
Joint NCC & IIS Bull., Comp. Siene, 13 (2000), 67{75



 2000 NCC Publisher

Model heking puzzles in �-Calulus

�

N.V. Shilov, K.Yi

Tne paper disusses some issues related to model heking utility and reliability: (1) utility of model heking and

games for solving puzzles, and (2) importane of games and puzzles for validation of model hekers.

1. Introdution

The role of formal methods in the development of omputer hard- and software inreases sine systems

beome more omplex and require more e�orts for their spei�ation, design, implementation and

veri�ation. At the same time, formal methods beome more ompliated, sine they have to apture

real properties of real systems for sound reasoning. The best way to get opinion about the sope and

range of researh of formal methods and their industrial-strength appliations is to visit speial sites

� http://arhive.omlab.ox.a.uk/formal-methods.html in Oxford,

� http://shemesh.lar.nasa.gov/fm/ in NASA

or from proeedings of the latest World Congress on formal methods FM'99 [16℄.

A survey of formal methods is out of the sope of this paper. Nevertheless, let us remark that

spei�ation languages whih are in use in formal methods range from propositional to high-order level

while a proving tehnique is either semantial (model-heking) or syntati (dedution) reasoning. In

partiular, program logis are modal logis used in hard- and software veri�ation and spei�ation.

A speial plae in a diversity of propositional program logis belongs to the propositional �-Calulus

(�C) of D. Kozen [21℄ due to its expressiveness. In brief �C an be de�ned as a polymodal variant

of the basi modal logi K with �xpoints. A model heking problem for the �-Calulus is a very

important researh topi [12, 3, 13, 15, 4, 32, 33, 9, 10, 31, 14℄. Close relations between model heking

�C and speial bisimulation games are under investigation in papers [32, 33, 31℄. In partiular, in�nite

model heking games have been de�ned in [32℄. Then, [33℄ has de�ned �nite �xed point games and

haraterized indistinguishability of states by means of formulae with bounded amounts of modalities

and �xpoints in terms of winning strategies with bounded amounts of moves. The last ited paper [31℄

has exploited model-heking games for pratial eÆient loal model heking. We would like also

to point out that it is very important to express and hek existene of a winning strategy in �nite

games. For example, paper [2℄ suggests an ability to hek winning strategies for amerian hekers

on n� n desk as a real measure for a power of a model heker. In ontrast to papers [32, 33, 31, 2℄,

we would like to disuss two other issues related to the role of games for the �-Calulus, namely:

� model heking and abstration for programming puzzles (setions 2, 3),

� validation of model hekers via game test-suits (setions 4, 5).

Importane of puzzles and games for early teahing formal methods is another losely related

topi. We would like to remark that (in spite of importane of the formal approah to development

of reliable hard- and software) the researh domain of formal methods is not well-aquainted to non-

professionals. We are espeially onerned with disappointing ill-motivated attitude and suppose that

a de�it in popular letures, tutorials and papers on this topi is the main reason for this ignorane

(please refer to [27, 28℄ for detailed disussion). Earlier and better teahing formal methods via popular

(but sound) presentation of mathematial foundations of formal methods an be based on games and

�
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game-based puzzles. The eduational role of games and game-based puzzles is aknowledged in the

literature on logis of knowledge in omputer siene. For example, in [17℄ a knowledge-based analysis

of the muddy hildren puzzle, synhronous attak and Byzantine agreement motivates and illustrates

the basi theoretial ideas and onepts. Maybe the main lesson whih eduators and researhers

should learn from [17℄ is: for being attrative mathematial foundations of formal methods should be

illustrated by hallenging game-based examples. A similar approah to program logis presentation is

exploited in [29℄ and skethed in [28℄.

2. Program logis via games

Let ftrue; falseg be boolean onstants, Prp and At be disjoint �nite alphabets of propositional and

ation variables, respetively. The syntax of the lassial propositional logi onsists of formulae and

is onstruted from propositional variables and boolean onnetives : (negation), ^ (onjuntion) and

_ (disjuntion) in aordane with standard rules. Elementary Propositional Dynami Logi (EPDL)

[19℄ has additional features for onstruting formulae | modalities whih are assoiated with ation

variables: if a is an ation variable and � is a formula, then ([a℄�) and (hai�) are formulae

2

. The

semantis of EPDL is de�ned in models whih are alled Transition Systems or Kripke Strutures. A

modelM is a pair (D

M

; I

M

), where the domain D

M

is a nonempty set, while the interpretation I

M

is a

pair of speial mappings (P

M

; R

M

). Elements of the domain D

M

are alled states. The interpretation

maps propositional variables into sets of states and ation variables into binary relations on states:

P

M

: Prp! P(D

M

) ; R

M

: At! P(D

M

�D

M

)

where P is a power-set operation. We write I

M

(p) and I

M

(a) instead of P

M

(p) and R

M

(a), whenever

it is impliit that p and a are propositional and ation variables. Models an be onsidered as labeled

graphs with nodes and edges marked by sets of propositional and ation variables, respetively. For

every model M = (D

M

; I

M

) a validity relation j=

M

between states and formulae an be de�ned

indutively with respet to the struture of formulae. Semantis of boolean onstants, propositional

variables and propositional onnetives is de�ned in the standard way:

1. s j=

M

(hai�) i� (s; s

0

) 2 I

M

(a) and s

0

j=

M

� for some state s

0

,

2. s j=

M

([a℄�) i� (s; s

0

) 2 I

M

(a) implies s

0

j=

M

� for every state s

0

.

So, an experiened mathematiian an see that EPDL is just a polymodal variant of the lassial basi

modal logi K [6℄.

Finite games an illustrate all EPDL-related notions. A �nite game of two plays A and B is a

tuple (P; M

A

; M

B

; F ), where

� P is a nonempty �nite set of positions,

� M

A

;M

B

� P � P are (possible) moves of A and B,

� F � P is a set of �nal positions.

A session of the game is a sequene of positions s

0

; :::s

n

; :::, where all even pairs are moves of

one player (ex., all (s

2i

; s

2i+1

) 2 M

A

), while all odd pairs are moves of another player (ex., all

(s

2i+1

; s

2i+2

) 2 M

B

). A pair of onseutive moves of two players that omprises three onseutive

positions is alled a round. A player loses a session i� after a move of the player the session enters a

�nal position for the �rst time. A player wins a session i� another player loses the session. A strategy

of a player is a subset of the player's possible moves. A winning strategy for a player is a strategy of

the player whih always leads to the player's win: the player wins every session whih he/she begins

and in whih he/she implements this strategy instead of all possible moves. Every �nite game G of

the above kind an be represented as a �nite Kripke struture M

G

in a natural way:

2

whih are read as \box/diamond a �" or \after a always/sometimes �", respetively
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� states are positions P ,

� ation variables move

A

and move

B

are interpreted as M

A

and M

B

,

� a propositional variable fail is interpreted as F .

Proposition 1. Let G be a �nite game of two players, a formula WIN

0

be false and for every i � 1

WIN

i+1

be a formula :fail ^ hmove

A

i

�

:fail ^ [move

B

℄(fail _WIN

i

)

�

.

�For every i � 0 the formula WIN

i

is valid in those states of M

G

where a player A has a winning

strategy with i-rounds at most.

�For every i > 0 the �rst step of every i-rounds at most winning strategy for a player A onsists

in a move to a position where :fail ^ [move

B

℄(fail _WIN

i�1

) is valid.

Let an in�nite disjuntion

W

i�0

WIN

i

with semantis

S

i�1

fs : s j=

M

WIN

i

g in a model M be a

speial extension of EPDL.

�An in�nite disjuntion

W

i�0

WIN

i

is valid in those states of M

G

where a player A has a winning

strategy.

�An in�nite disjuntion

W

i�0

WIN

i

is an illegal formula of EPDL and is not equivalent to any

formula of EPDL.

The above proposition 1 naturally leads to the following suggestion. Let us de�ne the propositional

�-Calulus as an extension of EPDL by two new features: if p is a propositional variable and � is a

formula, then (�p:�) and (�p:�) are formulae

3

. We would like also to impose the following ontext-

sensitive restrition: No bounded instane of a propositional variable an be negative. Informally

speaking, �p:� is an \abbreviation" for an in�nite disjuntion

false _ �

p

(false) _ �

p

(�

p

(false)) _ �

p

(�

p

(�

p

(false))) _ ::: =

_

i�0

�

i

p

(false)

while �p:� is an \abbreviation" for another in�nite onjuntion

true ^ �

p

(true) ^ �

p

(�

p

(true)) ^ �

p

(�

p

(�

p

(true))) ^ ::: =

^

i�0

�

i

(true);

where �

p

( ) is a result of substitution of a formula  for p in �, �

0

p

( ) is  , and �

i+1

p

( ) is �

p

(�

i

p

( ))

for i � 0. In spite of informal harater of the above semantis, the formal semantis in �nite models

is basially the same. For every �nite model M = (D

M

; I

M

) the validity relation j=

M

between states

and formulae of EPDL an be extended on formulae of the �-Calulus as follows:

3. s j=

M

(�p:�) i� s j=

M

�

i

p

(false) for some i � 0;

4. s j=

M

(�p:�) i� s j=

M

�

i

p

(true) for every i � 0.

In partiular, if � is a formula

:fail ^ hmove

A

i

�

:fail ^ [move

B

℄(fail _ win)

�

where win is a propositional variable, then the formula WIN

0

is just false � �

0

win

(false), while

WIN

i+1

(i � 0) is

�

i+1

win

(false) � :fail ^ hmove

A

i

�

:fail ^ [move

B

℄(fail _ �

i

win

(false))

�

:

In terms of the �-Calulus, proposition 1 an be reformulated:

3

whih are read as \mu/nu p �" or \the least/greatest �xpoint p of �", respetively
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Proposition 2. Let G be a �nite game of two players, a formula WIN be � win:

�

:fail ^ hmove

A

i

�

:fail ^ [move

B

℄(fail _ win)

�

�

.

�For every i � 0 the formula WIN

i

win

(false) is valid in those states of M

G

where a player A has

a winning strategy with i-rounds at most.

�For every i > 0 the �rst step of every i-rounds at most winning strategy for a player A onsists

in a move to a position where :fail ^ [move

B

℄(fail _WIN

i�1

win

(false)) is valid.

�A formula WIN is valid in those states of M

G

where a player A has a winning strategy.

�A formula WIN is not equivalent to any formula of EPDL.

3. Towards metaprogram via model heking

Let us onsider the following programming problem:

� Write a program with 3 inputs

- a number N of oins under question,

- a number M of marked valid oins,

- a limit of balaning K

whih outputs either impossible or another exeutable interative program ALPHA (in the

same language) with respet to existene of a strategy to identify a unique false oin among

N oins with the help ofM marked valid oins and balaning oins K times at most. Eah

session with ALPHA should begin with the user's hoie of the number of a false oin and

weather it is lighter or heavier. Then a session onsists of a series of rounds and an amount

of rounds in the session should not exeed K. At eah round the program outputs two

disjoint subsets of the numbers of oins to be plaed on pans of a balane. The user in

turn replies aording to his/her initial hoie. The session �nishes with the �nal output

of the program ALPHA | the number of the false oin.

Sine the problem is to write a program whih produes another program, we would like to refer to

the �rst one as metaprogram and to the problem as the metaprogram problem. To takle the problem,

let us give a game interpretation:

� Let M and N be non-negative integer parameters and let (N +M) oins be enumerated

by onsequent numbers from 1 to (N +M). Coins with numbers in [1::M ℄ are valid while

there is a unique false among oins with numbers in [(M+1)::(M+N)℄. The GAME(N,M)

of two players user and prog onsists of a series of rounds. On eah round a move of prog

is a pair of disjoint subsets (with equal ardinalities) of [1::(M +N)℄. A possible move of

user is either <, = or >, but a move must be onsistent with all onstraints indued in the

previous rounds. Prog wins the GAME(N,M) as soon as a unique number in [1::(M +N)℄

satis�es all onstraints indued during the game.

In these settings the metaprogram problem an be reformulated as follows:

�Write a program whih for all N � 1, K � 0 andM � 0 generates (i� possible)K-rounds

at most winning strategy for prog in the GAME(N,M).

A hint how to solve the metaprogram problem is quite easy: to onsider amounts of oins instead

of oin numbers. This idea is natural: when somebody is solving puzzles, he/she operates in terms

of amounts of oins of di�erent kinds not in terms of their numbers! Let us desribe this hint in

formal terms as an abstrat model game(N,M) for the GAME(N,M) (N � 1, M � 0). Positions in

this parameterized game are tuples (u; l; h; v; q), where



Model heking puzzles in �-Calulus 71

� u is an amount of oins in [1::N ℄ whih are urrently under question but whih were not tested

against other oins;

� l is an amount of oins in [1::N ℄ whih are urrently under question but whih were tested against

other oins and turned to be lighter;

� h is an amount of oins in [1::N ℄ whih are urrently under question but whih were tested

against other oins and turned to be heavier;

� v is an amount of oins in [1::(N +M)℄ whih are urrently known to be valid;

� q is a balaning query, i.e. a pair of quadruples ((u

1

; l

1

; h

1

; v

1

) , (u

2

; l

2

; h

2

; v

2

)) of numbers in

[1::(N +M)℄.

Three onstraints are absolutely natural: (1)u+ l+h � N , (2)u+ l+h+v = N +M , (3)u+ l+h � 1.

Then we an require that (4)u 6= 0 i� l + h = 0 (sine a unique false is among non-tested oins i� all

previous balanings gave equal weights), and (5)v

1

= 0 or v

2

= 0 (sine it is not reasonable to add

extra valid oins on both pans of a balane). Additional onstraints should be imposed on queries

(sine we an borrow oins for weighing from available non-tested, lighter, heavier and valid ones):

(6)u

1

+u

2

� u, (7)l

1

+ l

2

� l, (8)h

1

+h

2

� h, (9)v

1

+ v

2

� v, (10)u

1

+ l

1

+h

1

+ v

1

= u

2

+ l

2

+h

2

+ v

2

.

A possible move of a player prog is a query for balaning two sets of oins, i.e. a pair of positions

(u; l; h; v; ((0; 0; 0; 0); (0; 0; 0; 0)))

prog

�! (u; l; h; v; ((u

1

; l

1

; h

1

; v

1

); (u

2

; l

2

; h

2

; v

2

))):

A possible move of a player user is a reply <, = or > to a query whih auses a hange in positions

(u; l; h; v; ((u

1

; l

1

; h

1

; v

1

); (u

2

; l

2

; h

2

; v

2

)))

user

�! (u

0

; l

0

; h

0

; v

0

; ((0; 0; 0; 0); (0; 0; 0; 0)))

in aordane with the query and reply:

u

0

=

8

<

:

0 if the reply is < ,

(u� (u

1

+ u

2

)) if the reply is = ,

0 if the reply is > ,

l

0

=

8

<

:

(l

1

+ u

1

) if the reply is < ,

(l � (l

1

+ l

2

)) if the reply is = ,

(l

2

+ u

2

) if the reply is > ,

h

0

=

8

<

:

(h

2

+ u

2

) if the reply is < ,

(h� (h

1

+ h

2

)) if the reply is = ,

(h

1

+ u

1

) if the reply is > ,

v

0

= ((N +M)� (u

0

+ l

0

+ h

0

)):

The �nal position is a position (u; u; h; v; ((0; 0; 0; 0); (0; 0; 0; 0))), where u + l + h = 1. Thus the

game and orresponding abstrat model are onstruted. An overall amount of positions and moves

in game(N;M) is less than

(N+1)

6

6

. And we are ready to present a high-level model-heking-based

design for the metaprogram:

1. (a) to input numbers N and M of oins in question and of valid oins, a total amount of

balaning K;

(b) to model hek formulae WIN

i

win

for all i 2 [0::K℄ in the abstrat model game(N;M);

() if WIN

K

win

is valid in the initial position, then go to 2, else output impossibility of the

strategy and halt;

2. to output a program whih model heks formulae :fail ^ [move

B

℄(fail _ WIN

i

win

(false))

for i 2 [0::(K � 1)℄ in the abstrat model game(N;M) and has K interative rounds with

its user, namely: for every i 2 [1::K℄ downwards (i.e., from i = K to i = 1) it outputs

to the user a move from the urrent position to an intermediate position, where a formula
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:fail^ [move

B

℄(fail_WIN

i�1

win

(false)) is valid in the abstrat model; then it inputs the user's

reply <, = or > and de�nes the next position.

Corretness of the �nal high-level design follows from Proposition 2.

4. Testing model hekers via games

Importane of teahing program logis and model heking is due to importane of model heking

appliations. The main area of model-heking appliations is automati veri�ation of hard- and soft-

ware presented as �nite state systems [11℄ while automati model heking veri�ation of high-level

software spei�ations [7, 1℄ or automati test generation [18℄ are rapidly developing new appliation

domains. We suppose that in both ases high-level reliability of model hekers is of extreme impor-

tane due to automati harater of model heking. But in spite of importane of reliability issues

of veri�ation tools, there are weak moves only in the formal veri�ation ommunity. Let us disuss

some of the reasons behind this situation. First, in automated dedution a reliability problem an

most likely be solved by oupling a prover with a proof heker so that the prover will be required

to make proofs that an be heked by the proof heker. This approah seems reasonable due to its

simpliity and sine proofs are relatively short in omparison with the size of systems to be veri�ed,

while proof heking has a linear omplexity. Next, the most popular model hekers SMV [8℄ and

SPIN [20℄ are model hekers for temporal logis, i.e. they use �xpoints on a metalevel only and so

that all inner �xpoints are independent of outer ones. In this ase model heking algorithms are quite

simple and transparent [11℄.

Unfortunately, both above reasons are invalid for model hekers of the �-Calulus in �nite models.

An approah �a la theorem proving is impossible due to exponential omplexity of model heking

\proofs". At the same time, natural transpareny of model heking for temporal logis is lost due

to ompliated interation between alternating nesting �xpoints. So we foresee only three reasonable

approahes to reliable model heking for the �-Calulus in �nite models:

� simultaneous polyvariant model heking,

� preliminary extensive testing of model hekers,

� formal veri�ation of model hekers.

Due to reasons mentioned above, the polyvariant approah to reliable model heking is time, spae

and ost expensive. The seond approah seems to be problemati sine test-generation is a non-trivial

problem itself. This problem is addressed in [5℄ and briey disussed in the next paragraph. As for

formal veri�ation of model hekers, let us point out two reent papers [30, 26℄. The �rst paper

[30℄ has desribed a model heker generated automatially from a proof. This model heker is a

Caml-implementation of a model heking algorithm from [34℄, it is generated by an interative logi

framework Coq from a formally presented proof of orretness of the algorithm. The seond paper

[26℄ has desribed the formal spei�ation and veri�ation of the eÆient algorithm for real-time

model heking implemented in the model heker RAVEN. It was spei�ed and veri�ed using the

KIV veri�ation system. Thus we an summarize that formal veri�ation of model hekers is a new

developing researh domain, but not a pratial approah to implementing reliable model hekers.

Why extensive testing of model hekers for the �-Calulus in �nite models is a non-trivial prob-

lem? Beause overall test suits for a model heker must be transparent (i.e., must have preditable

results) and exploit non-trivial ombinations of �xpoints. But these two laims are mutually exlusive:

preditability of results implies the formulae simpliity, while non-trivial ombinations of �xpoints are

non-trivial for foreasting. Maybe, the most appropriate solution to overall testing of model hekers

is to test them against a formally veri�ed model heker on automatially generated test suits.

As far as manual overall testing of model hekers is onerned, the problem domain of �nite games

seems to be the best hoie for it, sine it omprises understandability of formulae and veri�ability of
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results. Corretness of the results in this ase an be heked manually or by means of implementing

program robots for player simulation. Below we present two examples of parameterized �nite games

whih were in use for manual testing of model hekers for the �-Calulus and �nite models in the

spei�ation and veri�ation projet REAL [22, 23, 5, 24, 25℄. In setion 5 we disuss and illustrate

another series of examples of speial parameterized �nite games whih are to be implemented in this

projet for further validation of model hekers. We have used parameterized games for traking how

model hekers reat to hanges in the model size. All examples in this setion are learly presented as

searhing problems for a winning strategy in �nite games for two players while all examples in setion

5 are presented in a form of puzzles, but we hope that all readers an reognize and formalize the

underlying �nite games. The �rst example is alled \Millennium Game".

� On the eve of the New Year 19NM (N, M 2 [0::9℄) Alie and Bob were playing the

millennium game. Positions in the game were dates of 19NM-2000 years. The initial

position was a random date from this interval. Then Alie and Bob made moves in their

turn: Alie, Bob, Alie, Bob, et. Available moves were one and the same for both Alie

and Bob: if a urrent position is a date, then the next alendar date and the same day of

the next month are possible next positions. A player won the game i� his/her ounterpart

was the �rst who launhed the year 2000. Problem: De�ne all initial positions with a

winning strategy for Alie.

Another example is a metaprogram problem disussed in setion 3. We would like to remark here that

all the above examples deal with formulae WIN and WIN

i

win

(false), i � 0.

5. More ompliated test suits

A lass of test suits presented below is more ompliated than previous ones sine it relies upon a

more ompliated onept of games with fairness onstraints. A fairness onstraint for a �nite game

(P;M

A

;M

B

; F ) is a property of positions, i.e., it holds in some positions and does not hold in others.

A �nite game with fairness onstraints is a tuple (P;M

A

;M

B

; F; C), where (P;M

A

;M

B

; F ) is a �nite

game, while C is a �nite set of fairness onstraints. Fairness onstraints prohibit sessions where some

onstraint holds in�nitely often: a session meets (satis�es) the onstraints C i� every onstraint in

C holds only �nite number of times in the session. In ontrast, fairness onditions prohibit sessions

where some ondition holds only �nite number of times. An in�nite session is said to be fair with

respet to a property i� the property holds for an in�nite amount of positions in the session. A winning

strategy for sessions whih meet (satisfy) fairness onstraints is a strategy whih guarantees win in

every �nite session and guarantees that every in�nite session is fair to some fairness onstraint.

Proposition 3. Let (P;M

A

;M

B

; F; C) be a game with fairness onstraints, and (P;M

A

;M

B

; F

0

) be

another game with the same positions, the same moves, but with another �nal positions F

0

and without

any fairness onstraint: F

0

omprises F and positions where every in�nite session is fair with respet

to _C. For every strategy the following statements are equivalent:

�the strategy is a winning strategy for sessions whih meet fairness onstraints in the game

(P;M

A

;M

B

; F; C);

�the strategy is a winning strategy in the game (P;M

A

;M

B

; F

0

).

Let us onsider a formula �q:

�

[a℄q^�r:(p_ [a℄r)

�

. A sub-formula � � �r:(p_ [a℄r) of this formula is

valid in a model in those states where every in�nite a-path eventually leads to p. Another sub-formula

�q:([a℄q ^ �) of �q:

�

[a℄q ^ �r:(p _ [a℄r)

�

is valid in a model in those states where every a-path always

leads to �. Thus the formula �q:

�

[a℄q ^ �r:(p _ [a℄r)

�

� �q:([a℄q ^ �) is valid in a state of a model

i� every in�nite a-path in�nitely often visits the states where p holds. In other words, a formula

�q:

�

[a℄q ^ �r:(p _ [a℄r)

�

is valid in a state of a model i� every in�nite a-path is fair with respet to p.

These arguments and the above proposition 3 imply the following
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Proposition 4. Let G be a �nite game of two players with fairness onstraints C. Let FAIR(_C) be

a formula

�q:

�

([move

A

℄q ^ [move

B

℄q) ^ �r:

�

(_C) _ ([move

A

℄r ^ [move

B

℄r)

�

�

;

FAIL be a formula fail _ FAIR(_C) and FAIRWIN be another formula

� win:

�

:FAIL ^ hmove

A

i

�

:FAIL ^ [move

B

℄(FAIL _ win)

�

�

:

Then

�FAIR is valid in those states of the model M

G

where every in�nite session is fair with respet

to _C;

�FAIRWIN is valid in those states of M

G

where the player A has a winning strategy in sessions

whih meet the onstraints C.

Let us present an example of a puzzle whih an be solved in terms of games with fairness on-

straints presented above.

� A ity onsists of squares and roads between them. A taxi driver would like to reah

some square (say, Central Station Square) where he/she hopes to get a generous passenger

whih is ready to pay as muh as the driver asks. Taxi an move from one square to

another via a road whih onnets them. Usually the driver selets roads aording to

his/her will, but in some squares (these squares are known) oasional passengers order

him/her to move along a road aording to passenger's hoie, whih sometimes is a bad,

poor road (these roads are known too). But for driver's luk, there is a �nite number of

oasional passengers whih would like to selet these bad roads. Problem: De�ne from

what initial squares the driver an reah the desirable square while serviing all orders of

all oasional passengers through its rout?

Let us explain how to represent this puzzle as a �nite game with fairness onstraints. A hint is to

introdue \polie stations" at all bad roads. Let positions be all squares and polie stations, moves

be roads and the desirable square be the �nal position while a unique fairness onstraint be \in a

polie station". Finally add some additional stops in order to organize moves in a proper order (i.e.,

...-driver-passenger-driver-...), and the game is ready!
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