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Application of eddy-resolving models
for penetrating turbulent convection
in the atmosphere and deep lakes*

V.A. Shlychkov, P.Yu. Pushistov

This paper presents the results of the numerical research into the generation
of the free thermal convection in the atmosphere and lakes on the basis of the
mesoscale eddy-resolving models. The surface values of the heat flux into the at-
mosphere and the temperature of the lake surface are taken from observational
data. The convective mixing processes in both natural media are analyzed.

1. Introduction

The penetrating turbulent thermal convection is an important physical me-
chanism providing the mass-energy transfer in the atmospheric boundary
layer (ABL) and the upper mixed layer (UML) of the deep lake [1]. Due to
the complexity of the phenomenon and a deficit of the natural observations
data [2, 3], mathematical modeling appears an effective tool of studying
both individual thermals and ensembles of coherent structures (CS) of the
convective nature [4-6).

The method of large eddies simulation (LES) is applied in this paper for
the direct determinate description of penetrating convection, taking place in
unstable stratification of near-surface layers of air and water. Examples of
the formation of such a stratification in natural conditions with simulations
formation of ensembles of the penetrating turbulent convection in both nat-
ural media are processes of the night-time cooling in the diurnal cycle of the
heat exchange between the lake and the atmosphere in the spring-summer
period [7-9} and processing of cooling of deep lakes late in autumn and in
winter [9]. In these cases, the cooling intensity of the near-surface layers of
air and water is directly dependent on the horizontal transfer of the cold
air masses from the coastal zone to the warm lake (land breezed and frontal
advection in spring and in summer, transport of severely cooled air from the
land to the lake at the time preceding freezing-over). Within the present
model this process is parametrically described with the help of setting the
cold air mass advection.
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2. Equations for the atmospheric model

In the convective ABL there are three main types of interaction, impor-
tant in terms of energy, processes of difierent scales; (1) the ordered mean
motions; (b) coherent structures (“large eddies”) with characteristic size,
comparable to the boundary layer thickness; (c) isotropic small-scale (sub-
grid) turbulence arising, du> to the action of bnoyant forces and shear of
velocity.

Let us introduce the rectargular Cartesian coordinate systemn (z,y, z),
where the axis z is directed vertically upward, and the level z = 0 coincides
with the surface of the “water-air” interface. Let us present the sought
for vector-function ¢ = (u,v,w, 8, ), where u, v, w are components of the
velocity vector along the axis z, y, 2; 0 is potential temperature, 7 is an
analogy of pressure as, a sum

$=0+¢, (1)

where the fields ®(z,t) = (U,V,0,0,II) and the fields ¢' = (¢, ¢/, w', &', ')
describe the processes (a) and (b), respectively, [10].

Let L., L, stand for horizontal sizes of the domain, where a non-station-
ary penetrating convection as an ensemble of spontaneously firming thermais
(CS) is generated, and let us assume the periodicity of the processes along
z, y. Note, that discretization of the domain with L, = L, = 10 km on
the grid point with 128 x 128 nodes, admits the realization of an ensemble
containing up to 100 convective formations of different size and intensity.
The periodically condition is associated not with an individual thermal, but
with the domain as a whole and has a sense of statistical homogeneity of
processes for z > L., y > Ly, respectively. In this case, the problem of
boundary conditions with respect to z, y is simultaneously solved.

Substituting representation (1) to the equations of mesoscale atmospheric
dynamics [11], let us average them in the horizontal plane, making use of
Reinold’s rules: )
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- by r Ly
o =0, ¢=9, wheré fz—I:E;-o A fdzdy.

As a result we arrive to the system of equations describing the mean current
in the ABL:
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where Ug, Vg are the geostrophic wind components caused by the baric
gradient in the free atmosphere, ! is the Coriolis parameter, K is the coef-
ficient of the vertical turbulent exchange of subgrid scale, K7 = K /Pr, Pr
is the Prandtle number in the ABL, and Adve is the function describing in
the parametric form the temperature advection. Here and below primes at
convective deviations are omitted.

Let us simulate the mean current subgrid-scale turbulence in the ABL
on the basis of equations of the semi-empirical turbulence theory:

gb 9 b de 10 .0 ¢ € b?

—=—K—+KJ~ —w=—-aK——-KJ-c3—, K=cr—

ot 321{32+K “ B aazKaz CleJ Ky Y (3)
where b is the kinetic turbulence energy (KTE), ¢ is the dissipation rate,
J = (U2+V})~ AO,/Pr is a source generating the KTE, X is the buoyancy
parameter, ¢k, €1, €2, 0 are empirical constants.

The system of equations for the description of the mesoscale convec-
tive processes (b) in the ABL is obtained by the component-by-component
subtraction (2) from the respective equations of the original system:

du ou on a_du 0
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vw,

dv v on a . . 0v @
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where
d a 0 d 0
E}‘—E+(U+u)%++(v+0)%+w$

is the operator of an individual derivative, A = ai:f + 5‘9;?,—, and u is the
coefficient of lateral turbulence of subgrid scale.

3. Equations of the lake model

Separation of the processes in the lake as mean and conditioned CS [3] can
be done in the same manner as this has been done for the ABL. In this
case, the characteristic spatial scales of the hydrological CS would be, at
least, two orders smaller than these scales in the ABL. Using the splitting
procedure in analogy with the ABL as applied to the lake, we obtain a
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system of equations for the mean homogeneous current in the UML having
the characteristic vertical scale ~ 10 m.

au ~ a -oU 0 —~
E—IV-I-E;K—B'-;—EHHJ,

v. .9 L0V 8~
-b?——IU-{-B—z*K—é-;—auw, (5)
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where T is temperature of the mean current, T are temperature deviations
(here and further the values with tilde correspond to the notations of the

" ABL, but refer to the UML). The averaging operator ? is similar in its
structure to the above-introduced operator f, the sizes of the averaging
domain in the UML L, I:y are also subject to determination. The last term
in the heat flux equation in (5) describes the direct solar radiation flow R,
with an absorption fraction fg,.

The equations b—¢ of the model for the lake are of the form

i = F .. 2 ~ 2
0b_ 0z i 06_L10 g0 o %JI -&2‘%, K= a,,b~, (6)
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where J = (U2 +V2) - gB7T,/Pr, g is the acceleration due to gravity, Ar(T)
is the coefficient of the water thermal extension.
The system of equations for the description of CS in the lake has the
form:
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where N 5 5 " 9
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Z
$ is pressure, o is the mean value of water density.
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4. Boundary and initial conditions

We define the vertical structure of the domain in the following way: H is the
upper boundary of the ABL, h is thickness of near-water air layer, for which
the assumption of constant turbulent fluxes is valid, z = 0 is the surface of
the “water-air” interface, 2 = H is the lower boundary of the active layer in
the lake.

For the mean current equations in the ABL (2), (3) and the UML (5),
(6) let us set the following conditions:

00 de
U—UG, V—-VG, -é?—‘)’H, b—O, £=0 atz:H, (8)
I(Z—U = c,|U|U, K%": = ¢, |0V, -—pgcpK = Qr,
ab d¢
I(a = 0, I(& = —K.()U,.é at z = h, (9)
;4 U .oV av
poffa = pngz—, poKE = ,OuKE, T= To,
I‘(-‘?E=O K =0gh'?  atz=0; (10)
az * ?
.. or = 0¢ =
U=V =0, 37 = TH> b=0, 6—2-—0 at 2 = H, - (11)

where vy is the standard stratification of the free atmosphere, ¢, is the re-
sistance coefficient, Qr is the heat flux from the lake to the atmosphere, ¢, is
the specific heat of the air at constant pressure, g is the Carman constant,
U, is dynamic velocity in the near-water layer, Tj is the water surface tem-
perature, /g is the turbulence scale in the subsurface layer, connected with
the wind-wave disturbance intensity, 45 is the stable temperature strati-
fication of the lake at depth. In the given statement, we have restricted
ourselves by a priori setting the values Qr and Tp, so that the ABL- and the
UML-models have appeared to be thermodynamically disconnected. Such
an approach makes it possible to elucidate the possibility of occurrence of
the convective instability on the basis of real values Q7, T, taken from ob-
servations. A more general statement provides “sewing” of temperatures
with allowance for a cold “film” in the water and formulation of the heat
balance equation on the surface.

Let us formulate the boundary conditions for systems (4), (7). Formally
speaking, these conditions should supplement the back ground conditions
and be in agreement with them. It is possible, however, to consider the
convective structures in the ABL to intensively develop above the near-
water layer, i.e., at z > h. This fact fully corresponds to theoretical and
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experimental concepts on the physics of processes near to the underlying
surface. Thus, we write down

v=v=w=0, =0 atz=H,; (12)
v=v=w=0, 0=46(,z,y) atz=h; (13)
i=0=w=0, T=Tptz,y), atz=0; (14)
i=o=w=0, T=0 atz=H, (15)

where 8o, Tp are random low-amplitude temperature perturbations.
The following initial conditions were set for (2) and (5)

d=>0y D=, att=ty, (16)

where @y, ®, are stationary solutions of systems (2), (5) in the absence of
convection and Advg = 0.

The formulated problem (2)-(16) was solved by an implicit finite differ-
ence method based on a version of the splitting method. Equations (4), (7)
were discretized in terms of the initial variables “velocity—pressure”. The
numerical algorithm includes stages of the transfer and the turbulent ex-
change in each of the directions z, y, z and the correction stage, providing
the dynamic conformity of the fields and the increase of accuracy of the
scheme by the reaccount of nonlinear terms. The scheme has the second ac-
curacy order in all the variables and is stable within the range of admissible
values of physical parameters.

5. Calculation results

As source data for the model of the ABL, we look an explicit heat flux
obtained from the field experiment on lake Krasnoe in the summer of 1984
[8]. The daily variation Qz(t) is shown by solid curve in Figure 1.

Assume that at the initial moment ¢ty = 18 hours L.t., the lower part of
the ABL, the near-water layer included is neutrally stratified, and above-it
is stable with ©, = vyg. Let us set Ug = Vg = 0 according to a synop-
tically situation during the observations period (calm or very weak wind).
The near-water layer is cooling with mean rate 1.5°C/hour on the interval
from 8 p.m. to 4 a.m. This causes accumulation of the thermal energy in
the lower ABL and brings about the formation of an unstably stratified
near-water layer. As a result, small perturbations increase with time up
to the finite amplitudes which in this case are § ~ 0.3°C, w. =~ 1.5 m/s.
The configuration and size convective elements can inferred from Figure 2,
showing the isolines of the field w(z,y) at 2 = 200 m obtained at { = 2 h.Lt.
Figure 3 illustrates the vertical sections of the temperature deviations field.
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Figure 1. A fragment of the daily variation of the explicit heat ﬂui Qr (solid
curve) and the water surface temperature T, (dashed curve) on evidence derived
from observations (8]

Figure 2. The field w(z,y) in the convective ABL above the lake
at ¢ =2 hours, z = 200 m (maxw = 1.5 m/s, minw = —0.7 m/s)

The cold “caps” are formed above the largest thermals (z &~ 700 m), and
the entrainment mechanism is realized at their cost. The presented struc-
ture of convective fields is similar to the structure obtained in [12], where
convection is simulated in the marine boundary layer.

Figure 4a presents the vertical profile of the mean potential tempera-
ture (continuous curve 1) and the turbulent exchange coefficient (continu-
ous curve 2). In the figure, the level z = 0 is made coincident with the
upper boundary of the constant fluxes layer. The distribution of ©(z) has
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Figure 3. The vertical section of the field 8 at ¢ =2 hours
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Figure 4. The vertical distribution of a) potential temperature (curves 1) and the
turbulent exchange cceflicient (curves 2); b) convective (curves 1) and turbulent
heat fluxes (curves 2). The solid lines correspond to the complete problem with
Ug = Vg = 0, the dotted lines correspond to Ug = 5 m/s and the dashed lines —
to the purely gradient-diffusive problem

appeared to be intrinsic of the convective ABL, i.e., the mixing layer with
weakly stable stratification up to heights z &~ 500 m with the characteristic
reverse layer above this level; below is a thin layer (a few dozen meters) with
a superadiabatic gradient ©,. The value of K does not exceed 5 m?/s. The
structure of the convective heat flux w is shown in Figure 4b (continuous
curve 1); the turbulent (subgrid) heat flux —~K©, is shown by continuous
curve 2. The dotted curves in Figures 4a and 4b correspond to the version
with Ug = 5 m/s (weak wind in the ABL). In the main thickness of the mix-
ing layer 8w 3> — K©,, which is backed by the results of observations and by
comparing four spatial LES-models ABL over the ocean [6]. The authors’
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interest to conduction the calculation with a purely diffusive K -model, i.e.,
when fw = 0 is set in system (2) was quite natural. From Figure 4a (dot-
ted line 1) it is seen that K-model unsatisfactorily reproduces characteristic
features of the temperature distribution in vertical.

The stage of the maximal convection generation falls on 2-4 a.m. L.t.,
the mixing layer attaining the heights of &~ 1000 m. As energy supply
from the near-water layer at ¢ > 6 hours (Figure 1, solid curve) decreases,
instability of the lower part of the ABL is weakening and the convective
activity gradually attenuates.

6. Conclusion

A step forward in the direction of constructing the combined ABL and UML
model has been done. On the basis of such a model it appears possible to de-
scribe a very complicated mechanism of the energy-mass exchange between
the lake, the adjacent land and the atmosphere. Such the model could serve a
hydrodynamic basis for the development of a complex geospheric—biospheric
model of ecosystems of large lakes of moderate latitudes. The constructed
3D convection model in the atmosphere and lake makes it possible to reli-
able describe both the mean currents fields and a thin space-time structure
of the turbulent currents with CS, arising with the developed penetrating
convection above a relatively warm lake at the night time*.

The development and realization of a target observational programme
intended for obtaining the maximally complete data information of the pa-
rameters of the energy-mass exchange between the two most important com-
ponents of nature are extremely important for construction and verification
of models of the atmosphere-lake interaction.
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