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Designing tableau-like axiomatization
for Propositional Linear Temporal Logic

at home of Arthur Prior∗

N. V. Shilov

Abstract. Propositional Linear Temporal Logic (PLTL) is a very popular formal-
ism for specification and verification of computer programs and systems. The paper
suggests a tableau-like axiomatization for PLTL based on automata-theoretic deci-
sion procedure coupled with tableau for local model checking of the propositional
µ-Calculus.

1. Introduction

Propositional Linear Temporal Logic (PLTL) is a very popular formalism
for specification and verification of computer programs and systems [6, 18].
Fundamental results on decidability, model checking, and axiomatization
for PLTL have become a part of the Computer Science classics [11, 20].
Automata-theoretic technique [22] has proved its utility for propositional
modal logics of programs. In particular, PSPACE-completeness for PLTL
has been proved in this technique [21]. Later the automata-theoretic ap-
proach has been extended to model checking [6]. The axiomatization issues
for PLTL have been studied first on base of modal logic tradition [14]. But
tableau and tableau-base decision procedure for PLTL have been developed
with aid of automata-theoretic technique also [23].

After publication of [23], tableau for variants of linear temporal logic have
been studied in a number of papers. A comprehensive study of tableaux for
first-order temporal logics can be found in [15]. Tableau for combinations
of temporal logics with other model logics became a research topic in recent
years [10, 17].

At the same time a so called clausal resolution approach for axioma-
tization of different propositional temporal logic was under development.
General outlines of this method has been presented in [12] for proposi-
tional linear temporal logic with future and past modalities and operators.
The method is based on classical resolution augmented by temporal reso-
lution rule. A special Separated Normal Form (SNF) has been defined for
these purposes. For branching time temporal logic CTL a clausal resolution
system has been developed in [1]. Algorithmical issues of CTL resolution
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theorem prover have been discussed in [2]. The most recent development for
branching time propositional logic is sound and complete clausal resolution
system for ECTL+ [4]. For PLTL a sound and complete clausal resolution
has been developed in [13] and then improved in [9]. Connection between
infinite automata and SNF has been examined in [3].

We develope in this paper sound and complete experimental tableau-like
axiomatization for PLTL. This axiomatization comprises rewriting rules that
simplify formulae (Table 1), and a ‘tableau’ (Table 5). A deduction strategy
within the axiomatization consists of a number of stages. These stages are
sketched below along with outlines of the rest of the paper. Basically our
axiomatization is ‘retrieved’ from automata-theoretic decision procedure.
Implementation of the presented axiomatization and similar tableau-like ax-
iomatization for other propositional program and temporal logics are topics
for further research.

Section 2 introduces the rewriting rules that eliminate negations outside
literals and emulate subformulae of until constructs U by new propositional
symbols. The rules preserve tautologies and lead to a so-called simple for-
mulae.

Section 3 studies a special class of automata on infinite words. An au-
tomaton in this class accepts an infinite word as soon as it enters any ac-
cepting control state. A (fairness) constraint is a set of input symbols. An
infinite word meets the constraint iff all specified symbols occur finite num-
ber of times at most. The halting (termination) problem with the constraint
consists in checking whether an automaton accepts all infinite words that
meet the constraint (if it is the case than we say that the automaton totally
accept the constraint). Lemma 2 proves that the problem is decidable. In
principle, the problem can be solved by Büchi automata, but we develop an
original methods that is essential for axiomatization.

Section 4 translates simple formulae of PLTL into automata with fairness
constraint. Control states of the automata are finite sets of formulae. The
main property of this translation is captured in Lemma 3: a formula is a
tautology iff the automaton totally accepts the constraint.

In Section 5, the automata are considered as finite labeled transition
systems (i.e., Kripke structures) for the propositional µ-Calculus [16], and
the halting problem with constrains is encoded by a particular formula of
the µ-Calculus. An automaton totally accepts a constraint iff the formula
holds in some initial state of the corresponding model (see Lemma 4). In
simple words: we interpret halting problem with fairness constraint as the
local model checking problem for some fixed formula of the propositional
µ-Calculus.

The last Section 6 adopts sound and complete tableau designed for local
model checking for the µ-Calculus in finite model [7] and convert it into a
tableau-like axiomatization of PLTL.
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2. Propositional Linear Temporal Logic

Let Prp be an infinite set of propositional symbols.

Definition 1. The syntax of the Propositional Linear Time Logic (PLTL)
consists of formulae that are defined by induction as follows:

• every propositional symbol is a formula;

• negation (¬φ) is a formula;

• conjunction (φ ∧ ψ) and disjunction (φ ∨ ψ) are formulae;

• nextime (◦φ), always (¤φ), and eventual (♦φ) are formulae;

• until (φUψ) and unless (φWψ) are formulae.

Let Prp(ξ) be a set of all propositional symbols that occur in a formula
ξ. Every substring of a formula that is a formula as it is is said to be
a subformula; let Sub(ξ) be a set of all subformulae of a formula ξ. We
exploit the standard abbreviations (φ → ψ) and (φ ↔ ψ) for ((¬φ) ∨ ψ)
and for ((φ → ψ) ∧ (ψ → φ)), respectively. Frequently we omit the most
external parenthesis in small formulae and some parenthesis inside formulae
in accordance with the standard rules of operation precedence: ¬, ◦, ¤, ♦,
∧, ∨, →, ↔.

Definition 2. (Bounded) linear structure is pairs of the form (V,B), where

• the bound B ⊆ Prp is a finite set of propositional symbols,

• the valuation sequence V is a countable sequence V0 ⊆ B, . . . Vi ⊆ B,
. . . .

Definition 3. If (V, B) and (U,C) are two bounded linear structures such
that B ⊆ C and Vi = (Ui ∩ B) for every i ≥ 0, then (U,C) is said to be a
(semantics) extension of (V, B) on (propositional symbols in) C \B.

Definition 4. A point is a triple of the form (V,B, i), where i ≥ 0 is an
integer and (V, B) is a bounded linear structure.
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Definition 5. Semantics of PLTL is defined in terms of the satisfyability
relation |= between points and formulae by induction on formula structure1:

• (V, B, i) |= p iff p ∈ Vi for p ∈ Prp;

• (V, B, i) |= (¬φ) iff (V, B, i) |=/ φ;

• (V, B, i) |= (φ ∧ ψ) iff (V, B, i) |= φ and (V,B, i) |= ψ,
(V, B, i) |= (φ ∨ ψ) iff (V, B, i) |= φ or (V, B, i) |= ψ;

• (V, B, i) |= (◦φ) iff (V, B, i + 1) |= φ,
(V, B, i) |= (¤φ) iff (V, B, j) |= φ for every j ≥ i,
(V, B, i) |= (♦φ) iff (V, B, j) |= φ for some j ≥ i;

• (V, B, i) |= (φUψ) iff (V, B, k) |= ψ for some k ≥ i and
(V, B, j) |= φ for every j ∈ [i..k[,

(V, B, i) |= (φWψ) iff (V, B, i) |= (¤φ) or (V,B, i) |= (φUψ).

A formula is said to be a tautology iff it holds in every point. Formulae
are said to be equivalent iff they have equal semantics (i.e. for every point
they hold or do not hold in the point simultaneously). As usual, formulae
φ and ψ are equivalent iff the formula (φ ↔ ψ) is a tautology. A literal is a
propositional symbol or its negation.

Definition 6. Normal formulae are formulae that do not use abbreviations
→ and↔, and that can use the negation in literals only. Simple formulae are
normal formulae that do not use W operator and that can use U operator
with propositional symbols only.

Every PLTL formula is equivalent to some normal formula due to stan-
dard ‘normalizing’ De-Morgan-like tautologies

¬¬φ ↔ φ ¬ ◦ φ ↔ ◦¬φ
¬¤φ ↔ ♦¬φ ¬♦φ ↔ ¤¬φ
¬(φ ∧ ψ) ↔ ¬φ ∨ ¬ψ ¬(φ ∨ ψ) ↔ ¬φ ∧ ¬ψ
¬(φUψ) ↔ ¬ψW(¬φ ∧ ¬ψ) ¬(φWψ) ↔ ¬ψU(¬φ ∧ ¬ψ)

The major disadvantage of this normalization is exponential space com-
plexity (since it multiplies copies of some subformulae). We overcome this
problem by shifting equivalence to metaequivalence as follows.

Definition 7. Formulae φ and ψ are metaequivalent ( φ
<↔ ψ) iff for every

point (V, B, i) the following holds:

(V, B, i) |= φ
m

(U,C, i) |= ψ for every extension (U,C) of (V, B) on C \B.
1We assume Prp(φ) ∪ Prp(φ) ⊆ B.
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The equivalence implies the metaequivalence but not vice versa. The
metaequivalence is not a symmetric, but metaequivalent formulae are tau-
tologies or are not tautologies simultaneously.

A new (or fresh) propositional symbol is a symbol from infinite alpha-
bet Prp that has not been used yet. Syntax substitution of some object
instead of (any/all) instance(s) of some target in a subject is denoted by
subjectobject

target.

Lemma 1.
For every formula ξ, every its subformula θ that is out of scope of any
negation in ξ, and every new propositional symbol p the formulae ξ and
¤(θ → p) → ξp

θ are metaequivalent: ξ
<↔ ¤(θ → p) → ξp

θ .

(Let us remark for justification that ¤(θ → p) implies that p is inter-
preted as θ at least; at the same time ξp

θ is monotonous on p since p replaces
positive instances of θ.)

Combining Lemma 1 with another tautology φWψ ↔ ¤φ ∨ (φUψ), we
can formulate the following lemma.

Lemma 2.
For every formula ξ, all its subformulae φ and ψ, and new propositional sym-
bols p and q the following metaequivalences hold as soon as all substitutions
are out of the range of any negation:

• ξ
<↔ ¤((φ → p) ∧ (ψ → q)) → ξpUq

φUψ,

• ξ
<↔ ¤((φ → p) ∧ (ψ → q)) → ξ

¤p∨(pUq)
φWψ .

Combining the normalizing equivalences with Lemma 2 we obtain the
following proposition.

Proposition 1.
Every formula is metaequivalent to some simple formula that can be con-
structed in polynomial time by the rewriting system presented in Table 1.

3. Stuttering Automata with Fairness Constraint

Speaking informally, a stuttering automaton is just a nondeterministic finite
automaton with the input alphabet consisting of subsets of some finite set,
that can stutter (stay for awhile) on cells of the input tape.
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ζ ⇒ ζφ
¬¬φ ζ → ζ◦¬φ

¬◦φ
ζ ⇒ ζ↔♦¬φ

¬¤φ ζ ⇒ ζ¤¬φ
¬♦φ

ζ ⇒ ζ¬φ∨¬ψ
¬(φ∧ψ) ζ ⇒ ζ¬φ∧¬ψ

¬(φ∨ψ)

ζ ⇒ ¤((¬φ → p) ∧ (¬ψ → q)) → ζ
¤p∨(pU(p∧q))
¬(φUψ)

ζ ⇒ ¤((¬φ → p) ∧ (¬ψ → q)) → ζ
pU(p∧q)
¬(φWψ)

ζ ⇒ ¤((φ → p) ∧ (ψ → q)) → ζpUq
φUψ

ζ ⇒ ¤((φ → p) ∧ (ψ → q)) → ζ
¤p∨(pUq)
φWψ

(where p and q are new propositional symbols)

Table 1. Rewriting rules for simplification

Definition 8. A stuttering automaton is a tuple (Sts, Bnd, Ini, F in, Prg),
where

• Sts is a finite set of control states, Ini and Fin are subsets of Sts that
comprise initial and final states;

• Bnd is a finite set, called the bound, while the powerset 2Bnd is called
the input alphabet;

• Prg is the program that consists of transitions of 2 types:

– reading type (q′, S) → q′′,
– moving type (q′, S,next) → q′′,

where q′, q′′ ∈ Sts, S ⊆ Bnd, and next is a special reserved symbol.

The stuttering automata work on countable sequences of input symbols.
Every sequence of this kind can be thought as input tape consisting of cells
(or positions) that are enumerated and that contain subsets of the bound set
per cell. Every stuttering automaton has a pointer that every time points
to a cell of the input tape and can remains in this position or move to the
next cell to the right.

Definition 9. Let (Sts, Bnd, Ini, F in, Prg) be a stuttering automaton. A
configuration of the automaton is a triple (W, i, q) that comprises an infinite
word W ∈ (2Bnd)ω (input tape), an integer i ≥ 0 (pointer position), and
a control state q ∈ Sts. We say that a configuration (W, i, q) contains the
word W . A configuration is said to be initial iff i = 0 and q ∈ Ini (i.e.,
the pointer is on the leftmost cell and the automaton is in an initial state).
A configuration is said to be final iff q ∈ Fin (the automaton is in a final
state).
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Definition 10. Let (Sts, Bnd, Ini, F in, Prg) be a stuttering automaton.
The automaton shifts from one configuration to another in accordance with
the program: it can shift from (W, i, q′) to

• (W, i, q′′) iff (q′,Wi) → q′′ ∈ Prg;

• (W, (i + 1), q′′) iff (q′,Wi,next) → q′′ ∈ Prg.

Definition 11. For a given stuttering automaton A shifting is a binary
relation →A on its configurations: for every pair of configurations c′ abd
c′′, we write c′ →A c′′ iff A can shift from c′ to c′′. We denote by →∗

A the
reflexive and transitive closure of the binary relation →A.

Definition 12. A stuttering automaton A accepts an infinite word W
(written in its input alphabet) iff there are an initial configuration c′ and
a final configuration c′′ such that c′ and c′′ both contain the word W and
c′ →∗

A c′′. The language of the automaton L(A) comprises all infinite words
that the automaton accepts. The automaton A is said to be total iff L(A)
comprises all infinite words (2B)ω.

Now we are going to define a very important notion of fairness constraint.

Definition 13. Let D be some set, seq ∈ Dω be an infinite sequence of
elements in D, and (P : D → Bool) be some property of elements in D. The
sequence seq is said to be fair with respect to the property P iff infinitely
many elements of the sequence seq enjoy this property. In contrast, we say
that the sequence seq meets a fairness constrain P iff the property P holds
finitely often at most in seq (i.e., P does not hold after some point in seq).

We are most interested in some fairness constraint for stuttering au-
tomata.

Definition 14. Let Bnd be a finite set and S ⊆ Bnd. A competence
property PS is the following property λT ⊆ Bnd. (S ∩ T 6= ∅).

The following lemma is straightforward2.

Lemma 3. Let Bnd be a finite set, S ⊆ Bnd, and W ∈ (2Bnd)ω be an
infinite word. Then W meets fairness constraint PS iff all propositional
symbols in S disappear after some position in W .

2It explains the title ‘competence property’ for PS : the fairness constraint PS grants
full rights to elements in Bnd \ S while imposes right limitations for elements in S. The
former can occur infinitely often, the later - finitely often at most.
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Definition 15. Let (Sts, Bnd, Ini, F in, Prg) be a stuttering automaton,
S ⊆ Bnd and PS be corresponding competence property. We say that the
automaton A totally meets the fairness constraint PS iff language L(A)
includes all infinite words W ∈ (2B)ω that meet the constraint PS .

In conjunction with Lemma 3 it immediately implies the following lemma.

Lemma 4. Let (Sts, Bnd, Ini, F in, Prg) be a stuttering automaton, S ⊆
Bnd, and PS be corresponding competence property. The automaton totally
meets the fairness constraint PS iff it accepts every infinite word in (2Bnd)ω

that contains finite (at most) number of instances of symbols in S.

Definition 16. The total (halting, termination) problem for stuttering
automata with competence fairness constraint is to check for input stuttering
automaton A and input competence property PS whether the automaton A
totally meets the fairness constraint PS .

There are several opportunities to decide the total problem for stuttering
automata with competence fairness constraint. The most high level but
indirect approach can exploit the formalism of Büchi automata and the
decidability of the emptiness problem for these automata. In contrast, let
us present below a variant of a low level but direct decision procedure.

Proposition 2. The total problem for stuttering automata with compe-
tence fairness constraint is decidable in time exponential in the size of the
automaton.

Proof. (Sketch.) Let A = (Sts, Bnd, Ini, F in, Prg) and PS be particular
stuttering automaton and competence property. Let M be a set of control
states that occur in the right-hand side of moving transitions.

First, for every T ⊆ B let us define a binary relation TÃ on Sts× (M ∪Fin):

q′ TÃ q′′

iff
q′ ≡ q′′ ∈ Fin or

there is some sequence of control states q0, . . . qn (n ≥ 0) such that
q′ = q0, (q0, T ) → q1 ∈ Prg, . . . (qn−1, T ) → qn ∈ Prg, and

(qn, T,next) → q′′ ∈ Prg.

(I.e., on final states the relation TÃ does not evolve further, and on non-final
states TÃ it is the reflexive and transitive closure of T -readings up to the
first T -move.)

Then let us extend TÃ on 2Sts × 2M∪Fin as follows:
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Q′ TÃ Q′′

iff
for every q′′ ∈ Q′′ there is some q′ ∈ Q′ such that q′ TÃ q′′.

The decision procedure is given in Table 3 (third column) in terms of TÃ
on 2Sts×2M∪Fin. Please refer to Section 6.1 in the Appendix for correctness
of this procedure. Exponential complexity bound follows immediately from
monotonicity arguments (since H0 ⊆ H1 ⊆ ...Hi ⊆ Hi+1 ⊆ ... ⊆ Sts and
Sts ⊇ G0 ⊇ G1 ⊇ ...Gi ⊇ Gi+1 ⊇ ... ⊇).

4. PLTL and stuttering automata

Below we present the algorithm of translation of simple formulae of PLTL
to stuttering automata with fairness constraint. The algorithm inputs a
simple formula ξ and a set of propositional symbols B that includes all
symbols that occur in ξ, and outputs a stuttering automaton A(ξ,B) and
two sets of new propositional symbols F (ξ, B) and G(ξ,B). The description
of the algorithm follows.

Let ξ be a simple formula and B ⊇ Prp(ξ) be a set of propositional
symbols. Let us enumerate all instances of conjunctions ∧ and modali-
ties ¤ within ξ; it gives us an opportunity to index conjunctions and al-
ways modalities and refer every particular instance by the assigned index.
Let C and A be set of indexes assigned to conjunctions and to ¤ modali-
ties by this enumeration. Let us assign a new propositional symbol fc for
every conjunction ∧c (c ∈ C) and a new propositional symbol ga for every
modality ¤a (a ∈ A) within ξ. Let F (ξ, B) be {fc : c ∈ C} and G(ξ, B) be
{ga : a ∈ A}.

The control states Sts of resulting automaton are subformulae of the
formula ξ extended by a special state accept. The initial state is the for-
mula ξ, the final state is accept: Ini = {ξ} and Fin = {accept}. The
input alphabet bound Bnd is B∪F (ξ, B)∪G(ξ,B), i.e., the input alphabet
comprises all sets of propositional symbols in B and new propositional sym-
bols associated with conjunctions and ¤ modalities in the formula ξ. The
program Prg of the automaton A(ξ,B) is presented in Table 2 in struc-
tured and unstructured forms. In structured formalism, we exploit ; for
sequencing, U for non-deterministic choice, * for non-deterministic itera-
tion, if −then −else for deterministic choice, while −do for determin-
istic iteration. We also use tests of two kinds: if p is a propositional symbol
then the test p? means the p ∈ Wnow and the test ¬p? means the p /∈ Wnow,
where Wnow ⊆ B∪F (ξ,B)∪G(ξ, B) is the currently reading position of the
input word W .
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(p, S) → accept iff p ∈ S P (p) = p? ; accept
(¬p, S) → accept iff p /∈ S P (¬p) = ¬p? ; accept
(◦φ, S,next) → φ P (◦φ) = next ; P (φ)
(¤aφ, S,next) → ¤aφ iff ga ∈ S P (¤aφ) = while ga? do next ; P (φ)
(¤aφ, S) → φ iff ga /∈ S
(♦φ, S) → φ P (♦φ) = next* ; P (φ)
(♦φ, S,next) → ♦φ
(φ ∧c ψ, S) → φ iff fc ∈ S P (φ ∧c ψ) = if fc then P (φ) else P (ψ)
(φ ∧c ψ, S) → ψ iff fc /∈ S
(φ ∨ ψ, S) → φ P (φ ∨ ψ) = P (φ) U P (ψ)
(φ ∧ ψ, S) → ψ
(pUq, S) → q P (pUq) = (p? ; next)* ; q? ; accept
(pUq, S,next) → pUq iff p ∈ S

Table 2. Automaton program and its structured flowchart

Lemma 5. Let ξ be a simple formula and B ⊇ Prp(ξ) be a set of proposi-
tional symbols. Let F = F (ξ, B) and G = G(ξ, B) be two sets of new propo-
sitional symbols constructed in accordance with the translation algorithm.
Then for every subformula θ of the formula ξ, for every point (V, B, i) the
following holds:

(V, B, i) |= θ
iff

the stuttering automaton

(

control states︷ ︸︸ ︷
({accept} ∪ Sub(θ)) ,

bound︷ ︸︸ ︷
(B ∪ F ∪G) ,

Ini states︷︸︸︷
{θ} ,

Fin states︷ ︸︸ ︷
{accept} ,

program︷︸︸︷
P (θ))

starting in position i accepts every extension (V, B ∪ F ∪G) of (V,B)
on propositional symbols in F ∪G that meets the fairness constraint PG.

(In simple words: θ holds in the point (V, B, i) iff the corresponding automa-
ton accepts every word (Vi ∪ Fi ∪Gi), (Vi+1 ∪ Fi+1 ∪Gi+1), . . . , where Fi,
Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G but ∅ = Gj = Gj+1 = . . . for some
j ≥ i.)

Please refer to Section 6.2 in the Appendix for the proof. In turn, the above
Lemma 5 immediately implies the following proposition.

Proposition 3. Let ξ be a simple formula and B ⊇ Prp(ξ) be a set of
propositional symbols. Let F = F (ξ, B) and G = G(ξ, B) be two sets of
new propositional symbols constructed in accordance with the translation al-
gorithm. Then the following holds:
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ξ is a tautology
iff

the stuttering automaton
(({accept} ∪ Sub(θ)) , (B ∪ F ∪G) , {θ} , {accept} , P (θ))

totally accepts the fairness constraint PG.

By the way, Propositions 1, 2, and 3 imply a well-known upper bound
for decidability of PLTL.

Corollary 1. PLTL is decidable in exponential time.

5. Model checking interpretation

Let {true, false} be Boolean constants, V ar and Act be disjoint finite al-
phabets of propositional and action variables respectively. For avoiding
ambiguities, we assume that these new alphabets V ar and Act are disjoint
with the alphabet of propositional symbols Prp that are in use in PLTL.

Definition 17. The syntax of the propositional µ-Calculus (µC) consists
of formulae that are defined by induction as follows:

• every propositional variable is a formula;

• negation (¬φ) is a formula;

• conjunction (φ ∧ ψ) and disjunction (φ ∨ ψ) are formulae;

• (〈a〉φ) and ([a]φ) are formulae for every a ∈ Act;

• the least (µx . φ) and the greatest (νx . φ) fixpoints are formulae
for every x ∈ V ar without instances in the range of odd amount of
negations in φ.

As in the PLTL framework, sometimes we omit the most external paren-
thesis in small formulae and some parenthesis inside formulae in accor-
dance with the standard rules of boolean operation precedence. We also
use syntax substitution subjectobject

target and another related metanotation: let
subject0target(object) stay for the object, and for let subjectn+1

target(object) stay

for subject
subjectntarget(object)

target every n ≥ 0.
Semantics of µC is defined in models that are called labeled transition

systems in Computer Science or Kripke structures in modal logic tradition.
For avoiding ambiguities with PLTL, we use terminology and notation of
modal logic for reasoning about µC.
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Definition 18. Every model M is a triple (D, R, E), where the universe
D 6= ∅ consists of worlds, the interpretation R : Act → 2D×D assigns a
binary relation R(a) ⊆ D × D to every action variable a, the evaluation
E : V ar → 2D assigns a monadic predicate E(x) ⊆ D to every propositional
variable x.

Models can be infinite, but we are most interested in finite models only.

Definition 19. Semantics of µC is a ternary validity relation ||= between
worlds, models, and formulae. This relation is defined by induction on
formulae structure. In finite models, it can be defined as follows:

• w||=M true and w||=/ Mfalse,
w||=M x iff w ∈ E(x) for x ∈ V ar;

• w||=M (¬φ) iff w||=/ Mφ;

• w||=M (φ ∧ ψ) iff w||=M φ and w||=M ψ,
w||=M (φ ∨ ψ) iff w||=M φ or w||=M ψ;

• w||=M ([a]φ) iff u||=M φ for every u such that (w, u) ∈ R(a),
w||=M (〈a〉φ) iff u||=M φ for some u such that (w, u) ∈ R(a);

• w||=M νx.φ iff w||=M φn
x(true) for all n ≥ 0,

w||=M µx.φ iff w||=M φn
x(false) for some n ≥ 0.

(Informally speaking, νx.φ and µx.φ are abbreviations for infinite conjunc-
tion

∧
n≥0 φn

x(true) and infinite disjunction
∨

n≥0 φn
x(false), respectively.)

Model checking is testing a model against a formula. The global checking
problem consists in calculation of the set M(ξ) of all worlds of the input
model M , where the input formula ξ is valid. The local checking problem
consists in testing the validity w||=M ξ of the input formula ξ in the input
world w in the input model M . We are most interested model checking of
finite models.

Definition 20. Let x, y, Nice, and Fin be fixed propositional variables,
and A,B ⊆ Act be sets of action variables. Then let

• GOOD be formula (Nice ∧∧
b∈B〈b〉y),

• HALT be formula (Fin ∨ x ∨∧
a∈A〈a〉x),

• PROV ER be formula (ν y.GOOD)(µ x.HALT )
Nice .

Since Definition 20 is obscure, let us explane the formulae were provided.
Formula νy.GOOD states that for every infinite sequence w of actions from
B, there is a path labeled by w on which Nice holds at each state. In
PROV ER, Nice is µx.HALT , which states that every infinite path labeled
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Stages Model checking Decision procedure
Stage 1 H0 : = E(Fin) ; i : = 0 ; H0 = {Q′ : Q′ ⊆ Fin},

do Hi+1 : = Hi∪ Hi+1 = Hi ∪ {Q′ :
∪

(⋂
a∈A

(
R(a)

)−(Hi)
)

for every T ⊆ (B \ S)
there is Q′′ ∈ Hi

that Q′ TÃ Q′′}
until Hi 6= Hi+1 ; for every i ≥ 0,
H : = Hi ; H =

⋃
i≥0 Hi;

Stage 2 G0 : = H ; i : = 0 ; G0 = H,
do Gi+1 : = Gi∩ Gi+1 = {Q′ ∈ Gi :

∩
(⋂

b∈B

(
R(b)

)−(Gi)
)

for every T ⊆ B

there is Q′′ ∈ Gi

that Q′ TÃ Q′′}
until Gi 6= Gi+1 ; for every n ≥ 0,
G : = Gi ; G =

⋂
i≥0 Gi;

Stage 3 M(PROV ER) : = G A totally meets the constraint PS

iff there exists Good ∈ G
that Good ⊆ Ini
and Good 6= ∅.

Table 3. Model checking and decision procedure

with actions from A only eventually reaches Fin. So PROV ER states that
any infinite sequence of actions from B labels some path in such a way that
if at any point the remaining actions all fall into A, then the path eventually
reaches Fin.

Lemma 6. Let M = (D, R,E) be a finite model. Then global checking
of formula PROV ER in M can carried out by the algorithm3 in Table 3
(second column).

(For justification let observe that the algorithm is just a straightforward
specialization of semantics of µC for formula PROV ER in finite models.)

We are especially interested in the model checking PROV ER in models
that are generated by stuttering automata with constraint.

3We exploit inverse for binary relations and inverse images: if r is a binary relation on
a set D with a subset S ⊆ D, then r− = {(d′, d′′) : (d′′, d′) ∈ r} is the inverse of r and
r−(S) = {d′ ∈ D : (d′, d′′) ∈ r for some d′′ ∈ S} is the inverse image of S.
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Definition 21. Let A = (Sts, Bnd, Ini, F in, Prg) and PS be a stuttering
automaton and a competence property. LetM(A,PS) be the following finite
model (D,R, E). The universe D is 2Sts, i.e., comprises all sets of control
states. The alphabet Act of action variables consists of subsets of the bound
Bnd, i.e., coincides with the input alphabet of the automaton: Act = 2Bnd.
For every T ∈ Act let R(T ) be TÃ. The alphabet of propositional variables
V ar includes one ‘special’ variable Fin and two auxiliary variables x, y.
The most important is evaluation of the special variable: E(Fin) = 2Fin,
i.e., it comprises all subsets of the final sets.

Definition 22. Let A = (Sts, Bnd, Ini, F in, Prg) and PS be a stuttering
automaton and a competence property. The model checking interpretation
for the total problem for the automaton A with the fairness constraint PS

consists in the finite modelM(A,PS) and two sets 2Bnd and 2Bnd\S adopted
as A ⊆ Act and B ⊆ Act in the formula PROV ER.

The importance of the model checking interpretation follows from the
following Proposition 4. The correctness of this proposition immediately
follows from comparison of the second and the third columns of Table 3.

Proposition 4.

A stuttering automaton A totally accepts a fairness constraint PS

iff
Q||=M(A,PS) PROV ER for some set Q of initial control states of A.

6. Axiomatization via local model checking

There are two papers [7, 5] that have suggested tableau for local model
checking of formulae of the propositional µ-Calculus. The first cited paper
addresses finite state systems, while the second one deals with infinite sys-
tems as well as finite. We prefer system from [7] since we are interested
in model checking interpretation of the halting problem with fairness con-
straint, i.e., we are bound by finite models M single formula PROV ER. In
the following paragraphs, we sketch the approach, the tableau, and sound-
ness and completeness results from [7].

There are only 2 syntax differences between variants of the propositional
µ-Calculus, that was discussed in Section 5 and that is in use in [7]. First,
the set of propositional variable in [7] is divided on two disjoint sets: the
variables that cannot be bound by fixpoints and the variables that have to
be bound by fixpoints; the former we refer as model constants, the later –
as model variables. Next, [7] exploits syntax without ∧, [ ], and µ. Both
variants enjoy equal expressive power due to standard De-Morgan-like tau-
tologies: φ ∧ ψ ↔ ¬(¬φ ∨ ¬ψ), [a]φ ↔ ¬〈a〉¬ψ, µx.ψ ↔ ¬(νx.(ψ¬x

x )). For
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νy.¬ψ(y)
↓

¬ψ(y)
↓

ψ(y)
↙ ↘

νx.¬φ(x) ¬(〈T 〉y) for every
T ⊆ Bnd

↓ ↘
¬φ(x) 〈T 〉y

↙ ↓ ↘ ↘
¬(

∨
T⊆Bnd\S(¬〈T 〉¬x)) Fin ¬x y

↙ ↗ ↘∨
T⊆Bnd\S(¬〈T 〉¬x) ↗ x

↙ ↗
¬〈T 〉¬x for every

T ⊆ Bnd \ S
→ 〈T 〉¬x

Figure 1. Subformulae of νPROV ER

avoiding ambiguities, we distinguish these two variants and refer variant
from [7] by acronym νC.

In particular, in the formula PROV ER propositional variable Fin is a
modal constant and propositional auxiliary variables x and y are modal vari-
ables. νC-representation of this formula is the following formula νPROV ER:

νy.¬
(

νx.¬
(

φ(x)︷ ︸︸ ︷
Fin ∨ ¬x ∨ ¬( ∨

T⊆Bnd\S
¬(〈T 〉¬x)

) )
∨ ( ∨

T⊆Bnd

¬(〈T 〉y)
)

︸ ︷︷ ︸
ψ(y)

)
.

The subformula relation (‘strict subterm’ in [7]) ≺ is treated in pure
syntax manner like in PLTL: a subformula is a substring of the formula that
is a formula itself. The complete graph of the immediate subformula relation
for subformulae of νPROV ER is depicted in Figure 1.

The tableau from [7] is represented in Table 4. We only turned upside-
down all rules so that the goals are under subgoals (since we prefer proof-
search tree to grow upward). The proof rules operate on sequents of the
form (H `M w ∈ ξ), where ξ is a formula of νC, M is a finite model, w is
a world and H is a set of hypothesis (or assumptions) of the form (u : θ),
where u is a world and θ is a closed fixpoint formula. [7] has proved the
general soundness and completeness results (Theorems 4.18 and 4.19). We
would like to summarize them both in the following corollary.
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Axiom Schemata
H `M w ∈ p iff p is a modal constant and w ∈ E(p)
H `M w ∈ ¬p iff p is a modal constant and w /∈ E(p)
H `M w ∈ ¬(〈a〉ξ) iff {v : (w, v) ∈ R(a)} is empty set ∅
H `M w ∈ νx.ξ iff (w : νx.ξ) ∈ H

Inference Rules
H`Mw∈ξ

H`Mw∈¬¬ξ
H`Mw∈¬ξ , H`Mw∈¬θ

H`Mw∈¬(ξ∨θ)
H`Mw∈ξ

H`Mw∈ξ∨θ
H`Mw∈θ

H`Mw∈ξ∨θ
H`Mu∈ξ

H`Mw∈〈a〉ξ for u ∈ {v : (w, v) ∈ R(a)}
H`Mu1∈¬ξ ,... H`Mun∈¬ξ

H`Mw∈¬(〈a〉ξ) where {u1, . . . un} = {v : (w, v) ∈ R(a)}
H′∪{(w:νx.ξ)}`Mw∈ξνx.ξ

x

H`Mw∈νx.ξ where (w : νx.ξ) /∈ H

and H ′ = H \ {(u : θ) : νx.ξ ≺ θ}
H′∪{(w:νx.ξ)}`Mw∈¬ξνx.ξ

x

H`Mw∈¬(νx.ξ) where (w : νx.ξ) /∈ H

and H ′ = H \ {(u : θ) : νx.ξ ≺ θ}
Table 4. Sound and complete system for local model checking from [7]

Corollary 2. For every formula ξ of νC, for every finite model M and every
world w within this model the following holds: ∅ `M w ∈ ξ iff w||=M ξ.

Our tableau-like deduction system is presented in Table 5. This system
is bound for a target simple PLTL formulae to be proved η. In this system:

• W and U range over sets of subformulae of η extended by label accept;

• H and H ′ range over collections of assumptions in the form (W :
νy.¬ψ(y)) or (U : νx.¬φ(x)), where νy.¬ψ(y) and νx.¬φ(y) are the
only two closed formulae in Figure 1;

• T ranges over sets of Prp(η) ∪ F (η, Prp(η)) ∪ G(η, Prp(η)) (i.e., are
sets of propositional symbols, conjunctions and always-modalities in
η);

• TÃ is the binary relation on sets of subformulae of η extended by label
accept, derived from Table 2;

• ξ and θ range over νC-formulae in Figure 1 with Bnd = (Prp(η) ∪
F (η, Prp(η)) ∪G(η, Prp(η)) and S = G(η, Prp(η);

• ≺ is the subormula relation in Figure 1.

At last we are ready to combine Propositions 1, 2, 3, and 4 with Corollary
2 and prove our soundness and completeness theorem.
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Axiom Schemata

H ` W ∈ Fin iff W = {accept}

H ` W ∈ ¬(〈T 〉ξ) iff {U : W
TÃ U} is the emptyset

H ` W ∈ νz.ξ iff (W : νz.ξ) ∈ H

Inference Rules

H`W∈ξ
H`W∈¬¬ξ

H`W∈¬ξ , H`W∈¬θ
H`W∈¬(ξ∨θ)

H`W∈ξ
H`W∈ξ∨θ

H`W∈θ
H`W∈ξ∨θ

H`U∈ξ
H`W∈〈T 〉ξ for some U that W

TÃ U

H`U1∈¬ξ ,... H`Un∈¬ξ
H`W∈¬(〈T 〉ξ) where {U1, . . . Un} = {U : W

TÃ U}

H′∪{(W :νz.ξ)}`W∈ξνz.ξ
z

H`W∈νz.ξ
H′∪{(W :νz.ξ)}`W∈¬ξνz.ξ

z

H`W∈¬(νz.ξ)

where (W : νz.ξ) /∈ H and H ′ = H \ {(U : θ) : νz.ξ ≺ θ}

Table 5. Sound and complete system for simple formulae of PLTL

Theorem 1.

• For all formulae ζ and η of PLTL, if ζ can be transformed to η by
rewriting rules in Table 1, then ζ is a tautology iff η is a tautology.

• Every formula ζ of PLTL, can be transformed by rewriting rules in
Table 1 to some simple formula η of PLTL.

• For every simple formula η of PLTL the following holds: η is a tautol-
ogy iff the sequent (∅ ` {η} ∈ νPROV ER) is provable in the system
presented in Table 5.
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Appendix

6.1. Proof details for Proposition 2

First let us construct the set H of all sets of control states Q′ ⊆ Sts such
that for every infinite word W ∈ (2Bnd)ω, for every i ≥ 0, if Wj ∩ S = ∅
for every j ≥ i then (W, i, q′) →∗

A (W, j, q′′) for some q′ ∈ Q′, q′′ ∈ Fin
and j ≥ i (i.e., starting with some state q′ in Q′ the automaton eventually
accepts the suffix WiWi+1 . . . of the word W as soon as no symbol from
S occurs in the suffix). This set H can be constructed as ∪n≥0Hn, where
H0 ⊆ H1 ⊆ . . .Hn ⊆ Hn+1 ⊆ . . . is non-decreasing sequence of sets Hn

(n ≥ 0) of all sets of control states Q′ ⊆ Sts such that for every infinite
word W ∈ (2Bnd)ω, for every i ≥ 0, if Wj ∩ S = ∅ for every j ≥ i then
(W, i, q′) →∗

A (W, j, q′′) for some q′ ∈ Q′, q′′ ∈ Fin and j ∈ [i..(i + n)]
(i.e., starting with some state q′ in Q′ the automaton accepts the suffix
WiWi+1 . . . of the word W after n moves at most as soon as no symbol
from S occurs in the suffix). It is easy to see that H0 = {Q′ : Q′ ⊆ Fin}
and Hn+1 = Hn ∪ {Q′ : for every T ⊆ (B \ S) there exists some Q′′ ∈
Hn such that Q′ TÃ Q′′} for every n ≥ 0.
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Next let us construct the set G of all sets of control states Q′ ⊆ Sts
such that for every infinite word W ∈ (2Bnd)ω, for every i ≥ 0, if W meets
the fairness constraint PS then (W, i, q′) →∗

A (W, j, q′′) for some q′ ∈ Q′,
q′′ ∈ Fin and j ≥ i (i.e. starting with some state q′ in Q′ the automaton
eventually accepts the suffix WiWi+1 . . . of the word W as soon as the suffix
meets the fairness constraint). This set G can be constructed as ∩n≥0Gn

where G0 ⊇ G1 ⊇ . . . Gn ⊇ Gn+1 ⊇ . . . is non-increasing sequence of sets
Gn (n ≥ 0) of all sets of control states Q′ ⊆ Sts such that for every infinite
word W ∈ (2B)ω, for every i ≥ 0, if Wj ∩ S = ∅ for every j ≥ (i + n) then
(W, i, q′) →∗

A (W,k, q′′) for some q′ ∈ Q′, q′′ ∈ Fin and k ≥ i (i.e., starting
with some state q′ in Q′ the automaton accepts the suffix WiWi+1 . . . of
the word W as soon as no symbol from S occurs in the suffix after position
(i+n)). It is easy to see that G0 = H and Gn+1 = {Q′ ∈ Gn : for every T ⊆
B there exists some Q′′ ∈ Gn such that Q′ TÃ Q′′} for every n ≥ 0.

Finally we have: the automaton A totally meets the fairness constraint
PS iff there exists a non-empty subset of the initial states Good ⊆ Ini such
that Good ∈ G. It finishes a sketch of the direct decision procedure.

6.2. Proof of Lemma 5

Proof by induction of subformulae structure. Here we extensively exploit
structured notation.

If θ is a propositional symbol or negation of a propositional symbol then
proof is straightforward. For example, let θ be a propositional symbol p and
let (V B, i be a point. Then we have:

(V B, i) |= θ ⇔ p ∈ V B
i ⇔

⇔ p ∈ (V B
i ∪ Fi ∪Gi) for every Fi ⊆ F and Gi ⊆ G ⇔

⇔ the automaton
({p, accept}, (B ∪ F ∪G), {p}, {accept}, {(p, S) → accept : p ∈ S})

accepts every word (V B
i ∪ Fi ∪Gi), (V B

i+1 ∪ Fi+1 ∪Gi+1), . . . ,
where Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G

but ∅ = Gj = Gj+1 = . . . for some j ≥ i.

If θ is pUq then we have:

(V B, i) |= θ ⇔ (V B, k) |= q for some k ≥ i and (V B, j) |= p for all j ∈ [i..k[
⇔

⇔ q ∈ V B
k for some k ≥ i and p ∈ V B

j for all j ∈ [i..k[ ⇔
⇔ the automaton

({q, pUq, accept}, (B ∪ F ∪G), { pUq}, {accept},
{(pUq, S) → q : S ⊂ B ∪ F ∪G} ∪ {(pUq, S,next) → pUq : p ∈ S}∪

∪{(q, S) → accept : q ∈ S})
accepts every word
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(V B
i ∪ Fi ∪Gi), (V B

i+1 ∪ Fi+1 ∪Gi+1), . . . (V B
k ∪ Fk ∪Gk),

(V B
k+1 ∪ Fk+1 ∪Gk+1), . . . ,

where Fi, Fi+1, . . . , Fk, Fk+1, · · · ⊆ F and Gi, Gi+1, . . . , Gk, Gk+1,
· · · ⊆ G,

but ∅ = Gl = Gl+1 = . . . for some l ≥ k ⇔
⇔ the automaton

({q, pUq, accept}, (B ∪ F ∪G), { pUq}, {accept},
{(pUq, S) → q : S ⊂ B ∪ F ∪G} ∪ {(pUq, S,next) → pUq : p ∈ S}∪

∪{(q, S) → accept : q ∈ S})
accepts every word

(V B
i ∪ Fi ∪Gi), (V B

i+1 ∪ Fi+1 ∪Gi+1), . . .
where Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G,

but ∅ = Gj = Gj+1 = . . . for some j ≥ i.

If θ is ◦φ then we have:

(V B, i) |= θ ⇔ (V B, i + 1) |= φ ⇔
⇔ the automaton

({accept} ∪ Sub(φ), (B ∪ F ∪G), {φ}, {accept}, P (φ))
accepts every word (V B

i+1 ∪ Fi+1 ∪Gi+1), (V B
i+2 ∪ Fi+2 ∪Gi+2), . . . ,

where Fi+1, Fi+2, · · · ⊆ F and Gi+1, Gi+2, · · · ⊆ G
but ∅ = Gj = Gj+1 = . . . for some j ≥ i + 1 ⇔

⇔ the automaton
({accept} ∪ Sub(θ), (B ∪ F ∪G), {θ}, {accept}, (next ; P (φ)))

accepts every word
(V B

i ∪ Fi ∪Gi), (V B
i+1 ∪ Fi+1 ∪Gi+1), (V B

i+2 ∪ Fi+2 ∪Gi+2), . . . ,
where Fi, Fi+1, Fi+2, · · · ⊆ F and Gi, Gi+1, Gi+2, · · · ⊆ G

but ∅ = Gj = Gj+1 = . . . for some j ≥ i + 1 ⇔
⇔ the automaton

({accept} ∪ Sub(θ), (B ∪ F ∪G), {θ}, {accept}, P (θ))
accepts every word (V B

i ∪ Fi ∪Gi), (V B
i+1 ∪ Fi+1 ∪Gi+1), . . . ,

where Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G
but ∅ = Gj = Gj+1 = . . . for some j ≥ i.

If θ is ¤aφ then we have:

(V B, i) |= θ ⇔ (V B, j) |= φ for every j ≥ i ⇔
⇔ for every j ≥ i the automaton

({accept} ∪ Sub(φ), (B ∪ F ∪G), {φ}, {accept}, P (φ))
accepts every word (V B

j ∪ Fj ∪Gj), (V B
i+1 ∪ Fi+1 ∪Gi+1), . . . ,

where Fj , Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G
but ∅ = Gk = Gk+1 = . . . for some k ≥ j ⇔

⇔ for every j ≥ i the automaton
({accept}∪Sub(θ), (B∪F∪G), {θ}, {accept}, (while ga?do next ; P (φ)))

accepts every word
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(V B
i ∪ Fi ∪Gi), (V B

i+1 ∪ Fi+1 ∪Gi+1), . . . (V B
j ∪ Fj ∪Gj),

(V B
j+1 ∪ Fj+1 ∪Gj+1), . . . ,

where Fi, Fi+1, . . . , Fj , Fj+1, · · · ⊆ F and Gi, Gi+1, . . . , Gj , Gj+1,
· · · ⊆ G, ga ∈ Gi, ga ∈ Gi+1, . . . , ga ∈ Gj−1,

but ga /∈ Gj and ∅ = Gk = Gk+1 = . . . for some k ≥ j ⇔
⇔ the automaton

({accept} ∪ Sub(θ), (B ∪ F ∪G), {θ}, {accept}, P (θ))
accepts every word (V B

i ∪ Fi ∪Gi), (V B
i+1 ∪ Fi+1 ∪Gi+1), . . . ,

where Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G
but ∅ = Gj = Gj+1 = . . . for some j ≥ i.

If θ is ♦φ then we have:

(V B, i) |= θ ⇔ (V B, j) |= φ for some j ≥ i ⇔
⇔ for some j ≥ i the automaton

({accept} ∪ Sub(φ), (B ∪ F ∪G), {φ}, {accept}, P (φ))
accepts every word (V B

j ∪ Fj ∪Gj), (V B
i+1 ∪ Fi+1 ∪Gi+1), . . . ,

where Fj , Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G
but ∅ = Gk = Gk+1 = . . . for some k ≥ j ⇔

⇔ for some j ≥ i the automaton
({accept} ∪ Sub(θ), (B ∪ F ∪G), {θ}, {accept}, (next* ; P (φ)))

accepts every word
(V B

i ∪ Fi ∪Gi), (V B
i+1 ∪ Fi+1 ∪Gi+1), . . . (V B

j ∪ Fj ∪Gj),
(V B

j+1 ∪ Fj+1 ∪Gj+1), . . . ,
where Fi, Fi+1, . . . , Fj , Fj+1, · · · ⊆ F and Gi, Gi+1, . . . , Gj , Gj+1,

· · · ⊆ G,
but ∅ = Gk = Gk+1 = . . . for some k ≥ j ⇔

⇔ the automaton
({accept} ∪ Sub(θ), (B ∪ F ∪G), {θ}, {accept}, P (θ))

accepts every word (V B
i ∪ Fi ∪Gi), (V B

i+1 ∪ Fi+1 ∪Gi+1), . . . ,
where Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G

but ∅ = Gj = Gj+1 = . . . for some j ≥ i.

If θ is φ ∧c ψ then we have:

(V B, i) |= θ ⇔ (V B, i) |= φ and (V B, i) |= ψ ⇔
⇔ the automaton

({accept} ∪ Sub(φ), (B ∪ F ∪G), {φ}, {accept}, P (φ))
accepts every word (V B

i ∪ Fi ∪Gi), (V B
i+1 ∪ Fi+1 ∪Gi+1), . . . ,

where Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G
but ∅ = Gj = Gj+1 = . . . for some j ≥ i

and the automaton
({accept} ∪ Sub(ψ), (B ∪ F ∪G), {ψ}, {accept}, P (ψ))

accepts every word (V B
i ∪ Fi ∪Gi), (V B

i+1 ∪ Fi+1 ∪Gi+1), . . . ,
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where Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G
but ∅ = Gj = Gj+1 = . . . for some j ≥ i

⇔ the automaton
({accept} ∪ Sub(φ), (B ∪ F ∪G), {φ}, {accept}, P (φ))

accepts every word (V B
i ∪ Fi ∪Gi), (V B

i+1 ∪ Fi+1 ∪Gi+1), . . . ,
where fc ∈ Fi, Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G

but ∅ = Gj = Gj+1 = . . . for some j ≥ i
and the automaton

({accept} ∪ Sub(ψ), (B ∪ F ∪G), {ψ}, {accept}, P (ψ))
accepts every word (V B

i ∪ Fi ∪Gi), (V B
i+1 ∪ Fi+1 ∪Gi+1), . . . ,

where fc /∈ Fi, Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G
but ∅ = Gj = Gj+1 = . . . for some j ≥ i

⇔ the automaton
({accept}∪Sub(θ), (B∪F ∪G), {θ}, {accept}, (if fcthen P (φ)else P (ψ)))

accepts every word (V B
i ∪ Fi ∪Gi), (V B

i+1 ∪ Fi+1 ∪Gi+1), . . . ,
where Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G

but ∅ = Gj = Gj+1 = . . . for some j ≥ i
⇔ the automaton

({accept} ∪ Sub(θ), (B ∪ F ∪G), {θ}, {accept}, P (θ))
accepts every word (V B

i ∪ Fi ∪Gi), (V B
i+1 ∪ Fi+1 ∪Gi+1), . . . ,

where Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G
but ∅ = Gj = Gj+1 = . . . for some j ≥ i.

If θ is φ ∨ ψ then we have:

(V B, i) |= θ ⇔ (V B, i) |= φ or (V B, i) |= ψ ⇔
⇔ the automaton

({accept} ∪ Sub(φ), (B ∪ F ∪G), {φ}, {accept}, P (φ))
accepts every word (V B

i ∪ Fi ∪Gi), (V B
i+1 ∪ Fi+1 ∪Gi+1), . . . ,

where Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G
but ∅ = Gj = Gj+1 = . . . for some j ≥ i

or the automaton
({accept} ∪ Sub(ψ), (B ∪ F ∪G), {ψ}, {accept}, P (ψ))

accepts every word (V B
i ∪ Fi ∪Gi), (V B

i+1 ∪ Fi+1 ∪Gi+1), . . . ,
where Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G

but ∅ = Gj = Gj+1 = . . . for some j ≥ i
⇔ the automaton

({accept} ∪ Sub(θ), (B ∪ F ∪G), {θ}, {accept}, (P (φ) U P (psi)))
accepts every word (V B

i ∪ Fi ∪Gi), (V B
i+1 ∪ Fi+1 ∪Gi+1), . . . ,

where Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G
but ∅ = Gj = Gj+1 = . . . for some j ≥ i

⇔ the automaton
({accept} ∪ Sub(θ), (B ∪ F ∪G), {θ}, {accept}, P (θ))

accepts every word (V B
i ∪ Fi ∪Gi), (V B

i+1 ∪ Fi+1 ∪Gi+1), . . . ,



136 N. V. Shilov

where Fi, Fi+1, · · · ⊆ F and Gi, Gi+1, · · · ⊆ G
but ∅ = Gj = Gj+1 = . . . for some j ≥ i.

Proof end.


