(i+1), s(i+1)) within this se-
quence is a computational step of S; the computation is said to be complete

2We assume that ToyPL-VM has disjoint memory for programs and data: labels can
be natural numbers, while variable values are residuals modulo 2N .

3Hereafter upd stays for update.
4It implies that a programmer should be in charge for overflow.

Make formal semantics easy and useful 117

(0, 10, 15, 5) , (2, 10, 15, 5) , (3, 0, 15, 5) , (4, 0, 0, 5) ,
(5, 0, 0, 5) , (6, 0, 1, 5) , (4, 1, 1, 5) , (5, 1, 1, 5) , (6, 1, 4, 5) ,

(4, 2, 4, 5) , (5, 2, 4, 5) , (6, 2, 9, 5) , (4, 3, 9, 5) , (7, 3, 9, 5) , (8, 2, 9, 5)

Figure 5. An example of a complete computation of TP in case N = 4.

or to be a run (of S) if it starts with the label l0 ≡ 0 and is either infinite or
finishes with any terminal label ln (i.e. does not mark any operator within
the program).

An example of a finite run of the program TP is presented on Figure 5.
In this example, we assume that N = 4 and configurations are represented
by quadruples as follows: a configuration (l, s), where l is a label and s :
{x, y, z} → Z/2N is a state, is represented by the vector (l, s(x), s(y), s(z)).

Implementation semantics for ToyPL relies upon the following transla-
tion algorithm TR that maps every ToyPL-program α to the corresponding
program Sα for ToyPL virtual machine. The idea behind this algorithm is
quite trivial: draw a flowchart of a ToyPL-program, enumerate operators in
the right order, use these numbers as labels and represent the enumerated
operators as labeled operators of the corresponding program of ToyPL-VM.
But formally the algorithm is defined recursively by the program structure
as presented in Figure 6. It uses the following auxiliary notation:

• If S is a program for ToyPL-VM, then let max(S) be the maximal
label (i.e. a natural number) that has an instance in S.

• If S1 and S2 are programs for ToyPL-VM without labels that mark
operators in S1 and S2 simultaneously, then let S1 ∪ S2 be a program
for ToyPL-VM that comprises both sets of operators S1 and S2.

• If S is a program for ToyPL-VM and k is a label (i.e. a natural
number), then (S + k) is a program for ToyPL-VM that results from
S by instantiating an integer number (l+ k) instead of every instance
of every label l.

• If S is a program for ToyPL-VM and l and k are labels, then S(l/k)
is a program for ToyPL-VM that results from S by instantiating the
label l instead of every instance of the label k.

This algorithm has the following very nice structural property.

Statement 3. For every ToyPL-program α, the set of labels in TR(α) is
the interval [0..max(TR(α))] and max(TR(α)) is the unique terminal label
in TR(α).

118 N.V. Shilov

• For any variable x and expression t, let TR(x:=t) be 0 : x:=t goto 1;

• For every ToyPL-program α, let TR((α)) = TR(α).

• For all ToyPL-programs α and β let TR(α ; β) be
TR(α) ∪ (TR(β) + max(TR(α))).

• For all ToyPL-programs α and β and every condition ϕ
let TR(if ϕ then α else β) be 0: if ϕ then 1 else (1 +
max(TR(α))); ∪

∪ (TR(α)((max(TR(α)) + max(TR(β)))/max(TR(α))) + 1) ∪
∪ (TR(β) + max(TR(α)) + 1).

• For every ToyPL-programs α and every condition ϕ let
TR(while ϕ do α) be

0: if ϕ then 1 else

1 + max(TR(α)); ∪ (TR(α) + 1)(0/(1 + max(TR(α)))).

Figure 6. TR: a recursive translation to byte-code

.

Proof hint: induction on the program structure. Please see for details a
new Russian textbook Introduction to Parsing, Semantics, Compilation and
Verification of Programs, published by the author in 2011 at Novosibirsk
State University. �

There is no room to do a routine exercise, but let us remark that TR(SP) =
TP. (For the details please refer to the textbook Introduction to Parsing,
Semantics, Compilation and Verification of Programs.)

The implementation semantics is a particular instance of the operational
semantics where the underling machine is a virtual computer. In particu-
lar, let us define the implementation semantics of ToyPL (which makes it a
programming language) as follows: for every ToyPL-program α let the im-
plementation semantics of α be the set of all runs of the translated program
TR(α) on ToyPL-VM. For the first time the implementation semantics for
imperative programming languages was introduced as part of the so-called
Vienna Development Method (VDM), one of the longest-established Formal
Methods. VDM has grown at IBM’s Vienna Laboratory in the 1970s under
the supervision of Dines Bjørner and Cliff Jones (The Vienna Development
Method: The Meta-Language, Lect. Not. in Comp. Sci., v.61, 1978.)

For example, the implementation semantics of the sample program SP

(considered as a ToyPL-program hereafter) is equal to the set of all possible
runs of the program TP. This set consists of three disjoint parts:

• all finite sequences of configurations that have the following form
(0, p, q, r) , (2, p, q, r) , (3, 0, q, r) , (4, 0, 0, r) ,

Make formal semantics easy and useful 119

(5, 0, 0, r) , (6, 0, 1, r) , (4, 1, 1, r) , (4, ⌊
√
r⌋, ⌊

√
r⌋2, r) ,

(5, ⌊
√
r⌋, ⌊

√
r⌋2, r) , (6, ⌊

√
r⌋, (⌊

√
r⌋+1)2, r) , (4, (⌊

√
r⌋+1), (⌊

√
r⌋+

1)2, r) ,
(7, (⌊

√
r⌋+ 1), (⌊

√
r⌋+ 1)2, r) , (8, ⌊

√
r⌋, (⌊

√
r⌋+ 1)2, r),

where (⌊
√
r⌋+ 1)2 < 2N ;

• all finite sequences of configurations that have the following form
(0, p, q, r) , (2, p, q, r) , (3, 0, q, r) , (4, 0, 0, r) ,
(5, 0, 0, r) , (6, 0, 1, r) , (4, 1, 1, r) , (4, ⌊

√
r⌋, ⌊

√
r⌋2, r) ,

(5, ⌊
√
r⌋, ⌊

√
r⌋2, r) ,

(6, ⌊
√
r⌋, (⌊

√
r⌋+ 1)2mod(2N), r) ,

(4, (⌊
√
r⌋+ 1)mod(2N), (⌊

√
r⌋+ 1)2mod(2N), r) , . . .

. . . (5, (⌊
√
r⌋+ k)mod(2N), (⌊

√
r⌋+ k)2mod(2N), r) ,

(6, (⌊
√
r⌋+ k)mod(2N), (⌊

√
r⌋+ k + 1)2mod(2N), r) ,

(4, (⌊
√
r⌋+ k + 1)mod(2N), (⌊

√
r⌋+ k + 1)2mod(2N), r) ,

(7, (⌊
√
r⌋+ k + 1)mod(2N), (⌊

√
r⌋+ k + 1)2mod(2N), r) ,

(8, (⌊
√
r⌋+ k)mod(2N), (⌊

√
r⌋+ k + 1)2mod(2N), r),

where (⌊
√
r⌋ + 1)2mod(2N) ≤ r but (⌊

√
r⌋ + k + 1)2mod(2N) > r for

some k > 0;

• all infinite sequences of configurations that have the following form
(0, p, q, r) , (2, p, q, r) , (3, 0, q, r) , (4, 0, 0, r) ,
(5, 0, 0, r) , (6, 0, 1, r) , (4, 1, 1, r) , (4, ⌊

√
r⌋, ⌊

√
r⌋2, r) ,

(5, ⌊
√
r⌋, ⌊

√
r⌋2, r) ,

(6, ⌊
√
r⌋, (⌊

√
r⌋+ 1)2mod(2N), r) ,

(4, (⌊
√
r⌋+ 1)mod(2N), (⌊

√
r⌋+ 1)2mod(2N), r) , . . .

. . . (5, (⌊
√
r⌋+ k)mod(2N), (⌊

√
r⌋+ k)2mod(2N), r) ,

(6, (⌊
√
r⌋+ k)mod(2N), (⌊

√
r⌋+ k + 1)2mod(2N), r) ,

(4, (⌊
√
r⌋+ k + 1)mod(2N), (⌊

√
r⌋+ k + 1)2mod(2N), r) , . . . ,

where (⌊
√
r⌋+ k)2mod(2N) ≤ r for all k > 0.

Here p, q and r are integers in the range [0..(2N − 1)], and ⌊. . . ⌋ denotes
the floor function (which returns the largest integer not greater than the
argument value).

The above example demonstrates formally that the ToyPL-program SP

and the corresponding program TP for ToyPL-VM either compute (in the
variable x) the integer part of the square root of the initial value r (of the
variable z) in the case when (⌊

√
r⌋+1)2 < r, or diverge in the opposite case.

Since the implementation semantics for ToyPL is already defined, we
can define input-output semantics for ToyPL-programs as follows: for every
ToyPL-program α and all states5 s′ and s′′ of α, let us write (s′, s′′) ∈
IO(α) and say that α outputs s′′ for input s′, if there exists a run of TR(α)

5We have defined a state for programs of ToyPL-VM as a total function that maps
every variable into its value. The same definition holds for ToyPL-programs.

120 N.V. Shilov

Table 2. ToyPL axiomatic semantics

Assignment axiom: {ψt/x}x:=t{ψ}
,

where ψt/x denotes the result of substitution
of t into ψ instead of all free instances of x

Stretching rule:
{ϕ′}α{ψ′}
{ϕ}α{ψ} , |=Z/2N (ϕ→ ϕ′) and |=Z/2N (ψ′ → ψ)

Block rule:
{ϕ}α{ψ}
{ϕ}(α){ψ} Composition rule:

{ϕ}α{ξ} {ξ}β{ψ}
{ϕ}(α ; β){ψ}

IF rule:
{ϕ∧ξ}α{ψ} {ϕ∧¬ξ}β{ψ}
{ϕ}if ξ then α else β{ψ} WHILE rule:

{ι∧ξ}α{ι}
{ι}while ξ do α{ι∧¬ξ}

that starts with s′ and finishes with s′′. For example, SP always outputs
((⌊

√
r⌋ + k)mod(2N), (⌊

√
r⌋ + k + 1)2mod(2N), r), where k ≥ 0 is the first

integer such that (⌊
√
r⌋+k)2mod(2N) ≤ r but (⌊

√
r⌋+k+1)2mod(2N) > r.

The axiomatic semantics for ToyPL is an axiomatic system for assertions
of the following form {⟨pre-condition⟩}⟨program⟩{⟨post-condition⟩},
where both conditions are first-order formulas in the signature of Z/2N .
ToyPL axiomatic semantics comprises the axioms and inference rules pre-
sented in Table 2. The axiomatic semantics for imperative programming
languages was introduced by Charles Antony Richard Hoare in the paper
An Axiomatic Basis for Computer Programming (Comm. ACM, 1969, v.12,
n.10); maybe, this axiomatic semantics was the first ever formal semantics
for programming languages (while it relied upon informal implementation
semantics at the moment).

Let us say that an assertion {ϕ}α{ψ} is valid and write |=Z/2n {ϕ}α{ψ}
if for all states s′ and s′′, s′ |=Z/2n ϕ and (s′, s′′) ∈ IO(α) implies s′′ |=Z/2n ψ.

Statement 4. ToyPl axiomatic semantics is sound and complete.

Proof (sketch). Soundness can be proved in a routine manner by induc-
tion on the length (height) of a derivation. Completeness can be proved by
induction on the program structure and use of the weakest pre-conditions: a
formula ϕ is the weakest pre-condition for a program α and a post-condition
ψ, if the following holds:

• |=Z/2N {ϕ}α{ψ},

• |=Z/2N (ϕ′ → ϕ) for every formula ψ′ such that |=Z/2N {ϕ′}α{ψ}.

Make formal semantics easy and useful 121

Table 3. ToyPL structural operational semantics ToyPL-SOS

Assignment axiom:
s⟨x:=t⟩upd(s,x,s(t)) Loop axiom:

s⟨while ϕ do α⟩s , if s 2Z/2N ϕ

Block rule:
s′⟨α⟩s′′
s′⟨(α)⟩s′′ Composition rule:

s′⟨α⟩s′′ s′′⟨β⟩s′′′
s′⟨α;β⟩s′′′

Loop rule:
s′⟨α⟩s′′ s′′⟨while ϕ do α⟩s′′′

s′⟨while ϕ do α⟩s′′′ , if s′ |=Z/2N ϕ

Then rule:
s′⟨α⟩s′′

s′⟨if ϕ then α else β⟩s′′ , if s |=Z/2N ϕ

Else rule:
s′⟨β⟩s′′

s′⟨if ϕ then α else β⟩s′′ , if s 2Z/2N ϕ

The weakest pre-condition for every postcondition and every program can
be constructed due to the following arguments: since N , the size of the
ToyPL-VM word, is some fixed integer number, the states-space of every
ToyPL program is finite; hence every set of states of every ToyPL program
is finite and can be specified by an appropriate first-order formula. With
the aid of the weakest pre-conditions, we can proceed with the completeness
proof like in the textbook Introduction to Parsing, Semantics, Compilation
and Verification of Programs. �

4. ToyPL structural operational semantics

Structural Operational Semantics (SOS) was introduced by Gordon D. Plot-
kin in the technical report A Structural Approach to Operational Semantics
((Comp. Sci. Dep. of Aarhus University, Denmark, 1981). It is usually
presented in a form of an axiomatic system and assumes some semantic
inference machine driven by the program structure.

In particular, structural operational semantics for ToyPL is presented in
Table 3. This axiomatic system is designed for reasoning about triples of
the form s′⟨α⟩s′′, where s′ and s′′ are states, and α is a ToyPL-program.

An example of an inference in ToyPL-SOS is presented in Figure 7.
In this example, we assume that N = 4 and states are represented by
triples as follows: a state s : {x, y, z} → Z/2N is represented by the vector

122 N.V. Shilov

Figure 7. An example of ToyPL-SOS inference

(s(x), s(y), s(z)).

Statement 5. For every ToyPL-program α and all states s′ and s′′, the
following holds: (s′, s′′ ∈ IO(α) ⇔ ⊢ToyPL s′⟨α⟩s′′ (or, in words, α outputs
s′′ for input s′ iff triple s′⟨α⟩s′′ is provable in ToyPL structural axiomatic
semantics.)

Proof hint: ⇒-direction — induction on the program structure, ⇐-
direction — induction on height of the inference tree. Please see for details
the textbook Introduction to Parsing, Semantics, Compilation and Verifi-
cation of Programs. �

Thus structural operational semantics of ToyPL is sound and complete.
It implies that for all integers p, q, r, p′, q′, r′ ∈ [0..(2N − 1)] the following
holds: ⊢ToyPL (p, q, r)⟨SP⟩(p′, q′, r′) iff p′ = (⌊

√
r⌋+k)mod(2N), q′ = (⌊

√
r⌋+

k+1)2mod(2N), r), r′ = r where k ≥ 0 is the first integer such that (⌊
√
r⌋+

k)2mod(2N) ≤ r but (⌊
√
r⌋+ k + 1)2mod(2N) > r.

5. ToyPL denotational semantics

Let us denote by V ARS the set of all variables admissible in ToyPL and
consider the set of all total functions ss : V ARS → Z/2N . Let us denote
this function space by SupSts. The elements of this function space are

Make formal semantics easy and useful 123

“super-states” since they assign values to all variables, while any particular
state assigns values to variables of a particular ToyPL-program. Thus, for
every super-state ss and every ToyPL-program α, the restriction (ss � α) of
ss on the set V AR(α) is a state of α.

Let us consider the space SupSts ⇒ SupSts of all partial functions
f : SupSts→ SupSts. Some useful functions in this set are defined below:

• abort is the totally undefined function ∅ on super-states;

• skip is the identical function λss.ss on super-states;

• for every condition ϕ the following test function ϕ? = {(ss, ss) :
ss |=Z/2N ϕ} is a (partial) function on super-states;

• for every variable x and every expression t the following update func-
tion UPDx,t = λss.upd(ss, x, ss(t)) is a total function on super-states.

At the same time, several operations can be defined on functions in
SupSts⇒ SupSts:

• unary identify operation I = λF.F ;

• binary composition operation “◦” such that (F ◦ G)(ss) = G(F (ss))
for all functions F,G ∈ (SupSts⇒ SupSts) and every super-state ss;
let us remark that this operation is associative;

• (in)finitary union operation “
∪
” such that

(
∪
m∈M

Fm)(ss) = Fm(ss), , if ss ∈ dom(Fm)

for every (finite or infinite) family of functions Fm ∈ (SupSts ⇒
SupSts), m ∈M , with disjoint domains, and every super-state ss.

Some other useful operations can be derived as follows:

• for every m ≥ 0 a unary m-power operation “m” such that F 0 =
skip, F 1 = F and Fm = F ◦ · · · ◦ F︸ ︷︷ ︸

m−times

every function F ∈ (SupSts ⇒

SupSts);

• a binary union operation “∪” such that (F1 ∪ F2) =
∪
m∈{1,2} Fm for

all functions F1, F2 ∈ (SupSts ⇒ SupSts) with disjoint domains; let
us remark that this operation is associative and commutative;

• for every condition ϕ, a binary choice operation “IFϕ” such that
IFϕ(F,G) = ((ϕ?◦F)∪((¬ϕ)?◦G)) for all functions F,G ∈ (SupSts⇒
SupSts) (since functions (ϕ? ◦ F) and ((¬ϕ)? ◦ G) have disjoint do-
mains);

124 N.V. Shilov

• for every condition ϕ, a unary loop operation “WHϕ” such that
WHϕ(F) = (

∪
m≥0((ϕ?◦F)m◦(¬ϕ)?) for every function F ∈ (SupSts⇒

SupSts) (since functions (ϕ? ◦ F)m ◦ (¬ϕ)?, m ≥ 0, have disjoint do-
mains).

Now we are ready to define the denotational semantics for ToyPL. Let us
consider the following algebra ⟨(SupSts⇒ SupSts), I, ◦, UPD, IF, WH⟩,
where

• UPD is the set of all update operations UPDx,t for all variables x and
expressions t,

• IF is the set of all choice operations IFϕ for every condition ϕ,

• WH is the set of all loop operations WHϕ for every condition ϕ.

Using these derived functions, we can assign the elements of the algebra to
ToyPL-programs and the operations of this algebra to ToyPL-constructs as
follows:

1. [[x:=t]] = UPDx,t for all variables x and expressions t;

2. [[(...)]] = I ≡ λF.F ;

3. [[;]] = ◦ ≡ λF,G.(F ◦G);

4. [[if ϕ then...else...]] = IFϕ ≡ λF,G.IFϕ(F,G) for every condition ϕ;

5. [[while ϕ do...]] =WHϕ ≡ λF.WHϕ(F) for every condition ϕ;

6. [[prog constr(α, β, . . .)]] = [[prog constr]]([[α]] , [[β]] , . . .)
for every prog constr∈ { ; , if− then...else..., while− do...}.

For example, let us calculate the denotational semantics of the program
SP:
[[SP]] = [[if z<0 then ... else ...]]([[z:=-1]],

[[x:=0; y:=0; while y≤z do (y:=y+2*x+1; x:=x+1); x:=x-1]]) =
= IFz<0(UPDz,(2N−1),

[[x:=0; y:=0; while y≤z do (y:=y+2*x+1; x:=x+1); x:=x-1]]) =
= [[x:=0; y:=0; while y≤z do (y:=y+2*x+1; x:=x+1); x:=x-1]]) =
= [[;]]([[x:=0]], [[y:=0]], [[while y≤z do (y:=y+2*x+1; x:=x+1)]], [[x:=x-1]])
=
= [[x:=0]] ◦ [[y:=0]] ◦ [[while y≤z do (y:=y+2*x+1; x:=x+1)]] ◦ [[x:=x-1]] =

= UPDx,0 ◦ UPDy,0 ◦ [[while y≤z do (y:=y+2*x+1; x:=x+1)]] ◦
UPDx,x−1.
Since only three variables x, y and z occur in the program, we can represent
any super-state ss by triples of values (ss(x), ss(y), ss(z)), each of which is
in the range [0..(2N − 1)]. Then we have:

Make formal semantics easy and useful 125

• UPDx,0 ◦ UPDy,0 =
= {((p, q, r) , (0, q, r)) : p, q, r ∈ [0..(2N − 1)]} ◦

◦ {((p, q, r) , (p, 0, r)) : p, q, r ∈ [0..(2N − 1)]} =
= {((p, q, r) , (0, 0, r)) : p, q, r ∈ [0..(2N − 1)]};

• [[while y≤z do (y:=y+2*x+1; x:=x+1)]] =
=

∪
m≥0(((y ≤ z)? ◦ [[y := y+ 2 ∗ x+ 1; x := x+ 1]])m ◦ (y > z?)) =

= (
∪
m≥0(((y ≤ z)? ◦ [[y := y+ 2 ∗ x+ 1; x := x+ 1]])m)) ◦ (y > z?) =

=6 (
∪
m≥0{((p, q, r) , ((p+m)mod(2N), (q−p2+(p+m)2)mod(2N), r)) :

p, q, r,∈ [0..(2N − 1)], m ≥ 0, and
q, (q−p2+(p+1)2)mod(2N), . . . (q−p2+(p+m−1)2)mod(2N) ≤ r}) ◦

◦(y > z?) =
= {((p, q, r) , ((p + m)mod(2N), (q − p2 + (p + m)2)mod(2N), r)) :
p, q, r,∈ [0..(2N − 1)], m ≥ 0,
and q, (q−p2+(p+1)2)mod(2N), . . . (q−p2+(p+m−1)2)mod(2N) ≤
r, but (q − p2 + (p+m− 1)2)mod(2N) > r};

• UPDx,x−1 = {((p, q, r) , ((p−1)mod(2N), q, r)) : p, q, r,∈ [0..(2N−1)]}.

Combining together, we conclude that the denotational semantics of the
sample ToyPL-program SP is the following partial function [[SP]] : SupSTS →
SupSts, which maps a super-state (p, q, r), p, q, r,∈ [0..(2N − 1)], into an-
other super-state ((m − 1)mod(2N), (m2)mod(2N), r), where m ≥ 0, and
12mod(2N) ≤ r, ... (m− 1)2mod(2N) ≤ r, but (m2)mod(2N) > r.

Structural operational semantics is sound and complete with respect to
denotational semantics for ToyPL in the following sense.

Statement 6. For every ToyPL-program α the following holds:

Soundness: For all states s′, s′′, if ⊢ToyPL s′⟨α⟩s′′ then [[α]](ss′) = ss′′ for
all super-states ss′ = (ss′ � α) and ss′′ = (ss′′ � α) that are equal on
all variables in V ARS \ V AR(α).

Completeness: For all super-states ss′ and ss′′, if [[α]](ss′) = ss′′, then
⊢ToyPL (ss′ � α)⟨α⟩(ss′′ � α).

Proof hint: soundness — induction on the height of the inference tree,
completeness — induction on the program structure. Please see for details
the textbook Introduction to Parsing, Semantics, Compilation and Verifi-
cation of Programs. �

6Use induction by m ≥ 0. Details are available in the textbook Introduction to Parsing,
Semantics, Compilation and Verification of Programs.

126 N.V. Shilov

6. Conclusion

Here are, once again, the basic theses of the paper.

1. There is a demand for popular Formal Semantics due to (at least) its
educational value: it helps to discipline minds. Yet, contemporary
educational environment (in Computer Science) is reluctant to teach-
ing/learning Formal Semantics since it is too pure in theory and poor
in practice.

2. A major obstacle to popularizing Formal Methods, and Formal Seman-
tics in particular, is the absence of elementary explanatory examples
for primary teaching/learning. For this reason, we have presented in
this paper several examples of toy formal semantics used for teach-
ing students at the Department of Mechanics and Mathematics and
Information Technology Department of Novosibirsk State University.

3. As soon as we turn from elementary examples (like ToyPL) to practical
programming languages, the formal semantics becomes much more
complicated. The situation becomes extremely intricate (and, maybe,
inadmissible) if we attempt to develop a comprehensive semantics for
programming languages with pointers, memory allocation and release,
and objects.

The best opportunity to overcome the complexity/feasibility problem
for comprehensive formal semantics of programming languages may be a
switch to problem-oriented semantics. For example, in the recent paper
Steps Towards a Theory and Calculus of Aliasing (to appear in International
Journal of Software and Informatics, 2011), Bertrand Meyer suggested a
problem-oriented denotational semantics that he called Calculus of Aliasing.
This semantics is designed to detect defects/mistakes/problems when several
different “expressions” point to the same memory location(s) simultaneously.
Axiomatic semantics for the same purpose is known as Separation Logic. It
was suggested by John C. Reynolds a decade ago in the paper A Logic for
Shared Mutable Data Structures (IEEE Symposium on Logic In Computer
Science, 2002). Relation between these two formalisms is a topic for further
research.

References

[1] Dijkstra E.W. On a cultural gap // The Mathematical Intelligencer. – 1986. –
Vol. 8, N 1. – P. 48–52.

[2] Floyd R.W. Assigning Meanings to Programs // Proc. Symp. Applied Mathe-
matics, Am. Mathematical Soc. – 1967. – Vol.19. – P. 19–31.

