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Numerical research into channel currents with
a flat plain model∗

V.A. Shlychkov

1. Introduction

Mathematical modeling is a tool of the prime importance for the run-off
formation study. It gains in importance under condition of a sparse and
out-of date monitoring network typical of majority of the Siberia regions.
In analyzing the spatial-temporal laws of the run-off formation in large river
basins, the main problems are associated with the absence of a basic hy-
drological model capable of treating real hydrological and hydro-chemical
observation data.

A method of solution for variable-depth flows in arbitrarily-shaped do-
mains are currently underestimated. The water level rise and fall can result
in a change of the shape of an area due the islands submerging, sandbanks
emerging, inundation of floodplains, etc. This requires the formulation of the
edge problem with unknown boundaries, tracing through all wetted perime-
ters, and foreseeing the formation of new internal boundaries in the form of
islands due to the shallow water places drying up. Conventional methods of
solving such problems (e.g., the fictitious domain method) encounter severe
algorithmic difficulties associated with problem degeneracy under condition
of water layer disappearance, with development of multilogic systems, and
with excessive intellectualization of a program.

Comprehensive methods of computational mathematics allow us to avoid
these difficulties through the use of monotone numerical schemes. The mono-
tonicity property itself provides the non-negativity of calculated values such
as a water layer thickness h, the Celsius temperature, admixture concen-
tration. The application of monotone scheme, for example, h, ensures the
fulfilment of the relation h ≥ 0 within the whole definition domain includ-
ing shallow waters and dry places where h = 0. Hence, such an approach
does not require building the algorithm of non-calculated areas formation,
but allows us to assume h = 0 for dry places and to integrate the equa-
tions through the whole domain. The external boundary in this case can
be located along the watershed line or assigned according to topography
peculiarities.
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2. Basic equations

The below-formulated hydrodynamic model formulated below is designed
for calculation of a flow field, run-offs, levels, turbulence characteristics, and
a free water surface shape in natural reservoirs of an arbitrary configuration
or in their parts.

The majority of lakes and water storage reservoirs in Western Siberia are
characterized as shallow (a mean depth of 2–4 m) and flat-bottomed, with
shallow-incised beds. Thermal and density stratification of such reservoirs
is not significant, and currents are generated mainly due to the wind forcing
and bottom slope. For such conditions, we can assume that processes are
hydrostatic and proceed to a flat horizontal problem [1, 2].

Let us introduce the Cartesian coordinates with x-, y-, and z-axes, where
z-axis is directed upward. Assign the sea level of reservoir (including channel
beds) by the equation z = δ(x, y). The initial equations are considered in
the area, whose shape can change with time, e.g. as a result of a water level
rise or a storage decrease.

If a current is assumed to be turbulent, then the equations of horizontal
(plain) movement of water are derived from the Reynolds equations by av-
eraging along the vertical axis. Consider the velocities averaged along z-axis

ū = 1

h

∫ h

δ
u dz, v̄ = 1

h

∫ h

δ
v dz, where u, v are components of the horizontal

velocity vector along the axis x and y; h is the flow depth. After elimina-
tion of the bar over variables, the system of plain current equations can be
written down as follows:
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where τx, τy are wind stresses, r is a bottom friction coefficient, |~u| is a
current velocity module, Kx, Ky are turbulence coefficients, Ra is the source
intensity (precipitation), I is infiltration and evaporation.

Setting up the boundary conditions is done according to morphological
characteristics of a reservoir and by the water exchange type. To describe a
closed-loop reservoir the conditions of non-leakage and friction against the
side walls of the channel bed are set for the lateral boundaries
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un = 0, K
∂us

∂n
= −cu|~u|us for (x, y) ∈ Γ, (2)

where Γ is a domain boundary, n is the external normal to the boundary, un,
us are normal and tangential components of the horizontal velocity vector,
cu is a resistance coefficient along the coastline. If there are open (liquid)
boundaries, the discharges Q(x), Q(y) for assigned sections must be known:

hu = Q(x), hv = Q(y) for (x, y) ∈ Γ, (3)

or turbulent water flows must be set for the output section lines, e.g. in the
form

hK
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∂n
= 0 for(x, y) ∈ Γ. (4)

Modeling of the turbulent exchange is performed on the basis of a two-
parametric system of equations of a semi-empirical theory of turbulence [3].
Equations for the density of the turbulence kinetic energy (TKE) e and for
the TKE dissipation rate ε averaged along z-axis have the form
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where Pe is a near-surface flow of the TKE induced by a wind wave, αe, cµ,
c2, c3 are empirical constants [4], Jxy = u2

x + u2
y + ū2

z + v2
x + v2

y + v̄2
z − S0,

S0 is a parameter reflecting the water layer average stratification, ūz, v̄z

parametrically describe the velocity gradients along z-axis. The last relation
in (5) expresses the Kolmogorov closure hypothesis.

The system of equations of a subgrid-scale closure for plain currents was
derived by means of vertical averaging of equations of spatial turbulence
model [5]. Equations in the presented form describe, in particular, the known
non-trivial solutions corresponding to a horizontally homogenous flow with
a vertical shear of velocity (the wall-adjacent layer of constant flows). This
circumstance permits the use of equations of eε-model for the calculation of
the horizontal turbulent exchange.
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3. Methods of solution

The boundary approximation of the initial domain is fulfilled by projecting
it onto a regular-cell grid space. The points having missed the domain are
excluded from the numerical integration. The boundary contours represent
a piecewise-linear surface formed by the finite elements of tangential hyper-
planes. There are no severe restrictions for the boundary topology, and the
domain multiconnection is assumed. The technology of digital reconstruc-
tion of boundaries is automated.

Methods of solving equations are based on discretization of initial sys-
tems in the grid space. Non-uniform rectangular grids are used with points
spaced apart to the sides of an elementary simulation box. “The loose”
grids allow building the conservative difference schemes, and applied im-
plicit methods ensure the method stability in the coarse of the long-term
integration [6].

The spatial approximation of differential operators is based on the cur-
rent concepts of monotone or TVD-schemes (Total Variation Diminish-
ing) [7].

4. Numerical experiments

The possibilities of model can be illustrated by calculation of a current
within 3-km length of the Ob river in the region of Barnaul city water
intake. Figure 1 shows the reservoir morphometry. The river width is 600–
700 m, a maximum depth is 11 m. The interest attracted to this study lies
in progressing the bottom load transport, which impedes an exchange in a
submersible channel of the water intake. The problem is solved in a channel
with rigid walls and a rough bottom. The given experiment is restricted by
analysis of the steady-state conditions with an input section line discharge
of 1300 m3/s. In this case, the current function ψ can be introduced (isolines
are shown in Figure 1). The flow is directed along the deep-water part of
the channel to the north, and the current hugs the right bank. A zone of
low velocities marked with closed lines of the current is formed after the
channel bend. This zone formation is similar to that of detached flows in
the hydrodynamic flow round an inverse bench.

The back-water zones with rotor currents are also formed in the river
dead end (back-water in the upper part of Figure 1) and in the middle
part of the domain. Velocity and discharge values are small in these zones,
which is shown in a discharge diagram built for x = 1200 m (see Figure 1).
In this part of the channel a maximum current velocity is approximately
50 cm/s, but it increases with approaching the output section line due to
the channel narrowing and the wetted cross-section reduction. The friction-
induced water level fall is 28 cm.
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Figure 1. The current function isolines and the structure of a cross-section
discharge (the central part) of the Ob river stretch near Barnaul city

The second example is a current in Novosibirsk water storage reservoir,
for which necessary data are available. Processes in the submerged river
valleys are characterized by a slow water exchange. Parameters of the water
exchange in reservoirs strongly influence all the internal processes–– channel,
chemical, biological, etc. In this connection, a detailed current pattern in the
limnetic part of the reservoir is critical, since different types of a current can
be observed–– from rapid deep-stream currents to still-water and back-water
ones.

A digital bathymetric map of the reservoir for the area of 40× 160 km2

has 300-m resolution and contains about 70,000 points. Analysis of mor-
phometric characteristics shows that there are marked channel and limnetic
parts of the current downstream up to the section line of a hydroelectric
power plant. In the valley part of the channel, in particular, near Zavyalovo
village, there are many islands and sand-banks.

An attempt of the direct boundary approximation in a complex multi-
connection domain runs across some severe difficulties during realization of
boundary-value problem. For example, one boundary point near an island’
prominence can be connected with two or more calculated near-boundary
points. This results in the disturbance equation balance and boundary con-
ditions and makes the boundary-valued problem overestimated, i.e., incor-
rect. So, the technique of one formulation of a problem without boundary
conditions is used in this case. The calculation method allows one to solve
such problems on the basis of the apparatus of non-oscillating interpolants.
The model in such a presentation provides a uniform calculation of dry
plots wetted by the water, a description of submerging islands, flood-lands,
etc. without special isolation of dry or submerged areas and organization of
curvilinear boundaries of a variable configuration.



90 V.A. Shlychkov

Figure 2. Spatial distribution of the discharge Qy (m2/s) for the
channel length of Novosibirsk storage reservoir near Zavyalovo vil-
lage in no-wind conditions (left) and with north-east wind (right)

Near to Zavyalovo village, there is Novopichugovskoye sand and pebble
deposit currently developed with a suction dredger. The open mining can
result in the channel deformation due entering suspended solids into the flow
and their further transportation and deposition. So, the study of the current
velocity mode and revealing possible ways of the admixture transport in this
region is interesting.

The channel width in this part of the reservoir is 5–7 km. Figure 2 (left)
presents the structure of y-component of the discharge vector Qy = hv at
the channel stretch of 20 km of length in the vicinity of Zavyalovo village.
At the entrance range of the channel, the full discharge was assigned as Q =
1300 m3/s, which corresponds to a fall of low-water level. The calculated
field of velocities obtained in the experiment was characterized by relatively
small values, i.e., below 7 cm/s. At such velocities, the impact of surface
wind stresses becomes significant. Thus, with a south-west wind (along the
stream) of a force of 5 m/s, the flow velocity twofold increases which is
consistent with observation data.

A moderate wind of 7 m/s speed of the opposite direction blowing up-
stream is responsible for a single jets’ production–– wind belts oriented up-
stream. Such jets are shown in Figure 2 (right). They are essentially non-
stationary, i.e., they occur, migrate, dissipate, and result from interaction of
two antagonistic factors –– a channel flow and a contrary wind. Wind belts
can be interpreted as coherent structures, i.e., eddy stochastic formations
within the turbulence field, which keep stability for a definite time. It should
be noted, however, that the phenomenon described above can be observable
at a long-term (several hours) wind load.
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5. Conclusion

The two-dimensional numerical model of plain currents is designed for dis-
charge calculation and water levels in water streams and water basins with
complex geometry. The numerical experiments show that the spatial struc-
ture of channel currents can be essentially inhomogeneous and include rota-
tions and backwaters, as well as jets directed the other way to main stream.

The model can be applied as a tool for the description of the hydrological
processes in the scale of local river basins, river channels with islands and
floodplains of complex configuration, and for water management decisions.
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