
Bull. Nov. Comp.Center, Comp. Science, 37 (2014), 131–147
c⃝ 2014 NCC Publisher

Alias calculus for a simple imperative language
with decidable pointer arithmetic∗

N.V. Shilov, A. Satekbayeva, A.P. Vorontsov

Abstract. Alias calculus was proposed by Bertrand Meyer in 2011 for a toy pro-
gramming language with a single data type for abstract pointers. This original
calculus is a set-based formalism insensitive to the control flow; it is a set of syntax-
driven rules how to compute an upper approximation aft(S, P) for aliasing after
the execution of a program P for a given initial aliasing S. The primary purpose
of our paper is to present a variant of alias calculus for a more realistic program-
ming language with automatic and dynamic memory, regular data and a decidable
pointer arithmetic. Our variant is insensitive to the control flow (like the original
calculus by B. Meyer), but (in contrast to the original calculus) this calculus is
equation-based.

Keywords: aliasing problem, alias calculus, logic of partial correctness.

1. Introduction

1.1. Aliasing problem

In this paper, we present a variant of alias calculus [7], i.e. a syntax-driven
procedure for computing the aliasing aft(S, P) after execution of a program
P for a given initial aliasing S in such a way that a triple {S}P{aft(S, P)}
be valid (in the sense of Hoare logic of partial correctness).

In general, the aliasing problem is to predict, detect, and/or trace point-
ers to the same addresses in the dynamic memory. The problem is very
critical because of exceptions that may happen in run-time due to improper
alias handling. Below are two simple examples of alias-related exceptions1:

• x = new(int); x = new(int) (memory leak)

• y = x; free x; free y (invalid access).

The first example shows the loss of a link to a piece of memory allocated
first (which can result in run out of memory if iterated); the second example
shows an attempt to free a deleted piece of memory (which can result in an

∗Supported by Nazarbayev University Seed Grant KF-14/16 Research of Formal Models
for analysis of programs with Dynamic Memory.

1We do not assume any particular programming language and the dynamic memory
management but use a pseudo-code and intuitive concept of memory allocation and deal-
location.

132 N.V. Shilov, A. Satekbayeva, A.P. Vorontsov

abnormal program termination immediately). We refer to these two exam-
ples as exceptions because they may be program errors in an application or
a part of functionality of a virus.

If the above fragments cause errors, then it is easy to find them and
fix (due to close location of allocation/deallocation operators). But if al-
location/dealocation operators are separated by large pieces of code with
a complicated modular structure, then detection of errors of these types
becomes a complicated problem. In other words, the development of com-
pilers capable of detecting similar exceptions is an important problem from
the industrial point of view, as well as from the educational and research
perspective (e.g. for the verifying compiler research [4]).

The purpose of aliasing analysis is to control statically the address ex-
pressions in a program which can/may point to the same memory location
in run-time. Such analysis is intended to find and eliminate the errors in
the program that are due to single (like memory leak) or multiple links
to pieces of memory (like invalid memory access). In the general settings,
the problem is undecidable for a programming language with an expressive
pointer (address) arithmetic; however many approximate algorithms have
been published that provide a trade-off between the efficiency, accuracy and
soundness of the aliasing analysis [9].

There are several attributes that characterize the alias analysis [3], some
of them are listed and explained below:

• flow-sensitivity,

• context-sensitivity,

• heap modeling,

• alias representation.

While the flow-sensitive analysis usually computes aliases for all control
points in a program, the flow-insensitive analysis computes aliasing for a
program as a whole. Context-sensitivity is about function/procedure calls
and it means whether the context of a call is taken into consideration or
not. Analysis may be founded on different models of the dynamic memory
(the heap): it may be a data structure consisting of cells with abstract
addresses capable to save arbitrary data, or a collection of cells indexed by
integers to store primitive data values only, etc. Aliasing may be presented
by equalities, sets of synonyms, or somehow else.

How can we measure the precision of the alias analysis? The most
straightforward way is the so-called direct metric, the average number of
memory locations that may be aliased to each address expression in the
program. But this metrics has some drawbacks. For example, the number
of locations aliased to an expression greatly depends on the heap granularity:

Alias calculus for a simple imperative language 133

if the heap is represented by a single indivisible object, then all expressions
point to one object (the heap).

After decades of research and development, there are still challenges in
the alias analysis [3, 9]:

• scalability vs. precision;

• flow- and context sensitivity;

• object-oriented languages;

• libraries and low-level functions,

• multithreaded programs.

Due to the above and other reasons, a new research on the alias analysis
emerges (e.g. [2]). In particular, alias calculi proposed by Bertrand Meyer
[7] are a new approach to aliasing research. Three variants of alias calculus
for toy imperative languages with a single data type for abstract pointers
are presented in [7]; these calculi are set-based formalisms without address
arithmetic insensitive to the control flow and context.

The primary purpose of our paper is to present an alias calculus for
a more realistic programming language with the automatic and dynamic
memory, regular data, and addresses (with a decidable address arithmetic).
The calculus is a revision of a preliminary variant that has been pub-
lished recently [10]: these two variants differ in representation of an allo-
cated/accessible memory and are provided by different aft-transformers.
Both variants of calculus (in this paper as well as in [10]) are (currently)
insensitive to the control flow (like the original calculus by B. Meyer), but
our calculi are equation-based (in contrast to the original calculus).

The rest of the paper is organized as follows. The next subsection
sketches the alias calculus for a toy programming language E0, developed
by B. Meyer in [7]. Then in Section 2 we introduced the programming lan-
guage MoRe, its formal syntax and structural operational semantics (SOS);
this language is more realistic than E0 and may be considered as a dialect
of the programming language used in [8] for semantics of Separation Logic.
A variant of alias calculus for this language is presented in Section 3. In the
concluding Section 4, we discuss how to use this calculus to detect memory
leaks and invalid access.

1.2. The alias calculus for E0

Let V be an arbitrary finite (fixed) alphabet whose elements are called
(pointer) variables. An alias relation on V is any symmetric and irreflexive
binary relation on V . Any alias relation S on V can be interpreted as
information (knowledge) about which of these variables may point to the
same storage (memory) location.

134 N.V. Shilov, A. Satekbayeva, A.P. Vorontsov

For any binary relation S on V , let2 S be the symmetric and irreflexive
closure of S:

S = {(x, y), (y, x) ∈ V 2 : (x, y) ∈ S andy ̸≡ x}.

(We reserve the symbol ≡ for the syntactic identity and ̸≡ of the syntactic
difference for alphabet symbols and strings.)

For any alias relation S, and any variable x, let

• (S\ − x) = {(y, z) ∈ S : y ̸≡ x and z ̸≡ x},

• (S/x) = {y ∈ V : y ≡ x or (y, x) ∈ S}.

For any alias relation S, let cnd(S) be the system (i.e. conjunction) of
differences (i.e. the inequalities) x ̸= y for all x, y ∈ V , x ̸≡ y and (x, y) ̸∈ S,
i.e.

cnd(S) = ∧x,y∈V, x ̸≡y, (x,y) ̸∈Sx ̸= y;

it is easy to see that the constructor cnd possesses the monotonicity property:
for any alias relations S1 and S2, if S1 ⊆ S2, then cnd(S1) → cnd(S2).

The programming language E0 has a single data type for pointers only.
The syntax of the language is defined as follows:

P ::= skip | forget(V) | create(V) | V := V |
(P ;P) | PN | (then P else P) | (loop P),

where

• V is a metavariable for the set of variables (that was fixed above),

• N is a metavariable for natural numbers in any fixed notation.

As we already stated in Introduction, the alias calculus is a set of syntax
rules which work with formulas of the type aft(S, P), where P is a program,
S is an alias relation on the set V of address variables, and aft (abbr. from
after) denotes the transformer of alias relations. The alias calculus allows
us to determine (by forward reasoning) the upper (over-) approximation
aft(S, P) for the alias relation after execution of a program P for a given
initial aliasing S; it is possible to say in terms of Hoare logic that the calculus
should guarantee correctness for the triple

2In this section, we use a slightly modified notation adopted from the original paper
on the alias calculus [7].

Alias calculus for a simple imperative language 135

{cnd(S)} P {cnd(aft(S, P))}.

The alias calculus for E0 and its informal operational semantics follow
below.

• aft(S, skip) = S because skip is the empty operator.

• aft(S, forget(x)) = aft(S, create(x)) = S\ − x, i.e. memory
deallocation and allocation operators have the same effect on an alias
relation because after these operations the variable x is not an alias to
any other variable.

• aft(S, x := y) = (S\ − x) ∪ {x} × ((S\ − x)/y), i.e. in the result
of the assignment x := y the address variable x forgets all its former
aliases and becomes an alias to all aliases of the variable y.

• aft(S, (α;β)) = aft(aft(S, α), β), i.e. the sequential composition
of programs means the sequential application of programs.

• aft(S, α0) = S and aft(S, αn+1) = aft(aft(S, αn), α) for every
n ≥ 0, i.e. the n-fold iteration (repetition) αn is the n-fold sequential
composition.

• aft(S, then α else β end) = aft(S, α) ∪ aft(S, β), i.e. then − else
is a nondeterministic choice of either of the two branches.

• aft(S, loop α) =
∪

n≥0 aft(S, α
n), i.e. a loop is a nondeterministic

iteration.

2. Programming language MoRe

In this section, we present a programming language MoRe that may be con-
sidered as a dialect of the programming language used to define Separation
Logic in [8]; the acronym MoRe stays for More Realistic.

The language has two data types that are called addresses and integers
with an implicit type casting from integers to addresses. The integer data
type is explicit while the address data type is implicit : only the integer values
are depictable and all variables in MoRe are integer by default, while the
address values result from integer values after the implicit type casting, and
integer expressions are interpreted as addresses only in a special syntactic
context.

The address data type in MoRe is any (finite or infinite) set of values
ADR with constants that are called zero and one (conventionally denoted
by 0 and 1 in the meta-theory of MoRe), operations that are called addition
and subtraction (conventionally denoted by + and − in the meta-theory
of MoRe) such that (ADR, 0, 1,+,−,=) is a commutative additive semi-
group with a decidable first-order theory TADR. Examples include Zm, the
ring of residuals modulo any fixed positive m, Presburger arithmetic, etc.

136 N.V. Shilov, A. Satekbayeva, A.P. Vorontsov

Let us remark that TADR is a complete theory of a particular algebraic
system (ADR, 0, 1,+,−); it implies that for any sentence ϕ (in the language
(0, 1,+,−,=)) the following holds: TADR ⊢ ϕ iff (ADR, 0, 1,+,−) |= ϕ.

The integer data type in MoRe is any (finite or infinite) (sub)set INT of
(mathematical) integers Z with the standard constants zero (0) and one (1)
that is closed under operations called addition +, subtraction −, multiplica-
tion × (denoted by ∗) and division / with an implicit computable surjective
type-casting function in2ad : INT → ADR; we assume that in2ad is a ho-
momorphism of (INT, 0, 1,+,−,=) onto (ADR, 0, 1,+,−,=) and (due to
this assumption) we can consider multiplication- and division-free integer
expressions as address expressions.

Let V be an infinite3 alphabet of variables4 (for legal integers and/or
addresses), C be a language for representation of integer constants (i.e. in-
teger values as well as addresses via implicit type casting), T be a language
of arithmetic expressions (terms) with constants from C and variables from
V , and F be a language of the admissible logical formulas constructed with
equalities (=) and inequalities (̸= at least and, optionally, <, >, etc.) be-
tween expressions from T using Boolean operations.

The syntax of MoRe is defined as follows:

P ::= skip | var V = C | V := T |
V := cons(C∗) | [V] := V | V := [V] | dispose(V) |

(P ;P) | (if F then P else P) | (while F do P).

The structural operational semantics (SOS) of this model language uses
a (memory) model consisting of two disjoint parts:

• a static memory (conventionally) called stack and

• a dynamic memory (conventionally) called heap.

A state is an arbitrary pair (couple) of mappings s = (s.st, s.hp) (or, for
short, s = (st, hp), or (st, hp) when s is implicit), where:

• st is a state of the stack, i.e. a partial mapping (with a finite domain)
from variables V to integers INT (understood as their values), i.e.

st : V
fin−→ INT ,

• hp is a state of the heap, i.e. a partial mapping (with a finite domain)
from addresses ADR to integers INT (understood as referenced val-

ues), i.e. hp : ADR
fin−→ INT .

The semantics of expressions (terms) T and logical formulas F is defined
as follows.

3We need an infinite alphabet since we need fresh variables in our calculus.
4The alphabet may overlap or be disjoint with the alphabet of pointer variables in

Subsection 1.2.

Alias calculus for a simple imperative language 137

Expressions: Since the expressions T are constructed from the constants
C and variables V , every expression t ∈ T in every stack state st :

V
fin−→ INT has a definite or an indefinite value st(t) ∈ INT ∪ {ω};

the exceptional indefinite value may result from division by 0, the use
of an undeclared variable, or the use of a variable with an indefinite
value.

Formulas: Since the logical formulas F are constructed using the Boolean
connectives from equalities and inequalities of arithmetic expressions,

every formula ϕ ∈ F in any stack state st: V
fin−→ INT can be either

true (valid) st |= ϕ, or false (invalid) s ̸|= ϕ, or indeterminate st |=?ϕ
according to the following rules:

• if both expressions of an equality/inequality have the definite val-
ues in st, the truth value of this equality/inequality corresponds
to the values of the expressions;

• if one or both expressions of an equality/inequality have the in-
definite values in st, the value of this equality/inequality in st is
indeterminate;

• if all subformulas of a Boolean formula are true or/and false in
st, then the truth value of the formula is defined in the standard
Boolean manner;

• if a subformula of a Boolean formula is indeterminate in st, then
the formula is also indeterminate.

So, to define the expression and formula values, we use a Pascal-like approach
rather than C-like: an expression or a formula has a definite value if all its
subexpressions/subformulas do.

SOS is an inference system for deduction of triples of the form

s⟨α⟩s′,

where s is a state, s′ is a state or an exception abort (an exceptional state or
situation), and α is a program; the intuition behind this triple is as follows:
the program α converts the input state s into the output “state” s′ (that
may be an exception). The inference rules are syntax-driven and have the
following form:

s1⟨α1⟩s′1 . . . sn⟨αn⟩s′n
s⟨α⟩s′

condition,

where n ≥ 0 is the number of premises of the rule, and condition is an
applicability condition; the inference rules without premises (i.e. when n =
0) are axioms. Below is a list of axioms and inference rules with comments.

Variable declaration axioms. If a variable has not been declared yet,
it can be declared and initialized by a constant value, but an attempt to
re-declare the variable results in an exception:

138 N.V. Shilov, A. Satekbayeva, A.P. Vorontsov

•
(st,hp)⟨var x=c⟩(st∩(x 7→c), hp)

if x ̸∈ dom(st);

•
(st,hp)⟨varx=c⟩abort otherwise.

Here (x 7→ c) : V → INT is a singleton function with the graph (x, c).
Empty operator axiom: s⟨skip⟩s .
Direct assignment axioms. If a variable has been declared and a term

has a definite value, the assignment updates the value of the variable by the
value of the term; otherwise the assignment results in an exception:

•
(st,hp)⟨x:=t⟩(upd(st,x,st(t)), hp)

if x ∈ dom(st) and st(t) ∈ INT ;

•
(st,hp)⟨x:=t⟩abort otherwise.

Here upd(st, x, st(t)) : V → INT is an updated function st, such that for
every variable y ∈ V

upd(st, x, st(t))(y) =

{
st(t), if y ≡ x,
st(y), if y ̸≡ x.

Memory allocation axioms. The command cons allocates (if possible)
a fresh heap “segment”, initializes the cells within the segment by constant
values, and saves the first address of the segment in a specified declared
variable; otherwise the allocation results in an exception:

•
(st,hp)⟨x:=cons(c0,...ck)⟩(upd(st,x,l), hp∪(in2ad(l)7→c0)∪...(in2ad(l+k)7→ck))

if x ∈ dom(st),
addresses in2ad(l), . . . in2ad(l + k) are disjoint,
and {in2ad(l), . . . in2ad(l + k)} ∩ dom?(hp) = ∅;

•
(st,hp)⟨x:=cons(c0,...ck)⟩abort

otherwise.

Indirect assignment axioms. If the variables x and y have been
declared, the cell pointed by x has been allocated, the indirect assignment
updates the value of this cell in the heap by the value of y; otherwise the
attempt of the indirect assignment results in an exception:

•
(st,hp)⟨[x]:=y⟩(st, upd(hp, in2ad(st(x)), st(y)))

if x, y ∈ dom(st) and

in2ad(st(x)) ∈ dom(hp);

•
(st,hp)⟨[x]:=y⟩abort otherwise.

Dereferencing axioms. If the variables x and y have been declared
and the cell pointed by y has been allocated, then the dereferencing updates
the value of the variable x; otherwise the attempt results in an exception:

•
(st,hp)⟨x:=[y]⟩(upd(st, x, hp(st(y))), hp)

if x, y ∈ dom(st) and

in2ad(st(y)) ∈ dom(hp);

Alias calculus for a simple imperative language 139

•
(st,hp)⟨x:=[y]⟩abort otherwise.

Memory deallocation axioms. If a variable has been declared and the
cell pointed by the variable has been allocated, then this cell is deallocated;
otherwise the attempt results in an exception:

•
(st,hp)⟨dispose(x)⟩(st, hp�(dom(hp)\in2ad(st(x)))) if x ∈ dom(st) and

in2ad(st(x)) ∈ dom(hp);

•
(st,hp)⟨dispose(x)⟩abort otherwise.

Here hp � (dom(hp) \ in2ad(st(x))) is the restriction of the function hp :
ADR → INT onto the domain dom(hp) \ in2ad(st(x)).

Sequential composition inference rules. If the first subprogram

aborts, then the composition aborts; otherwise the second subprogram should

be applied to the result of the first one:

s⟨α⟩abort
s⟨α;β⟩abort

s⟨α⟩s′ s′⟨β⟩s′′
s⟨α;β⟩s′′ .

Choice axiom and inference rules. If the choice condition is true,
then select then-branch; if the condition is false, then select else-branch;
otherwise the choice results in an exception:

s⟨α⟩s′
s⟨if ϕ then α else β⟩s′ if s.st |= ϕ

s⟨β⟩s′
s⟨if ϕ then α else β⟩s′ if s.st ̸|= ϕ

s⟨if ϕ then α else β⟩abort if s.st |=?ϕ.

Loop axioms and rule. If the loop condition is true, one iteration
is executed and the loop should be attempted again; if the condition is
false, the loop halts; if the condition is indeterminate, the loop results in an
exception:

s⟨α⟩s′ s′⟨while ϕ do α⟩s′′
s⟨while ϕ do α⟩s′′ if s.st |= ϕ

s⟨while ϕ do α⟩s if s.st ̸|= ϕ

s⟨while ϕ do α⟩abort if s.st |=?ϕ.

3. The alias calculus for MoRe

Let us fix a MoRe-program for simplicity of notation. All variables, ex-
pressions and programs within this section are variables, expressions and
sub-programs of this fixed program.

140 N.V. Shilov, A. Satekbayeva, A.P. Vorontsov

3.1. Preliminaries

The sets of address variables AV and address expressions AE (of the pro-
gram) are defined by joint induction as follows:

• an address variable is any variable x that occurs (within the program)
in

– the left-hand side of any memory allocation x := cons(. . .),

– the left-hand side of any indirect assignment [x] := . . . ,

– the right-hand side of any dereferencing · · · := [x],

– any memory deallocation operator dispose(x),

– any address expression;

• address expressions (within the program) are

– all address variables,

– all subexpressions of any address expression,

– all expressions t, constructed from C and V using addition and
subtraction which occur in the right-hand side of any assignment
to any address variable x := t,

– all expressions x + 1, . . . x + k such that the program has the
memory allocation x := cons(c0, . . . , ck).

For any set of address expressions AS and any address variable x in AV ,
let

• AS ∼ x be the set of the expressions in AS that use x (i.e. have
instances of x),

• AS\x be the set of the expressions in AS that do not use x (i.e. have
no instances of x).

It is obvious that AS = (AS\x) ∪ (AS ∼ x).
For any set of address expressions AS and any set of address variables

D ⊆ AV , let AS(D) be the set of all address expressions in AS that do not
use variables other than in D (i.e. AS(D) =

∩
x∈D AS\x).

A pair of aliases (synonyms) is an equality of two address expressions.
A pair of anti-aliases (antonyms) is a difference (i.e. the inequality ̸=) of
two address expressions.

Recall that all address expressions in AE are linear expressions with
integer coefficients. Hence the pairs of synonyms or antonyms over AE look
like Diophantine equations and differences over integers. Nevertheless we
consider all these pairs as equations and differences over (ADR, 0, 1,+,−)
assuming implicit type casting.

A configuration is a triple Cnf = (I, A, S) consisting of

Alias calculus for a simple imperative language 141

• a set I ⊆ AV of address variables,

• a set of address expressions A ⊆ AE(I),

• a consistent set S of pairs of synonyms and antonyms (with variables
in I).

Here consistency means that S has a solution as a system of equalities and
differences in (ADR, 0, 1,+,−). Informally speaking, the set I represents
the initialized address variables, the set A — address expressions that point
onto the allocated memory, and the set S is a system of equations and
differences specifying which expressions can be aliases and which cannot.

For any configuration Cnf = (I,N, S), let

• &Cnf be the conjunction of all pairs of synonyms and antonyms in S;

• cls(Cnf) = {e′ = e′′ : e′, e′′ ∈ AE(I), TADR ⊢ &Cnf → (e′ = e′′)} ∪

∪ {e′ ̸= e′′ : e′, e′′ ∈ AE(I), TADR ⊢ &Cnf → (e′ ̸= e′′)};
• ncl(Cnf) = cls(Cnf) ∪ {e′ ̸= e′′ : e′, e′′ ∈ AE(I), (e′ = e′′ ̸∈

cls(cnf))}.

(Here cls stays for closure and ncl stays for negative closure.)
Let Cnf = (I,N, S) be a configuration and s = (st, hp) be a state; we

write s |= Cnf and say that s satisfies the configuration Cnf , when

• I is the set of all address variables that are declared in st (i.e. I =
dom(st));

• st(A) = {st(e) : e ∈ A} is the set of the allocated heap elements in
hp (i.e. st(A) = dom(hp));

• all synonyms and antonyms in ncl(Cnf) are true (valid) in s, i.e.:

– in2ad(st(e′)) = in2ad(st(e′′)) for every pair of synonyms e′ = e′′

in S,

– in2ad(st(e′)) ̸= in2ad(st(e′′)) for every pair of antonyms e′ ̸= e′′

in S.

For any configurations Cnf ′ = (I ′, A′, S′) and Cnf ′′ = (I ′′, A′′, S′′), let
us say that they are equivalent if I ′ = I ′′, for every e′ ∈ A′ there exists
e′′ ∈ A′′ such that TADR ⊢ &Cnf ′ → (e′ = e′′) (and vice versa), and
ncl(Cnf ′) = ncl(Cnf ′′).

A distribution (or alias distribution) is an arbitrary finite set of configu-
rations in which every two configurations are not equivalent. If D is an arbi-
trary set of configurations (a distribution in particular), then its refinement
is a distribution rfn(D) obtained from D by leaving a single configuration
in each equivalence class in D.

142 N.V. Shilov, A. Satekbayeva, A.P. Vorontsov

Let D be an arbitrary alias distribution and s be an arbitrary state; we
write s |= D and say that s satisfies the distribution D, when s |= Cnf for
some configuration Cnf ∈ D.

3.2. The calculus

Let D be any alias distribution. We define the distribution converter

λα : MoRe. λD : distribution. aft(D,α)

by induction on program structure: the induction base defines the con-
verter for individual operators; the induction step defines the converter for
compound programs. The definition in its nature is executable (i.e. the
definition is an algorithm) and an execution of this algorithm may cast (i.e.
make) some warnings in run-time.

3.2.1. Individual operators

For any MoRe (syntax) expressions5 e, e′ and e′′, let ee′/e′′ be the result
of substitution of e′ instead of all instances of e′′ into e.

For operators that do not change the address variables, we have:

• aft(D, skip) = D;

• aft(D, varx = i) = D, if x is not an address variable;

• aft(D,x := t) = D, if x is not an address variable;

• aft(D,x := [y]) = D, if x is not an address variable;

• aft(D, [x] := y) = D, if t is not an address expression.

If x is any address variable, the distribution aft(D, varx = i) is obtained
as follows. Let Cnf = (I,A, S) be an arbitrary configuration in D. If
x ∈ I then the algorithm makes re-initialization warning. Let Cnfvar x=c =
(Ivar x=c, Avar x=c, Svar x=c), where

• Ivar x=c = I ∪ {x},
• Avar x=c = {e′ ∈ AE(Ivar x=c) :

TADR ⊢ &Cnf → (e′c/x = e′′) for some e′′ ∈ A},

• Svar x=c) = ncl(
{e′ = e′′ : e′, e′′ ∈ AE(Ivar x=c) and TADR ⊢ &Cnf → (e′c/x =

e′′c/x)} ∪
{e′ ̸= e′′ : e′, e′′ ∈ AE(Ivar x=c) and TADR ⊢ &Cnf → (e′c/x ̸=

e′′c/x)}).

5i.e. variables, terms, formulas, programs, etc.

Alias calculus for a simple imperative language 143

Then let aft(D, var x = c) be rfn{Cnfvar x=c : Cnf ∈ D}.
If x is any address variable, the distribution aft(D,x := t) is obtained

as follows. Let Cnf = (I,N, S) be an arbitrary configuration in D. If x ̸∈ I
or t has an uninitialized variable (i.e. not in I), the algorithm gives an
un-initialization warning. Let Cnfx:=t = (Ix:=t, Ax:=t, Sx:=t), where

• Ix:=t = I,

• Ax:=t = {e′ ∈ AE(Ix:=t) :
TADR ⊢ &Cnf → (e′t/x = e′′) for some e′′ ∈ A},

• Sx:=t = ncl(
{e′ = e′′ : e′, e′′ ∈ AE(Ix:=t) and TADR ⊢ &Cnf → (e′t/x = e′′t/x)} ∪
{e′ ̸= e′′ : e′, e′′ ∈ AE(Ix:=t) and TADR ⊢ &Cnf → (e′t/x ̸= e′′t/x)}).

If there exists e′′ ∈ A such that TADR ̸⊢ &Cnf → (e′t/x = e′′) for every

e′ ∈ Ax:=t, then the algorithm gives a memory-leak warning. Then let
aft(D, x := t) be rfn{Cnfx:=t : Cnf ∈ D}.

The distribution aft(D, x := cons(c0, . . . ck)) is obtained as follows. Let
Cnf = (I, A, S) be an arbitrary configuration in D. If x ̸∈ I, the algorithm
gives an un-initialization warning. Let y be a new (fresh) variable and let
&CnfNew(y,k) be the conjunction of &Cnf with all pairs of antonyms that
have the form e ̸= y+ i or y+ i ̸= y+j, where e ∈ AE(I) and 0 ≤ i < j ≤ k.
Let Cnfx:=consk be (Ix:=consk , Ax:=consk , Sx:=consk), where

• Ix:=consk = I,

• Ax:=consk = A ∪ {x, (x+ 1), . . . (x+ k)},
• Sx:=consk = ncl(

{e′ = e′′ : e′, e′′ ∈ AE(Ix:=consk), TADR ⊢ &CnfNew(y,k) → e′y/x =

e′′y/x} ∪
{e′ ̸= e′′ : e′, e′′ ∈ AE(Ix:=consk), TADR ⊢ &CnfNew(y,k) → e′y/x ̸=

e′′y/x}).

If there exists e′′ ∈ A such that TADR ̸⊢ &Cnf → (e′t/x = e′′) for every

e′ ∈ Ax:=cons(c0,...ck), then the algorithm makes memory-leak warning. Then
let aft(D, x := cons(c0, . . . ck)) be rfn{Cnfx:=consk : Cnf ∈ D}.

If x is any address variable, the distribution aft(D,x := [y]) is obtained
as follows. Let Cnf = (I,A, S) be an arbitrary configuration in D. If x ̸∈ I
or y ̸∈ I, then the algorithm makes un-initialization warning. If TADR ̸⊢
&Cnf → (y = e) for every e ∈ A, then the algorithm makes un-allocation
warning. Let Cnfx:=[y] be the set of all configurations (Ix:=[y], Ac, Sc), where
c be an integer constant, and

• Ix:=[y] = I,

144 N.V. Shilov, A. Satekbayeva, A.P. Vorontsov

• Ac = {e′ ∈ AE(Ix:=[y]) : TADR ⊢ &Cnf → (e′(c/x) = e′′) for some

e′′ ∈ A},
• Sc = ncl(

{e′ = e′′ : e′, e′′ ∈ AE(Ix:=[y]), TADR ⊢ &Cnf → (e′c/x = e′′c/x)} ∪
{e′ ̸= e′′ : e′, e′′ ∈ AE(Ix:=[y]), TADR ⊢ &Cnf → (e′c/x ̸= e′′c/x)}).

If there exists an integer constant c and an expression e′′ ∈ A such that
TADR ̸⊢ &Cnf → (e′c/x = e′′) for every e′ ∈ Ax:=[y], the algorithm gives a

memory-leak warning. Then let aft(D,x := [y]) be rfn(
∪

Cnf∈D Cnfx:=[y]).
The distribution aft(D, dispose(x)) is obtained as follows. Let Cnf =

(I, A, S) be an arbitrary configuration in D. If x ̸∈ I, the algorithm gives
an un-initialization warning. If TADR ̸⊢ &Cnf → (x = e) for every e ∈ A,
the algorithm gives a un-allocation warning. Let Cnfdispose(x) = (Idispose(x),
Adispose(x), Sdispose(x)), where

• Idispose(x) = I,

• Adispose(x) = A \ {e ∈ AE(Idispose(x)) : TADR ⊢ &Cnf → (e = x)},
• Sdispose(x) = S.

Then let aft(D, dispose(x)) be rfn{Cnfdispose(x) : Cnf ∈ D}.

3.2.2. Compound programs

• aft(D, (α;β)) = aft(aft(D,α), β);

• aft(D, if ϕ then α else β) = rfn(aft(D,α) ∪ aft(D,β));

• aft(D, while ϕ do α) = rfn(
∪

i≥0 aft(D, αi)),

where α0 ≡ skip, and αi+1 ≡ (αi;α) for any i ≥ 0.

4. Conclusion

4.1. Results

The presented here version of the alias calculus for the programming lan-
guage MoRe is safe (by construction) in the following sense.

Proposition 1. Let D be any alias distribution, α be any MoRe-program
and s be any state such that s |= D;

• if s′ is a state such that s⟨α⟩s′ then s′ |= aft(D,α);

• if α started in s aborts due to

– re-initialization of some address variable, then the re-initialization
warning will be casted in aft(D,α);

Alias calculus for a simple imperative language 145

– the use of an un-initialized address variable, then the un-initiali-
zation warning will be cast in aft(D,α);

• if α started in s has

– a memory leak, then the memory-leak warning will be cast in
aft(D,α);

– an invalid memory access, then the un-allocation warning will be
cast in aft(D,α).

Thus the presented variant of the alias calculus answers the question
formulated in [10] for a preliminary variant of the calculus: How do run-time
memory leaks relate to memory-leak warnings? How do run-time invalid
accesses relate to invalid-access warnings?

In particular, the examples of exceptions mentioned in the Introduction
can be represented in MoRe as follows:

• α ≡ x := cons(1);x := cons(2),

• β ≡ y := x; dispose(x); dispose(y).

If we execute aft(({x, y},∅,∅), α), then the memory-leak warning will be
cast; if we compute aft(({x, y},∅,∅), β), then un-allocation warning will
be cast. In both cases we start with the configuration Cnf = (I, A, S) =
({x, y},∅,∅), where the variables x and y are declared and initialized (i.e.
I is {x, y}), but no dynamic memory is allocated (i.e. A is the first ∅) and
there are no alias relations between x and y (i.e. S is the second ∅).

4.2. Further research topics

In Section 2, we assume that the address data type in MoRe is any (finite
or infinite) set of values ADR such that (ADR, 0, 1,+,−,=) is a commuta-
tive additive semi-group with decidable first-order theory TADR. Examples
include the ring of residuals modulo any fixed positive integer, versions of
Presburger arithmetic, etc. The decidability condition for TADR has been
used in Section 3 to solve the properties of the form

TADR ⊢ &S → e′ = e′′ and TADR ⊢ &S → e′ ̸= e′′,

where S is a system of linear Diophantine equations and differences (̸=, i.e.
negation of equality). It implies that we do not need the “full” decidability
of TADR but just an efficient algorithm to check consistency for systems of
this type. Unfortunately, we could not find any efficient algorithm to solve
the consistency of systems with differences but algorithms to solve systems
with inequalities < and >. We plan to extend the algorithms from [5, 6] to
handle the differences as well6.

6Now we know how to do this but in an inefficient manner.

146 N.V. Shilov, A. Satekbayeva, A.P. Vorontsov

Let us recall that the primary purpose of this paper was to present an
alias calculus for a programming language which is more realistic than the
original one described in [7]. The presented calculus is insensitive to the con-
trol flow and it uses only stack (automatic) variables for analysis and a very
rough method to define the address variables and expressions. So, the most
evident topics for further research are the design and development of a cal-
culus sensitive to the control flow that takes into account some information
about the heap. Also, we have to add other data types different from INT
and their addresses ADR. Only after that it will be reasonable to add to
the research agenda the prototyping of a calculus-based alias analysis tool.
Nevertheless, it makes sense to examine the relations between the alias cal-
culus and the so-called Andersen-styled [1] and the Steensgaard-styled [11]
analyses in the near future.

References

[1] Andersen L.O. Program Analysis and Specialization for the C Programming
Language. – Ph.D. Thes. / DIKU, University of Copenhagen, Denmark, 1994.

[2] Haberland R., Ivanovskiy S. Dynamically allocated memory verification in
object-oriented programs using Prolog // Prelim. Proc. of the 8th Spring-
Summer Young Researchers’ Colloquium on Software Engineering (SYRCoSE
2014), May 29-31, 2014, Saint Petersburg, Russia. – Institute for System Pro-
gramming of the Russian Academy of Sciences (ISPRAS), 2014. – P. 46–50.

[3] Hind M. Pointer analysis: Haven’t we solved this problem yet? // Proc. of the
2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE’01). – P. 54–61.

[4] Hoare C.A.R. The verifying compiler: A grand challenge for computing research
// Perspectives of Systems Informatics (PSI’2003). – Lect. Notes Comput. Sc.
– Springer, 2003. – Vol. 2890. – P. 1–12.

[5] Kryvyi S.L. Algorithms for solving systems of linear diophantine equations in
integer domains // Cybernetics and Systems Analysis. – 2006. – Vol. 42(2). –
P. 163–175.

[6] Kryvyi S. L. Algorithms for solving systems of linear Diophantine equations in
residue // Cybernetics and Systems Analysis. – 2007. – Vol. 43(6). – P. 787–798.

[7] Meyer B. Steps towards a theory and calculus of aliasing // Internat. J. of Soft-
ware and Informatics. – 2011. – Special Issue (Festschrift in honor of Manfred
Broy). – P. 77–115.

[8] Reynolds J.C. Separation logic: A logic for shared mutable data structures //
Proc. of 17th IEEE Symp. on Logic in Computer Science (LICS 2002). – IEEE
Computer Press, 2002. – P. 55–74.

Alias calculus for a simple imperative language 147

[9] Sridharan M., Chandra S., Dolby J., Fink S.J., Yahav E. Alias analysis for
object-oriented programs // Aliasing in Object-Oriented Programming: Types,
Analysis, and Verification / Eds. D. Clarke, T. Wrigstad, J. Noble. – Lect. Notes
Comput. Sci. – Springer, 2013. – Vol. 7850. – P. 196–232.

[10] Shilov N.V., Vorontsov A.P., Satykbayeva A. Alias calculus for a simple im-
perative language with decidable pointer arithmetic // Tools and Methods of
Program Analysis. Proc. of Internat. Science and Practical Conf. Kostroma
(14–15 November, 2014). – Kostroma State Technological University, 2014. – P.
29–35.

[11] Steensgaard B. Points-to analysis in almost linear time // POPL’96: Proc.
of the 23rd ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages. – ACM, 1996. – P. 32–41.

148

