
Bull. Nov. Comp.Center, Comp. Science, 29 (2009), 119–138
c© 2009 NCC Publisher

Fabulous arrays I:
Operational and transformational semantics

of static arrays in verification project F@BOOL@∗

N.V. Shilov, Eu.V. Bodin, S.O. Shilova

To memory of our colleague Nina Kalinina.

Abstract. The purpose of the F@BOOL@ project is to develop a transparent for
users, compact, portable and extensible verifying compiler F@BOOL@ for anno-
tated computer programs, that uses effective and sound automatic programs for
checking satisfiability of propositional Boolean formulas. The kernel programming
language of the project interprets all variables by residuals modulo some fixed in-
teger (that is a parameter). Paper presents an extension of the kernel language
by different variable ranges and static multi-dimensional arrays, provides two kinds
of semantics of the extension — operational and transformational (into the kernel
language), sketches manual correctness proof for the transformational semantics.

1. Introduction

A verifying compiler is a system computer program that translates pro-
grams written by a human from a high-level language into equivalent ex-
ecutable programs, and besides, proves (verifies) mathematical statements
specified by the human about the properties of the programs being trans-
lated [10]. The purpose of the F@BOOL@ project is to develop a transparent
for users, compact, portable and extensible verifying compiler F@BOOL@
for annotated computer programs, that uses effective and sound automatic
SAT-solvers (i.e. programs that check satisfiability of propositional Boolean
formulas in the conjunctive normal form) as means of automatic validation
of correctness conditions (instead of semi-automatic proof techniques). The
main target group of users of the F@BOOL@ compiler is the students of
mathematics, computer science, and information technology departments
studying the basic combinatorics, sorting and search algorithms, basics of
the formal methods (i.e. program specification and verification) and formal
description techniques (for distributed systems protocols). But we also hope
that F@BOOL@ can be applied in practice for specification, development
and verification of device drivers as well. Since the computing programs
transform their input data into the output ones, specifications of the com-
puting programs are of the following two kinds. These kinds are the partial

∗The work is supported by RFBR grant 09-01-00361-a.

120 N.V. Shilov, Eu.V. Bodin, S.O. Shilova

correctness conditions and the total correctness conditions. We are mostly
interested in the partial correctness conditions. They are schematically writ-
ten as {φ}π{ψ}, where π is a program, φ is a precondition on the input data,
and ψ is a postcondition on the output data. The partial correctness con-
ditions are also known as Hoare triples [9]. A Hoare triple {φ}π{ψ} is said
to be true (denoted by |= {φ}π{ψ}) or the program π is said to be partially
correct with respect to the precondition φ and the postcondition ψ, iff on
any input data that satisfy the property φ, the program π either does not
stop (it loops forever, hangs up, etc.), or stops with output data that satisfy
the property ψ [9]. An informal method (not an algorithm!) of determining
of the validity of partial correctness conditions has been developed in [8]
and it became popular as the Floyd method for determining the validity of
Hoare triples. Its correctness is well-known: if it is possible to apply it to a
triple {φ}π{ψ}, then |= {φ}π{ψ} [9].

The purpose of the present paper is to present syntax, operational and
transformational semantics of an extension of the kernel programming lan-
guage mini-NIL by variables with different ranges and by many-dimensional
static arrays and to prove manually correctness of the transformational se-
mantics with respect to operational one. In accordance with this purpose,
the rest of the paper is organized as follows. Section 2 sketches the general
outlines of F@BOOL@ project and current state of the art (as of November
1, 2009). Then Section 3 formally defines the syntax of mini-NIL(R, A)
— an extension of mini-NIL by variable ranges and static arrays. A small
step operational semantics for mini-NIL(R, A) is defined in Section 4. The
transformational semantics of mini-NIL(R, A) that transforms mini-NIL(R,
A) into the kernel language mini-NIL is defined in Section 5 together with a
manual proof of its correctness. The paper is concluded by Section 6, where
some directions for further research are presented.

2. F@BOOL@ at glance

Mini-NIL is a non-deterministic programming language similar to Basic,
described in the project F@BOOL@ documentation [4, 5]. It consists of
programs with preambles. The preamble defines the range of integer values
and initializes variables. The programs are built of assignment and condition
operators with non-deterministic control passing (transitions), labels, vari-
ables and constants (that are interpreted as elements of the additive ordered
group of integer residuals modulo some maximal integer 2n > 1). At present
the syntax of mini-NIL has a strict format, since the purpose of this lan-
guage is not convenience and flexibility of programming, but “to proof the
concept” of the F@BOOL@ project. The difference between the annotated
and non-annotated programs in the mini-NIL language is that the preamble
and some labels (including initial and all final labels) have logical annota-

Fabulous arrays I 121

tions associated with them. Informally speaking, the annotations are logical
formulas constructed of equalities and inequalities over arithmetic expres-
sions by means of usual logic operations of negation, conjunction, disjunc-
tion, implication, equivalence, and the universal and existence quantifiers.
Informally speaking, annotations contributes to the program execution as
“run-time contracts”:

1. the precondition is checked on the input data (these data are speci-
fied in the preamble) and in the case when this annotation appears
incorrect, an exception “error in input data” is thrown;

2. the postcondition is checked on each set of the output results and, in
the case when this summary appears incorrect, an exception “error in
calculations results” is thrown;

3. before executing an operator marked by a label with an annotation,
the annotation is checked on the current values of variables, and in the
case when this annotation appears incorrect, an exception “run-time
error” is thrown.

The static semantics of the annotated Mini-NIL programs consists in
construction of verification/correctness conditions. It is a concretization
of the Floyd method for partial correctness of mini-NIL. Below, the static
semantics of annotations is presented as annotated pseudo-code.
Precondition. [Program π is a syntactically correct annotated mini-NIL
program in which each operator has a unique label and, for each condition
operator, its then-list and else-list are disjoint.]

1. Represent P as a flowchart with control points, so that

(a) the start of the flowchart is a control point annotated by a pre-
condition as an invariant;

(b) any annotated label is a control point annotated by the corre-
sponding invariant;

(c) the end of the flowchart is a control point annotated by a post-
condition as an invariant.

2. If any loop through the flowchart does not contain any control point,
then the construction of the static semantics of the annotations is im-
mediately interrupted with an indefinite result; otherwise, it proceeds
according to the next step.

3. For each control point l, construct (generate) the following correctness
condition

122 N.V. Shilov, Eu.V. Bodin, S.O. Shilova

ξl → (
∧

kis a control point,

ξkis its invariant, and

πk
l is a loop-free path

from l to k

WP (πk
l , ξk)),

where ξl is the annotation (invariant) of the control point l, and WP
is Dijkstra’s weakest precondition transformer for loop-free programs
[7].

4. The set of all generated correctness conditions is said to be the result
of the construction of the static semantics for the annotated program
π.

Postcondition. [For each initial state σ of a program π, if the precondition
is valid in σ and all correctness conditions of π are tautologies, then the
postcondition is valid in each final state that results from the initial σ.]

Soundness of the static semantics of an annotated mini-NIL program has
been proved in technical report [5]. Therefore, by verification of mini-NIL
programs we mean generation and validation of the correctness conditions
of annotated programs. Let us remark that the above method for genera-
tion of correctness conditions is exponential in time and space because of
branching in programs and multiple variable instances in formulas. There-
fore, in the framework of the F@BOOL@ project, a polynomial algorithm
for correctness conditions generation has been developed and justified [11].
This algorithm uses auxiliary variables for invariants when generating the
correctness conditions, and it can be applied both for non-structured non-
deterministic programs and for structured deterministic programs. This
algorithm linearly depends on the number of the control constructs in the
program and the number of statements, but has quadratic dependency on
the total size of the program, precondition, postcondition and the invari-
ants of the control points. But implementation of the algorithm is a future
research topic.

The key ideas of F@BOOL@ are Boolean representation of all data (in-
stead of Boolean abstraction or first-order representation) and the use of
SAT-solvers for validation of the correctness conditions (instead of deduc-
tive reasoners). These make difference between F@BOOL@ from one side
and BLAST [6] and SLAM [3] verification tools from the other side. Both
tools are static analyzers for a limited subset of the C language. They iter-
atively build and refine finite models of a program state-space by means of
a so-called Boolean predicate abstraction, model-check program safety and
liveness in these models by means of SAT-solvers and refute illegal program
runs by means of first-order theorem-provers. In contrast, our project is
aimed on the verification of a wide spectrum of functional and behavioral

Fabulous arrays I 123

properties, and it assumes generation of first-order verification conditions
(from invariants), and the validation/refutation of each verification condi-
tion using SAT-solvers after their “conservative” translation into Boolean
form by means of the following method.
Precondition. [θ is a first-order correctness condition over the additive
ordered group of integer residuals modulo 2n > 1.]

1. ξ := booln(θ), where booln is an equivalent translation of first-order
formulas over the additive ordered group of integer residuals modulo
2n > 1 into Boolean formulas;

2. chi := cnf3(¬ξ), where cnf3 is an algorithm of translation of Boolean
formulas into an equally satisfiable 3-cnf formula [1].

Postcondition. [Boolean formula χ is satisfiable iff the correctness condi-
tion θ is not a tautology.]

Let us note that step 2 of this algorithm has quadratic complexity on the
size of the formula ξ, but the size of the resulting 3-cnf formula χ linearly de-
pends on the size of ξ. However, step 1 has exponential complexity because
of the replacement of universal quantifiers with conjunctions, and existential
quantifiers with disjunctions. Therefore, at the current stage of implemen-
tation of the F@BOOL@ project, quantifiers in annotation are prohibited.
Provided this limitation, the complexity of step 1 becomes linear. During
the period from 2006 to 2008, a popular at that time SAT-solver zChaff1

was used in the F@BOOL@ project. The first verification experiments have
been successfully made with its help. Our experience is bounded by the
following toy Mini-NIL programs that

• swaps values of two variables;

• checks whether three input values are lengths of sides a triangle;

• finds a unique fake coin in a set of 15 coins.

3. Syntax of Mini-NIL with ranges and arrays

Syntax of Mini-NIL with ranges and arrays consists of programs. Every
program consists of a preamble and a body. A program preamble is a list of
variable and array declarations. A program body is a list of assignments to
variables, updates of array elements and condition operators.

Program Preamble. A maximal integer declaration has the form
‘MaxInt :: M ’, where M is an unsigned integer constant greater than 1.
A variable declaration has the form ‘V AR x : [0..r]’, where x is an identi-
fier (in low case letters), and r is an unsigned integer constant in the range
[0..M] (that is called a variable range). An array declaration has the form

1http://www.princeton.edu/ chaff/zchaff.html

124 N.V. Shilov, Eu.V. Bodin, S.O. Shilova

‘ARRAY a[r1, ...rn] : [0..r]’, where a is an identifier (in low case letters),
and n is an unsigned positive integer constant, r1, ...rn, r are unsigned in-
teger constants in the range [0..M]; r1, ...rn are called index ranges and r
is called an element range. An identifier declaration is a variable or array
declaration. A (program) preamble is a finite sequence of declarations that
starts with a single maximal integer declaration and then consists of variable
and array declarations such that every identifier has at most one declaration
within this sequence. If δ is a preamble, then we denote the set of declared
variables by V (δ) and the set of declared arrays by A(δ) (δ may be omitted
when it is implicit).

Arithmetic expressions and array elements. Arithmetic expres-
sions and array elements are defined by mutual induction as follows2.

Arithmetic expressions:

• every unsigned integer in the range [0..M] is a (simple) expression;
• every variable is a (simple) expression;
• every array element is a (compound) expression;
• every sum and difference of expressions is a (compound) expres-

sion;

Array element has the form ‘a[τ1, ...τn]’, where a is an array, n is a positive
integer, and τ1, ...τn are arithmetic expressions (for element’s indexes).

Program body. A label is an unsigned integer 0, 1, 2, ... An assign-
ment operator has the form ‘l : x := τ goto L’, where l is a label, x is
a variable, τ is an arithmetic expression, and L is a finite sequence3 of la-
bels. An update operator has the form ‘l : a[τ1, ...τn] := τ goto L’, where
l is a label, a[τ1, ...τn] is an array element, τ is an arithmetic expression,
and L is a finite sequence of labels. A condition operator has the form
‘l : if ξ then L+ else L−’, where l is a label, ξ is a quantifier-free formula
constructed from equalities/inequalities of arithmetic expressions, L+ and
L− are finite sequences3 of labels. A (program) body is a finite set of oper-
ators4 such that any label marks one operator at most. A label ‘0’ (zero) is
called an initial (or start) label. A final (or terminal) label of a body is any
label that has an instance in the body but does not mark any operator5. If
β is a body, then let us denote the set of its labels by L(β) and the set of
its final labels by F (β) (β may be omitted when it is implicit).

2We will use ‘expression’ and ‘element’ as a shorthand for an arithmetic expression and
array element, respectively.

3The empty set is admissible.
4I.e. the assignment, update, and condition operators
5It means that a terminal label occurs in ‘goto’, ‘then’, or ‘else’ section(s) of some

operator(s) but does not mark any operator in the body.

Fabulous arrays I 125

Program. A preamble and a body are said to be consistent, if all
variables and arrays that are used in the body are declared in the preamble,
and all expressions in the body are type-correct with respect to the preamble.
A program consists of a preamble followed by a body. If π is a program,
then let us denote its preamble by P (π) and its body by B(π).

Thus syntax of a programming language is defined. We will call this
language mini-NIL with ranges and arrays and denote by Mini-NIL(R, A),
where ‘R’ stands for ‘Ranges’ and ‘A’ stands for ‘Arrays’. It can be thought
of as an extension of its kernel language mini-NIL [4] by static arrays and
ranges for values of variables, array indexes and elements6.

Simple programs. A special class of mini-NIL(R, A) programs com-
prises so-called simple programs that have no array elements as arguments of
compound arithmetic expressions and no compound arithmetic expressions
as indexes of array elements.

4. Small step semantics of mini-NIL(R, A)

Operational semantics of Mini-NIL with ranges and arrays is called Small
Step Semantics and expands operational semantics of its kernel language.
Informally speaking, execution of a mini-NIL(A) program starts from any
operator marked by the label ‘0’ and finishes with a pass of control to any
label that does not mark any operator in the program. An exceptional situ-
ation occurs in execution, when an indefinite value is assigned to a variable,
or when an indefinite array element is updated7, or when control can not be
passed to any definite label.

Let us fix for awhile a program π. It consists of a preamble δ ≡ P (π)
and a body β ≡ B(π).

Semantics of preamble states. A state σ is a mapping that assigns
integers to all declared variables and partial integer functions to all declared
arrays as follows:

• if ‘V AR x : [0..r];’ is a variable declaration within δ, then σ(x) ∈ [0..r];

• if ‘ARRAY a[r1, ...rn] : [0..r];’ is an array declaration within δ, then
σ(a) : [0..r1]× . . . [0..rn] → [0..r] is a partial function.

The set of all states is denoted by Σ(π) and called a state-space (of π).
Values of expressions and elements in a state. Every state σ

assigns some (definite or indefinite) values to arithmetic expressions and
array elements:

Values of expressions:
6In mini-NIL, the range of all variables is uniform [0..M] and arrays are not permitted.
7But in contrast, update of a definite array element by an indefinite value does not rise

an exception.

126 N.V. Shilov, Eu.V. Bodin, S.O. Shilova

• if an expression τ is some unsigned integer n ∈ [0..M], then the
value σ(τ) is n;

• if an expression τ is some declared variable x, then the value σ(τ)
is σ(x);

• if an expression τ is an element a[τ1, . . . τn] of some declared array,
then the value σ(τ) is the value of the element σ(a[τ1, . . . τn]);

• if an expression τ is the sum/difference of expressions τ1 and
τ2, and the values σ(τ1) and σ(τ2) are definite, then the value
σ(τ) is (σ(τ1)+σ(τ2))mod(M +1) or (σ(τ1)−σ(τ2))mod(M +1),
respectively;

• otherwise, the value σ(τ) is indefinite.

Value of element: if all values σ(τ1), ... σ(τn) are definite and equal to
some integers t1, ... tn, respectively, and the function σ(a) is definite
at the point (t1, . . . tn), then the value σ(a[τ1, ...τn]) is σ(t1, . . . tn);
otherwise, the value σ(a[τ1, ...τn]) is indefinite.

Since we have to compare definite and indefinite values, we have to adopt
3-value logic (instead of Boolean logic) with logical values {true, false,
absurd} (that we abbreviate to ‘t’, ‘f ’ and ‘a’, respectively).

3-value logic in a state. Let σ be a state. The logical value in the
state σ(φ) of a quantifier-free first-order formula φ is defined by induction
on the structure of φ as follows.

• Equalities: σ(τ ′ = τ ′′) =

true, if both values σ(τ ′), σ(τ ′′)
are defined and equal,
or both are indefinite;

false, if both values σ(τ ′), σ(τ ′′)
are defined but not equal,

or if one of them is definite
while another is indefinite;

.

• Inequalities:

σ(τ ′ < (≤, dots)τ ′′) =

true, if both values σ(τ ′), σ(τ ′′)
are defined and the first is less than
(less than or equal to, ...) the second;

false, if both values σ(τ ′), σ(τ ′′)
are defined and the first is not less than
(not less than or equal to, ...) the second;

absurd, otherwise;

.

• The values for propositional combinations of equalities and inequalities
are computed from the values of components in accordance with the
following truth-tables:

Fabulous arrays I 127

arg1 arg2 ∧ ∨
t t t t
t f f t
t a a a
f t f t
f f f f
f a a a
a t a a
a f a a
a a a a

arg ¬
t f
f t
a a

Firing. A normal configuration is a pair of the form (l, σ), where l
is a label and σ is a state. Abnormal or exceptional configurations are
IndV al, CtrLos, and CtrLosIndV al, where ‘IndV al’ stands for ‘Indefinite
Value’, and ‘CtrLos’ — for ‘Control Loss’. Firing of an operator is a pair
of configurations defined below.

Assignment firing. Let ‘l : x := τ goto L’ be an assignment operator,
where a variable is declared by ‘V AR x : [0..r];’. A normal firing
of the assignment is a pair of configurations ((l, σ), (l′, σ′)) such that
l′ ∈ L, the value σ(τ) is equal to some t ∈ [0..r], and σ′ = upd(σ, x, t).
An abnormal firing of the assignment is a pair of configurations of one
of the following three forms:

• ((l, σ), IndV al) if σ(τ) is indefinite or is out of the range [0..r],
but L 6= ∅;

• ((l, σ), CtrLos) if σ(τ) is definite and is in the range [0..r], but
L = ∅,

• ((l, σ), CtrLosIndV al), if σ(τ) is indefinite or is out of the range
[0..r] and L = ∅.

Update firing. Let ‘l : a[τ1, . . . τn] := τ goto L’ be an update operator,
where an array is declared by ‘ARRAY a[r1, . . . rn] : [0..r];’. A normal
firing of the update is a pair of configurations ((l, σ), (l′, σ′)) such
that l′ ∈ L, the values of σ(τ1), ... σ(τn) are definite and are equal
to some values t1 ∈ [0..r1], ... tn ∈ [0..rn], respectively, and σ′ =
upd(σ, a, upd(σ(a), (t1, . . . tn), t)), where t is either the value σ(τ), if it
is definite and is in the range [0..r], or is indefinite value otherwise.
An abnormal firing of the update is a pair of configurations of one of
the following three forms:

• ((l, σ), IndV al) if any σ(τi), i ∈ [1..n], is indefinite or is out of
the range [0..ri], but L 6= ∅;

128 N.V. Shilov, Eu.V. Bodin, S.O. Shilova

• ((l, σ), CtrLos) if the values of σ(τ1), ... σ(τn) are definite and
are in the ranges [0..r1], ... [0..rn], respectively, but L = ∅,

• ((l, σ), CtrLosIndV al), if any σ(τi), i ∈ [1..n], is indefinite or is
out of the range [0..ri] and L = ∅.

Condition firing. Let ‘l : if ξ then L+ else L−’ be a condition oper-
ator. A normal firing of the assignment is a pair of configurations
((l, σ), (l′, σ)) such that

• either σ(ξ) = true and l′ ∈ L+,
• or σ(ξ) = false and l′ ∈ L−.

An abnormal firing of the condition operator is a pair of configurations
of one of the following three forms:

• ((l, σ), IndV al) if σ(ξ) = absurd;
• ((l, σ), CtrLos) if σ(ξ) = true and L+ = ∅;
• ((l, σ), CtrLos) if σ(ξ) = false and L− = ∅.

Small step semantics. A step (or small step) of a program π is a
firing of any operator in π. A start configuration of π is any configuration
with the label 0. A final configuration of π is any configuration with a label
that does not mark any operator in π. A trace of π is any finite sequence
of configurations such that every consequential pair of configurations within
the sequence is a step of π. A computational trace of π is a trace that starts
from a start configuration and finishes in a final configuration. Small step
semantics of π is the following binary relation SSS(π) on the state-space:

{(σ′ , σ′′) ∈ Σ× Σ : there is a computational trace of π
that starts from the state σ′ and finishes in the state σ′′}.

Thus the operational semantics of the programming language Mini-NIL
with ranges and arrays Mini-NIL(R, A) is defined. Let us observe that this
definition is compatible with the definition of the operational semantics of
the kernel language mini-NIL [4] in the following sense.

Proposition 1. Assume that ρ is a mini-NIL program with M as the max-
imal integer. Let ρR be a mini-NIL(R,A) program that results from ρ by
adding to the preamble the variable declaration V AR x : [0..M] for every
variable x that occurs in ρ. Then the small step semantics SSS(ρR) is equal
to {(σ′ , σ′′) ∈ Σ × Σ : σ′′ ∈ ρ(σ′) }, where ρ(. . .) is the input-output
operational semantics of ρ [4].

Fabulous arrays I 129

Proof. Let us remark that the mini-NIL(R,A) program ρR is array
free; hence, in every state σ, the value of every expression σ(τ) is definite.
Due to this reason, absurd can not be the value of any propositional com-
bination of equalities and inequalities in any state; hence all firings of all
condition operators are either normal firings or abnormal firings of the form
((l, σ), CtrLos) (where l is a label and σ is a state), that are defined exactly
as normal and abnormal firings of condition operators in mini-NIL [4]. Since
all variables have a unique range [0..M] and the value of all expressions in all
states are definite values in the same range, all firings of all assignment opera-
tors are either normal firings or abnormal firings of the form ((l, σ), CtrLos)
(where l is a label and σ is a state), that are defined exactly like normal and
abnormal firings of assignment operators in mini-NIL [4]. It implies that
definitions of the computational trace for programs ρ and ρR are equivalent.
Since for every state σ′, the set of states ρ(σ′) has been defined in [4] as
{σ′′) ∈ Σ : there is a computational trace of π that starts from the state σ′

and finishes in the state σ′′}, SSS(ρR) = {(σ′ , σ′′) ∈ Σ×Σ : σ′′ ∈ ρ(σ′) }.
¥

5. Transformational semantics

Paper [2] has suggested ‘split’ of a computer language into a kernel layer,
a number of intermediate layers and a complete layer. The kernel layer
sublanguage should have a virtual machine semantics and provide tools for
implementation of the intermediate layers; the intermediate layer sublan-
guages in turn should provide tools for the complete layer. Implementation
of an intermediate layer sublanguage in the kernel layer sublanguage should
be a semantics-preserving code transformation.

In F@BOOL@ verification project we would like to develop a verification-
oriented programming language with mini-NIL as a kernel sublanguage and
mini-NIL(R, A) as one of the intermediate layer sublanguages. It implies
that we have to define some algorithm λ that transforms every mini-NIL(R,
A) program π into mini-NIL program λ(π) such that the small step seman-
tics SSS(π) is ‘equal’ to the operational semantics {(σ′ , σ′′) ∈ Σ × Σ :
σ′′ ∈ λ(π)(σ′) }. The transformation λ will consist of three steps: first
program simplification, then array elimination, and finally uniform ranging
(i.e. shifting to the uniform range [0..M]).

5.1. Program simplification

Informally speaking, program simplification is a very intuitive procedure:
replace any instance τ of a compound index or array element in a com-
pound expression by a new variable y which should be ‘initialized’ by the
value of τ . Let us present an annotated pseudo-code of an algorithm that
we will refer to as program simplification.

130 N.V. Shilov, Eu.V. Bodin, S.O. Shilova

Precondition: [π is a mini-NIL(R, A) program, δ is its preamble, and S is
its small-step semantics.]
Algorithm:
WHILE π is not simple DO
BEGIN

LET (l : op) be an operator within π that contains[
(1) either an array element in a compound arithmetic expression,
(2) or a compound expression as an array index;

LET τ be an instance of

either an array element in a compound
expression,

or a compound expression that is an array
index within this operator;

LET r be

either the range of the corresponding array element
if τ is an instance of an array element,

or the corresponding index range
if τ is an instance of a compound expression as array index;

LET y be a fresh variable (i.e. a new identifier),
and LET k be a fresh label (i.e. an unsigned integer);

π := ADD variable declaration (V AR y : [0..r];) to the preamble of π,
and

REPLACE operator (l : op) in the body of π by two operators
(l : y := τ goto {k}) and (k : opy/τ), where

opy/τ is instantiation of y instead of τ
END.
Postcondition:
[π is a simple mini-NIL(R, A) program, and its small step semantics SSS(π)
restricted onto variables and arrays declared in δ is equal to S.]

Proposition 2. The program simplification algorithm is totally correct with
respect to its precondition and postcondition.

Proof (sketch). Let us proof partial correctness first and termination
then. In both cases, we will use proof techniques developed by R. Floyd
[8, 9], namely, the loop invariant and the potential function.

To prove partial correctness of the algorithm, let us adopt the following
‘mix’ of the precondition and postcondition

π is a mini-NIL(R, A) program, and
SSS(π) restricted onto variables and arrays declared in δ is equal to S

as the invariant of the single loop of the algorithm. It is straightforward
that

Fabulous arrays I 131

• the precondition implies the invariant,

• the invariant and negation of the loop condition imply the post con-
dition.

It remains to prove that if the loop invariant holds before a legal iteration of
the loop body and the iteration terminates, then it also holds after the iter-
ation. It is sufficient to observe that a pair of configurations ((l, σ), (l′, σ′))
is a firing of the operator (l : op) iff ((l, σ), (k, upd(σ, y, σ(τ)))) is a firing
of (l : y := τ goto {k}) and ((k, upd(σ, y, σ(τ)), (l′, σ′)) is a firing of the
operator (k : opy/τ), where opy/τ is instantiation of y instead of τ . Thus
partial correctness is proved.

Termination can be proved by adopting the following mapping

F : π 7→

the total number in π of instances of
elements in a compound expression and
compound expression in array indexes

as a potential function. It is obvious that every legal loop iteration decreases
the value of this function F . ¥

In the sequel, let us denote by Sim(π) a simple program that is the result
of application of the above simplification algorithm to a given mini-NIL(R,
A)-program π.

5.2. Array elimination

Intuition behind array elimination in a simple program is also very simple:
just emulate any static array by two sets of new variables with indexes for
definite values and indefinite ones; for example, replace ARRAY a[2] :
[0..5] by three fresh variables (V AR x0 : [0..5]), (V AR x1 : [0..5]),
(V AR x2 : [0..5]) for representing the values of a[0], a[1] and a[2] when they
are definite, and three fresh variables (V AR y0 : [0..1]), (V AR y1 : [0..1]),
(V AR y2 : [0..1]) for indicating whether the values of a[0], a[1] and a[2]
are indefinite.

First we have to introduce some special related notions for a proper for-
malization of the above intuition and a correct annotation of the algorithm
below.

Declaration unfolding. Assume that r1, . . . rn and r are some unsigned
integer constants, and a, x0...0, ... xr1...rn , y0...0, ... yr1...rn are disjoint
identifiers. Then let us say that the array declaration (ARRAY a[r1, . . . rn] :
[0..r]) unfolds into the set of declarations of value variables8 (V AR x0...0 :
[0..r]), ... (V AR xr1...rn : [0..r]) and the set of declarations of indicating

8Value variable is a variable for representing the value of the corresponding array
element. For example, variables x0, x1 and x2 from the above paragraph.

132 N.V. Shilov, Eu.V. Bodin, S.O. Shilova

variables9 (V AR y0...0 : [0..1]), ... (V AR yr1...rn : [0..1]). To be short (when
the declarations of the array and the separator symbol are implicit), let us
say that the declaration of the array a unfolds to the set of declarations
of the value variables x′s and to the set of declarations of the indicating
variables y′s.

Preamble unfolding. Let δ′ and δ′′ be two preambles such that δ′′

results from δ′ by unfolding some array declarations into the sets of decla-
rations of fresh value and indicating variables. In this case, let us say that
δ′ unfolds onto δ′′ by means of unfolding these array declarations to the
corresponding sets of value and indicating variables.

State folding and unfolding. Let δ′ be a preamble and δ′′ be the
result of unfolding some array declarations to corresponding declarations of
sets of value and indicating variables. Let σ′ ∈ Σ(δ′) and σ′′ ∈ Σ(δ′′) be two
states such that σ′(t) = σ′′(t) for every identifier t that is declared in both
preambles δ′ and δ′′ as a variable or an array, but for every array declaration
(ARRAY a[r1, . . . rn] : [0..r]) in δ′ that unfolds onto the set of declarations
of value and index variables (V AR x0...0 : [0..r]), ... (V AR xr1...rn : [0..r])
and (V AR y0...0 : [0..1]), ... (V AR yr1...rn : [0..1]), the following holds for
all integers i1 ∈ [0..r1], ... in ∈ [0..rn]:

• if σ′(a[i1, . . . in]) is indefinite, then σ′′(yi1...in) = 0;

• if σ′(a[i1, . . . in]) is definite, then σ′′(yi1...in) = 1 and
σ′′(xi1...in) = σ′(a[i1, . . . in]).

Then let us say that σ′′ is unfolding of σ′ (by means of unfolding the cor-
responding arrays onto the corresponding sets of value and indicating vari-
ables).

Unfolding function. For every preamble δ′ and its every unfolding δ′′

by means of unfolding some array declarations to the corresponding decla-
rations of the sets of value and indicating variables, for every σ′ ∈ Σ(δ′)
let uf(σ′, δ′, δ′′) be a state σ′′ ∈ Σ(δ′′) that is unfolding of σ′ by means
of unfolding the corresponding arrays onto the corresponding sets of value
and indicating variables. Thus the function uf is defined; in the sequel, we
apply this function uf to pairs of states, sets of states and sets of pairs of
states in the component-wise manner.

Now we are ready to present an annotated pseudo-code of the algorithm
that we will refer to as array elimination.
Precondition: [π is a simple mini-NIL(R, A) program with a preamble δ
and a small step semantics S.]
Algorithm:
WHILE the preamble P (π) of the program π has any array declaration DO

9Indicating variable is a variable for indicating whether the corresponding array element
is defined. For example, variables y0, y1 and y2 from the above paragraph.

Fabulous arrays I 133

BEGIN
LET (ARRAY a[r1, . . . rn] : [0..r]) be

an array declaration in the preamble P (π);
LET γ be a preamble that is the result of unfolding

the declaration (ARRAY a[r1, . . . rn] : [0..r]) in the preamble P (π)
into the set of declarations of fresh value variables

(V AR x0...0 : [0..r]), ... (V AR xr1...rn : [0..r])
and the set of declarations of fresh indicating variables

(V AR y0...0 : [0..1]), ... (V AR yr1...rn : [0..1]);
LET β be the program body B(π);
WHILE β has any update of any element of the array a OR

any assignment of any element of the array a to a variable
DO

BEGIN
LET ε be an instance of

an update of an element of the array a OR
an assignment of an element of the array a to a variable;

β := UNFOLD(ε, β); // See fig.5.2 for function UNFOLD.
END;
β := a program with the preamble γ and body β

END.
Postcondition:
[π is an array-free mini-NIL(R, A) program, and its small step semantics
SSS(π) is equal to uf(S, δ, γ).]

Proposition 3. The array elimination algorithm is totally correct with
respect to its precondition and postcondition.

Proof (sketch). Let us use again the loop invariant and potential func-
tion techniques. Partial correctness can be proved as follows. We can adopt
the following relaxation of the postcondition

π is a mini-NIL(R, A) program,
and its small step semantics SSS(π) is equal to uf(S, δ, γ)

as the invariant of the external loop. It is straightforward that

• the precondition implies the invariant,

• the invariant and negation of the loop condition imply the post con-
dition.

Invariance of this invariant over every legal iteration of the loop body fol-
lows from the following argument. It is sufficient to observe that a pair of

134 N.V. Shilov, Eu.V. Bodin, S.O. Shilova

configurations ((l, σ), (l′, σ′)) is a firing of a ‘simple’ element update op-
erator or an assignment of an element (l : op) iff there exists a trace of
UNFOLD((l : op), β) that starts from (l, uf(σ)) and finishes in (l′, uf(σ′)).

Termination can be proved by adopting the following mapping

F : π 7→
(

the total number of instances of array declarations,
element updates, and assignments of elements in π

)

as a potential function. It is obvious that every legal loop iteration decreases
the value of this function F . ¥

In the sequel, let us denote by Elm(π) the array-free program that is the
result of application of the above elimination algorithm to a given simple
program π in mini-NIL(R, A).

5.3. Range uniformation

The idea behind range uniformation is very trivial: if the range r a variable
x is not equal to the MaxInt, then before any assignment to this variable
x := τ test whether the value of τ is in the range [0..r]. Let us present
an annotated pseudo-code of an algorithm that we will refer to as range
uniformation.
Precondition: [π is a mini-NIL(R, A) array-free program, and S is its
small-step semantics.]
Algorithm:
WHILE π has any variable declaration DO
BEGIN

LET (V AR x : [0..r]) be a variable declaration within P (π);
π := REMOVE the declaration (V AR x : [0..r]) from π;
WHILE π has any assignment to the variable x DO
BEGIN

LET (l : x := τ goto L) be an instance of an assignment to x within
π,

and LET k be a fresh label;
β := REPLACE the instance of (l : x := τ goto L)

by the following couple of operators
l : if τ ≤ r then {k} else ∅

k : x := τ goto L
END

END.
Postcondition:
[π is a mini-NIL program, and its small step semantics SSS(π) is equal to
S ∩ (Σ(π))2.]

Proposition 4. The range uniformation algorithm is totally correct with
respect to its precondition and postcondition.

Fabulous arrays I 135

FUNCTION UNFOLD
(ε: OPERATOR INSTANCE, β: PROGRAM BODY) : PROGRAM

BODY
BEGIN
LET l0...0, ... li1...in , ... lr1...rn , k0...0, ... ki1...in , ... kr1...rn , m0...0, ... mi1...in ,
... mr1...rn

be fresh disjoint labels;
CASE ε OF
an instance of some update (l : a[t1, . . . tn] := τ goto L):

replace ε in β by the following set of operators
l : goto {l0...0}
l0...0 : if t1 = 0 & . . . & tn = 0 then {k0...0} else {l0...0⊕1}

k0...0 : x0...0 := τ goto {m0...0}
m0...0 : y0...0 := 1 goto L

..
li1...in : if x1 = i1 & . . .& xn = in

then {ki1...in} else {li1...in⊕1}
ki1...in : xi1...in := τ goto {mi1...in}

mi1...in : yi1...in := 1 goto L
..

lr1...rn : if x1 = r1 & . . .& xn = rn then {kr1...rn} else ∅
kr1...rn : xr1...rn := τ goto {mr1...rn}

mr1...rn : yr1...rn := 1 goto L;
an instance of some assignment (l : t := a[t1, . . . tn] goto L):

replace ε in β by the following set of operators
l : goto {l0...0}
l0...0 : if t1 = 0 & . . . & tn = 0 then {k0...0} else {l0...0⊕1}

k0...0 : if y0...0 = 1 then {m0...0} else ∅
m0...0 : t := x0...0 goto L

..
li1...in : if x1 = i1 & . . .& xn = in

then {ki1...in} else {li1...in⊕1}
ki1...in : if yi1...in = 1 then {mi1...in} else ∅

mi1...in : t := xi1...in goto L
..

lr1...rn : if x1 = r1 & . . .& xn = rn then {kr1...rn} else ∅
kr1...rn : if yr1...rn = 1 then {mr1...rn} else ∅

mr1...rn : t := xr1...rn goto L
END

Figure. Definition of the function UNFOLD, where ‘⊕’ is the lexicographical
‘next’ on n-tuples [0..r1]× . . . [0..rn]

136 N.V. Shilov, Eu.V. Bodin, S.O. Shilova

In the sequel, let us denote by Uni(π) the mini-NIL program that is
the result of application of the above uniformation algorithm to a given
array-free program π in mini-NIL(R, A).

Propositions 1, 2, 3, and 4 altogether imply the following theorem of
transformational semantics correctness.
Theorem: uf(SSS(π)) ∩ (Σ(ρ))2 = SSS(ρ), where π is a mini-NIL(R,
A) program and ρ is Uni(Elm(Simp(π))).

6. Concluding remarks: what’s next?

In this paper, we gave a brief overview of the F@BOOL@ project and pre-
sented an intermediate layer of the project programming language mini-NIL
with variable ranges and static arrays. This intermediate layer program-
ming language is provided by operational and transformational semantics;
correctness of the transformational semantics has been provided by man-
ual proof-sketches. Below we present and motivate some future research
directions.

1. Complete the manual proof-sketches and redo them with any mecha-
nized proof-assistance.

2. Provide mini-NIL with variable ranges and static arrays by a correct
transformation semantics for annotated programs.

We would like to quote Call For Papers of the 4rd Informal ACM SIG-
PLAN Workshop on Mechanizing Metatheory10 as a motivation of the first
research direction:

Researchers in programming languages have long felt the need
for tools to help formalize and check their work. With advances
in language technology demanding deep understanding of ever
larger and more complex languages, this need has become ur-
gent. There are a number of automated proof assistants be-
ing developed within the theorem proving community that seem
ready or nearly ready to be applied in this domain. Yet, despite
numerous individual efforts in this direction, the use of proof
assistants in programming language research is still not com-
monplace: the available tools are confusingly diverse, difficult to
learn, inadequately documented, and lacking in specific library
facilities required for work in programming languages.

The second research direction is very natural for F@BOOL@, since ver-
ification of annotated programs is the primary goal of the project. The
problem in this case is in a conflict between

10http://www.seas.upenn.edu/~sweirich/wmm/

Fabulous arrays I 137

• second-order interpretation by partial functions of arrays in mini-NIL
with variable ranges and static arrays,

• and transformational semantics of static arrays as collections of vari-
ables.

In terms of axiomatic semantics, this conflict means that the standard
second-order axiom for array update {ψupd(a,t,τ)/a}(a[t] := τ){ψ} is not
admissible any more, but upd(a, t, τ) has to be represented explicitly. In
terms of the weakest precondition transformer [7], it means that for an ar-
ray WP (a[t] := τ, ψ) is not ψupd(a,t,τ)/a, while for an integer variable
WP (x := τ, ψ) is ψτ/x as usual; WP (a[t] := τ, ψ) has to perform update
explicitly and can be a very complicated formula.

References

[1] Aho A.V., Hopcroft J.E., Ullmann J.D. The Design and Analysis of Computer
Algorithms. — Addison-Wesley, 1974.

[2] Anureev I.S., Bodin E.V., Gorodnyaya L.V.et al. On the problem of computer
language classification // Joint NCC&IIS Bulletin. Ser.: Computer Science.
— 2008. — Iss. 28. — P. 1–29.

[3] Ball T., Cook B., Levin V., Rajamani S. K. SLAM and static driver veri-
fier: Technology transfer of formal methods inside Microsoft // Lect. Notes
Comput. Sci. — Berlin: Springer-Verlag, 2004. — Vol. 2999. — P. 1–20.

[4] Bodin E., Kalinina N., Shilov N. Verifying Compiler F@BOOL@ Part I:
Outlines of F@BOOL@ Project in the Context of Component-Based Pro-
gramming. Mini-NIL: a Prototype of F@BOOL@ Virtual Machine Language.
— Novosibirsk, 2005. — (Prepr. / IIS SB RAS; N 131).

[5] Bodin E., Kalinina N., Shilov N. Verifying Compiler F@BOOL@ Part II:
Logical Annotations in Mini-NIL, Their Static and Run-Time Semantics. —
Novosibirsk, 2006. — (Prepr. / IIS SB RAS; N 138).

[6] Beyer D., Henzinger T.A., Jhala R., and Majumdar R. The software model
checker blast: Applications to software engineering // Int. J. on Software
Tools for Technology Transfer. — 2007. — N 9. — P. 505–525.

[7] Dijkstra W.E. The Dicsipline of Programming. — Prentice Hall, 1976.

[8] Floyd R.W. Assigning meanings to programs // Proc. of a Symposium in
Applied Mathematics. Mathematical Aspects of Computer Science. Vol. 19.
— American Math. Society, Providence, R. I., 1967. — P. 19–32.

[9] Gries D. The Science of Programming. — New York: Springer Verlag, 1981.
— 350 p.

138 N.V. Shilov, Eu.V. Bodin, S.O. Shilova

[10] Hoare C. A. R. The verifying compiler: A grand challenge for comput-
ing research // Perspectives of Systems Informatics (PSI’2003). — Berlin:
Springer-Verlag, 2003. — Vol. 2890. — P. 1–12.

[11] Shilov N.V., Anureev I.S., and Bodin E.V. Generation of verification condi-
tions for imperative programs // Programming and Computer Software. —
2008. — Vol. 34, N 6. — P. 307–321.

