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Comparison of two procedures for global
stochastic estimation of functions

E.V.Shkarupa and A.V.Voytishek

Numerical stochastic procedures for estimating integrals depending on parameter are
considered. The discrete mesh on the domain of definition of parameter is introduced,
and the Monte Carlo algorithms for estimating integral in mesh points are used. The
independent Monte Carlo estimates and the “depended tests” method are compared. It
is proved that the “depended tests” method is “better” in the sense of error asymptotics,
but in some special cases (corresponding numerical examples are given) the computational
cost for independent estimates may be less.

Introduction

For estimating the function

g(z) = Mé(z,w)

(here w - stochastic parameter; z € X, X - compact in R/, le, § -
stochastic field with [ parameters) by the Monte Carlo method one can use
the following procedures:

Procedure A. Introduce a mesh zg,z;,...,2p in X, and for every z;
realize the unbiased stochastic estimate

gni(z:) = ni Z':E(:ci,w}"))

t i

and thereafter approximate the function g(z) with respect to these values.
Here (w{')? .., wt)) is a sample of independent identically distributed (i.i.d.)
stochastic elements. In general case for different i samples are distributed
differently.
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“Depended tests” method. Realize the unbiased stochastic estimate

3u(2) = = 3 E(@5)

i=1

Here the sample of i.i.d. stochastic elements (wi,...,wy,) is the same for
all z.

Procedure B. Realize mixed strategy: use the same sample (wy,...,wy)
for the values §n,(z;) in the procedure A (here ng = ny = ... = npr = n).

The “depended tests” method was suggested in [1] and investigated
in [2-4], see also surveys in {2-4]. Procedures of the type A and B were
investigated in [2, 5-7).

Let us note advantages and disadvantages of considered procedures.
As a rule, the “depended tests” method is more simple for realization by
computer, and it gives smooth approximation for graph of g(z) in the case,
when g(z) is a smooth function. Convergence of the method is conditioned
by the smoothness of trajectories of the field {(z,w); for example, in [2, 4]
it is shown the following:

Lemma 1. Let the stochastic field

E(:r,w) = E(I’w) - g(ﬂ:)

be continuous on X in mean of p-th degree (p > 1), and for every natural
number k (1 < k < 1) there ezist derivatives

*é(zy, ..., 31)

oz ... 0T

in mean of p-th degree which are continuous on X in mean of p-th degree.
Here m; are equal to Q or 1, my + -+ my =k, z = (Z1,...,%)), i.e., the
mized derivatives of k-th order of no more than the first order with respect to
each coordinate are considered. Moreover, let D€(z) < A < 00, A = const.

Then the error of the estimate g,(z) in “depended tests” method has the
order n=Y? with respect to probability, i.e., the relation

P{ sup |3a(2) - 9(2)| < C - 072} — P{ sup |eo(z,w)| < C},
z€X zeX

is true, where &g is continuous (with respect to probability) Gaussian stochas-
tic function.
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The procedure A is on the one hand more cumbersome than “depended
tests” method, but on the other hand it allows to take into account the
peculiarities of the function g(z) using the special choice of parameters
ng, M1,...,0M, M, densities of distributions ¢;(y) of stochastic elements
(wi’), . ,w,(,,:}) and the way of approximation of the function g(z), and the
convergence of the procedure A can be obtained for more wide class of
stochastic functions £(z,w).

The procedure B, unlike the “depended tests” method, allows to choose
the way of approximation of g(z) using values in mesh points.

The procedures A and B differ in the order of convergence speed. This
paper is devoted to the more exact investigation of this difference. Here we
shall consider uniform (in probability) stochastic metrics C for estimating
the error of the procedures A and B.

1. Convergence of procedure A

Let for simplicity z = [a,b] C R and the mesh
a=zp< 1< ...<zxpp=0b

be such that z;4; — z; = h = (b —a)/M. Consider the stochastic function

M
3(@) = 3 dui(0) - pi2). (1)

It is the approximation of the function g(z) on set of basic functions {¢;}.
In this paper we choose the linear approximation, i.e., ¢; are linear finite
elements or “functions-covers” [8]

wo(z) = { (21 —z)/(21 — o), when 2 € [zo,21],

0, otherwise,

(¢ — zic1)/(zi — zi-1), when z € 2,1, 23],
@i(z) = ¢ (ziy1 — z)/(zig1 = i), when z € [z4, Tit1],
0, otherwise,
i=1,2,...,M—1,

(# —zrp-1)/(zm — 2pm-1), When = € [Tar-1,2M],

0, otherwise.

em(z) = {

We shall be interested in the error of approximation (1.1), i.e., the
stochastic value § = sup |g(z) - §(z)|. Let

z€[a,b]
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M
G(z) =) 9(zi)pi(2)

=0

be the linear approximation with exact values of the function g in mesh
points. Then

§ < sup |g(z) - G(z)| + up IG(z) - g(=)]- (1.2)

z€[a,b]

The value
6 = sup. l9(z) — G(z)|

z€fa,b)

is not stochastic and it’s estimation depends on smoothness of the function
g(z). For example, if g(z) € C®[a,b] then

61 < Ch? - |l9(2)llcija by (1.3)
where the constant C is independent from h and g(z) and
9?u
3:1:2|

lullowges = sup, [u(@)]+ sup [2%]+ sup

z€lab] :L'E[a b]

(see [8, Theorem 2.2.2]).
Now consider the stochastic value

6, = sup |G(z)- §(z)]

z€la,
M n; ‘) (1.4)
) NN )) o)
= S ;(y(w.) ;1 " pi(z))|.
Note that
b2 = _max |g(2:) — gn,(2:)]- (1.5)

‘=0111'--;M
It is the consequence of the following elementary result:
Lemma 2. Let y,(z) be the straight line, which passes the points (%¢, §o) and

(£1,8), and yg(:t:) be the straight line, which passes the points (Zo, o + 50)
and (21,9 + 61) Then

S“P lyz(ﬂ’) - yl(-l‘)l = ma.x{|60| |51|}

€ a,
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Proof. Note that
vi1(2) = Jo + (& — £0)(§1 — o)/ (1 — o),
y2(z) = o + 8o + (z — &o)(§1 + 61 — Go — 80) /(%1 — £0), z € [E0, 1).
Then
1(z) = y2(2) — 1(2) = §o + (& — 0)(81 — bo), < € [&o,21),

i.e., 7(z) is the linear function and it takes the maximum and minimum
values at the points #p and &; and then

ma,x{i ma.x y(2)|,| mm 7(m)|}

z€[zp,1) z€[Z0,&

max |y2(-"3) - y1($)|
r€[Zg,&

= max {l'f(iﬂ)l, h'(i'l)” = max {|60|7 '611}5 a

Further let us note that

T L wiy — g(z;
Z‘E(wn ] ) - g( :)’ (1.6)

i

900 0ol = _gon, | 2
J=

Let # = min(ng,n1,...,npr), then

ng R GO .
max Zg(z”wj ) g("cl) S

1=0,1,.. .M | £
1=1

n;

(1.7)

1 v (o wl) - g(ai)

Vi i=0,1,.,M ot VT
Suppose that variance function

o*(z) = M(é(,») - 9())’
is bounded on X by the value D = d?, d > 0. Then

£(ziyw “) 9(z)|

T
4 - f(:c.',w;'}) - g(z)
\/‘f__“=$?f.M ; o(z:)y/i :

By virtue of the central limit theorem [9] sums

(18)
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m (i, wl) - g(a)
2 o(i)y/ni

i=1

converge to standard normal stochastic values 7; >~ N(0,1) for # — oco. So
for the fixed confidence level p and for sufficiently big 7 we have

d -
—.T .
62(\/5 M, (1.9)

where Ty = nia.xMin;|.

1=0,1,...,

The following result is true:

Lemma 3. If {n;} is the sequence of independent standard normal stochastic
values, then the asymptotic distribution for M — oo of the value

T = max{1no, M, -, 7M}
is the following:
P{am(Tr — bm) < y} — exp(—e7Y) = A(y), (1.10)
where
1
ap = (2In M)Y?; by = (2In M)Y2 - §(2111114)-1/2(111111 M + In4r).
Note that
i
M= mln{ﬂuﬂh,n .,'?M} = -ma'x{_nla- --,"'WM},
and for sufficiently big M we have
Ty = max{Th, —tm}- (1.11)
Then, taking into account the symmetry of distribution of standard
normal stochastic values {#;} concerning nought and Theorem 1.8.3 from
[10], it is possible to assert that
P{am(Th — bu) < y} — exp(=2¢7¥) = A(y). (1.12)

Thus from (1.2)-(1.12) we have the following result:
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Theorem 1. If

(a) g(z) € CP[a,b];
(b) o%(z) = M(£(z,w) - g(2))* < d?, d > 0;

then for the fized confidence level p there ezist real constants Cy and C2(p),
natural numbers M(p) and N(p), such that for every n > N(p) and M >

M(p) fulfil

P{ sup 19) - 9(2)] < Cublg(@)lcmpen + 4/ V|21 M)

(1.14)
—(2ln M)™V/? (C2 - E(ln InM+In 41r))]} >

Remark 1. If g(z) belongs to another functional space (condition (a)),
then the first addendum in the right-hand side of inequality (1.13) is also
another (see [8, Chapter 2, Section 2]).

Remark 2. In papers [2, 5-7] the dependence from M for the error of the
procedures of the type A and B was not taken into account. For the pro-
cedure B this ignorance of the dependence from M is justified (see, further
Section 2). But in [2, 5-7] there is no exact definition what procedure is
used: A or B. So the result of this paper can be regarded as a refinement
of the results from [2, 5-7].

2. Convergence of procedure B

Here we can conduct the same reasoning as in Section 1 for the procedure A
as far as inequality (1.5)

by < ihax Ig(zt)—gn(w.)| (2.1)

Taking into account the fact that in the procedure B we choose the same
sample wy,...,w, for getting all values gn(z;) we can use Lemma 1. I
conditions of this lemma are fulfilled, then, with regard to the inequality

P{i_g}?x, l9(2:) = Gn(zi)l < C-n712} >

P{ sup l9(x) = gn(x)| < C- =2},

re a!

for sufficiently big n we have
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P{ max |g(z;)—gn(zi)| £C- n"l/z} 2 P{ sup |o(z)| £ C}. (2.2)
i=0,1,....,M z€[a,b]

Here the sign “2” means “converges or more than”.

As the process £y(x) is continuous with probability 1 on [a,b], it is
bounded with probability 1 on [a,b] [11]. So from (1.2)~(1.4), (2.1), (2.2)
we obtain the following result:

Theorem 2. If

(a) g9(z) € CDa,b];
(b) o%(z) = M(£(z,w))* = M(&(z,w) - g())? < &, d > 0;

(¢) pmcessf is continuous on X together with it’s derivative on = in mean
of p-th degree, p > 1;

then for the fized confidence level p there exist real constants Ay and Ay(p)
and natural N(p), such that for every n > N(p) fulfil

P sup 19(2)- 7 (@) < Ay Wllg(@)lory + 42077} > B (23)
T€la,

where

. M
9 (2) =) Gnl@i)pi(2).

=0

For condition (a) of Theorem 2 and for the first addendum in the right-
hand side of (2.3) Remark 1 from Section 1 is true.
Comparing Theorem 1 with Theorem 2 we note the following:

1. Estimate (2.3) is asymptotically “better” than corresponding esti-
mate (1.13), but constant A; may be rather big for some particular
cases and for moderately big M estimates (2.3) and (1.13) are com-
parable (see numerical results in Section 3).

2. For convergence of the procedure B the smoothness of the stochastic
process (in general case - field) f in mean of p-th degree is required,
but for the procedure A it is not required. However, condition (c)
of Theorem 2 can be done weaker (see, for example [12]), but in
every case it is necessary for trajectories of the filed £ to belong
to functional space, where the functional sup,¢ x u(z) is continuous,
and the choice of such spaces in not very wide [2].



Comparison of two procedures for global stochastic estimation of functions T9

3. Numerical results

Consider the example of the function g(z), where more cumbersome proce-
dure A turns out to be comparable in cost [13] with the “depended tests”
method. From Theorem 2 it is obvious that the speed of convergence in
the procedure B depends on the values of derivative of integrand on =z.
So we choose the function g(z) with the sufficiently big absolute value of
derivative on any part of it’s domain of definition. Let

1 1
o2) = [ ey = [y = o+ a)(eHeH) - 1),
0 0

where z € [0,1] and a is small parameter (in calculations @ = 0.2). Func-
tion f(z,y) has sufficiently big absolute value of derivative on z in the
neighbourhood of the point z = 0. Construct the mesh

To=0, & =:i4001, i=T,20, z;=02+0.1+(i—20), i= 21,28,

which “exaggerate” near zero.
We estimate the values of the function g(z) in mesh points z; for the
procedure B according to the formula

gn(zi) = ;1; > fir @),
i=1

where o; is realization of stochastic quantity uniformly distributed on the
segment [0,1].

Previously it was noted that the procedure A allows to vary the density
of distribution of stochastic parameter w in different mesh points z;. On the
other hand we must take into account that the separate processing of every
mesh point and realization of stochastic quantities with complex densities
of distribution lead to the drastic increase of computational expenditures.
So we use the following modification of the procedure A. Divide the segment
[0,1] to parts

Ty =[0,0.05), T;=1[0.05,0.1], Ts=[0.1,0.15],
Ty =[0.15,0.2], T =1[0.2,1].

On every part T we use the “depended tests” method with the optimal
[13] density
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1/2
a(y) = (Zfz(-'ﬂi,y)) [T, €Ty k=1,2,3,4,
i

here

1
Ik=/(z‘_:f2($s,y))mdy

0

On the fifth part T5 we use uniform density. Integrals Iy, k¥ = 1,2,3,4 are
calculated by the Monte Carlo method with uniform density.

In this case values of the function g(z) in mesh point z; from the part
Ty are estimated by the formula

f(:,9))
Im(mi) = o Z qx(6; ;

=1

where 8; is the realization of stochastic quantity distributed according to
the density gx(y) (here we use “exclusion” method [13]).
Results of calculations are shown in Table.

Table. Comparison of the procedures A and B

Number of part
Characteristics
1 2 3 4

Number of (A) 50 50 50 50
tests (B) | 1000 | 1000 | 1000 | 1000
Absolute (A) | 0.775 | 0.153 | 0.046 | 0.054
error (B) | 0.818 | 0.266 | 0.147 | 0.096
Relative (A) | 263 ] 128 o0.61 | 1.20
error (%) (B) | 277 | 223 | 196 | 1.76
Selective (A)| 3901 059 | 0.14 | 0.06
variance (03) (B) | 1420 { 149 43 17

2, (A)] 400 o052 009 040
Cost (t-93)  (B) | 38.34 | 405 | 1.16 | 0.46

t — computer time for realization of one stochastic value.

Thus, calculations prove the truth of the note in Section 2 that using
the procedure A for processing with peculiarities of the function g(z) one
can obtain the gain in cost compared with the “depended tests” method.
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