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Comparative analysis of finite element
approximation for the Navier–Stokes equations

with basis functions of different orders

E.P. Shurina, A.V. Gobysh

Abstract. Finite element methods (the Uzawa algorithm and a mixed finite ele-
ment method) for the solution of the Navier–Stokes equations on triangular grids
are considered. For approximation of velocity and pressure, interpolating functions
from different finite element spaces are chosen. The properties of the algorithms
are tested on an analytical test example.

1. Introduction

The solution to the Navier–Stokes equations for an incompressible fluid flow
is one of the main problems in the field of computational fluid dynamics.
The Navier–Stokes equations form a set of coupled equations for both veloc-
ity and pressure (the gradient pressure). One of the main problems related
to the numerical solution to these equations is imposition of the incompress-
ibility constraint and, consequently, the calculation of pressure. The method
of calculation of pressure is not obvious. Pressure is not a thermodynamic
variable, as there is no equation of state for calculation of pressure. The
mathematical importance of the pressure in an incompressible flow lies in
the theory of saddle –– the point problems where it acts as a Lagrangian
multiplier that constrains the velocity to remain divergence-free.

For modeling of an incompressible flow, oscillations of solutions are arisen
when these features are not taken into account in numerical schemes. Using
the finite element approximation, there arise major difficulties in solving
the incompressible Navier–Stokes equations: 1) how to choose interpolating
functions for approximation of velocity and pressure to ensure the existence
of the solution pair (u, p), where u is velocity, p is pressure; 2) how to deal
with nonlinearity in the momentum equations; 3) how to interrelate “ve-
locity–pressure”. A variety of incompressible viscous flows can be analyzed
via three formulations for the Navier–Stokes equations which are: 1) the
original “velocity–pressure formulation” [2, 6–10, 16]; 2) vector potential ––
vorticity vector, formulation [4, 6, 7]; 3) the velocity and the vorticity vector
are taken as dependent variables, formulation [13, 14, 17]. Each formulation
has its own advantages and drawbacks. A more detailed review of these
formulations is given in the book [8].
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The velocity–pressure formulation for the Navier–Stokes equations is
considered in the present study. There are numerous methods for approxi-
mation of the Navier–Stokes equations in the velocity–pressure formulation,
which are finite element method (FEM) [2–4, 10, 12, 16], finite volume
method (FV) [6, 8], spectral method [8, 9], and methods combining advan-
tages of the FEM and the FV [2, 12].

Essential advantages of the FEM for an incompressible fluid flow are con-
servatism and absolute stability [4, 5, 11]. The main difficulties of using the
FEM are dealt with selection of approximating and weight functions. In-
terpolating functions of equal orders for the velocity and the pressure bring
about the singularity associated with application of a discrete continuity
equation [8]. For the finite element approximation of the Navier–Stokes
equations it is necessary that the degrees of approximation for velocity and
pressure be satisfied by the Ladyzhenskaya–Babuska–Brezzi (LBB) condi-
tions [2, 3, 7]. This condition means that the degree of approximation for
the pressure should be one or two degrees lower than that for the veloc-
ity. Interpolating functions satisfying the LBB for the approximation of the
Stokes equations (the Navier–Stokes equations) are called div-stability. In
the case of unsatisfactory div-stability of the finite element approximation,
the resulting solution is less accurate, and the convergence conditions are
not valid.

One of the methods of the fulfilment of the incompressibility constraint
is the penalty method, which is gaining in importance in the finite element
computations [8, 12]. Here the continuity equation is perturbed with a
small term proportional to pressure. This leads to decoupled problems for
both velocity and pressure. The adequacy of this mathematical performance
for the Stokes equations is considered by Temam [7]. The penalty method
is more efficient as compared to the mixed method. The velocity and the
pressure are computed in the hypervector, and this is a characteristic feature
of the mixed method.

Coulliette and Koch [12] reported that neither the penalty nor the mixed
finite element method is able to sufficiently satisfy the condition div u = 0.
Essentially better results are obtained by the Uzawa algorithm [9, 10], which
is used in the theory of saddle-point problems. For the improvement of
convergence properties the Uzawa algorithm is combined with the penalty
procedure [12].

A semi-implicit method for pressure-linked equations (SIMPLE) are pro-
posed by Patankar [6] to couple the velocity and the pressure fields. The
FV discretization of equations on staggered grids is used in this class of
algorithms. Application of SIMPLE in the original formulation for a wide
class of problems implies that the insertion of pressure correction adjusts
the efficiently of the velocity field, but a rapid convergence for pressure is
not obtained. The modified algorithm SIMPLER (SIMPLE Revised) is de-
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veloped for the improvement of convergence. Application of the SIMPLE
algorithm allows us to obtain non-degenerate approximations using equal-
order basis functions for velocity and pressure. For the convergence of
this algorithm several iterations are necessary although the number of op-
erations for a SIMPLER iteration need more than those for a SIMPLE
iteration.

Patankar [6] reported that the superposition of pressure points with
velocity points leads to the pressure fields oscillations in the finite differ-
ence context. For the calculation of the gradient pressure, using a center-
difference scheme, the pressure is taken on a coarser grid, and therefore a
“saw tooth” pressure field is interpreted as homogeneous. Application of
a staggered grid enables us to constitute a link between values of veloc-
ity and pressure. As a rule, the oscillations increase for a high Reynolds
number, since the dissipative terms joining the values of velocity and pres-
sure at neighboring vertices are small. To solve this problem, Harlow and
Welch [15] proposed to calculate the pressure and the velocity components,
respectively, at vertices and edges of a finite difference grid.

The “pressure problem” is actual on an unstructured grid. The major
achievements in this field are associated with a collocated stencil. These
methods are associated with averaging of a coefficient on the edge in the
momentum equations. This technique needs calculation and storage of the
edge and the nodal values of velocity that make difficulties for applica-
tion of a collocated stencil. To overcome such difficulties, the staggered
discretization was proposed for an unstructured grid. A staggered sten-
cil of variables is equivalent to using of different orders of interpolating
functions for velocity and pressure in the finite element context to sat-
isfy the LBB condition. The div-stability interpolating functions do not
lead to oscillations of a pressure field. However, in many case the choice
of interpolating functions for pressure displays the chess effect. The clas-
sical approximation of velocity–pressure using 12 degrees of freedom for
velocity and three degrees for pressure can give oscillations of a pressure
field.

In paper [16], four types of mixed interpolation elements are considered
and compared. These are, namely: six-node triangular elements, eight-node
serendipity elements, nine-node Lagrangian elements and four-node quadri-
lateral elements. The results obtained indicate that for same number of
pressure unknowns, serendipity elements can give considerably less accu-
rate pressure fields than most of other types of elements. The Lagrangian
elements give the most accurate pressure and velocity distributions. The
numerical performance of triangular elements is intermediate in accuracy
and is dependent on the triangular pattern used. The four-node element
can generate spurious pressure modes depending on the boundary condition
specifications.
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2. Governing equations

The stationary, incompressible Navier–Stokes equations in the velocity–pres-
sure formulation are given by the momentum equation

−ν∇2u + (u · ∇)u +∇p = f (1)

and the continuity equation
∇ · u = 0 (2)

in Ω ∈ R2, x = (x, y) ∈ Ω. Here u = (u, v)T is the velocity vector, p is the
pressure, f = (fx, fy) is the body force vector, ν is the kinematic viscosity.
The boundary condition on the boundary Γ = ∂Ω are

u|Γ = g. (3)

3. Finite element approximation of the Navier–Stokes
equations

Discretization of the domain Ω in the finite elements Ωh is assumed. The
finite element space for the velocity is defined by V h ⊂ H1

0 (Ω) × H1
0 (Ω)

and that for the pressure –– by P h ⊂ L2(Ω), where H1
0 (Ω) = {v ∈ H1(Ω),

v|Γ = 0}. Using the test functions vh ∈ V h, qh ∈ P h, one can obtain
the discrete Galerkin equations (a weak formulation) for the Navier–Stokes
equations:

Find uh ∈ V h, ph ∈ P h such that

a(uh,vh) + c(uh,uh,vh) + b(vh, ph) = (f ,vh), vh ∈ V h, (4)

b(uh, qh) = 0, qh ∈ P h, (5)

with

a(u,v) =
∫

Ω
∇u · ∇v dΩ, b(u, q) = −

∫
Ω

(∇ · u)q dΩ,

c(u,v,w) =
∫

Ω
[(u · ∇)v] ·w dΩ, (f ,v) =

∫
Ω

f · v dΩ.

The incompressibility term (5) is penalized by the pressure in the form
b(uh, qh) = ε(ph, qh), where ε > 0 is an arbitrary penalty parameter. Substi-
tuting it in the discretized Navier–Stokes equations (4) eliminate the pres-
sure from the problem thus reducing the total number of degrees of freedom
of the problem. The nonlinearity in the momentum equations is performed
by the Picard procedure:
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c(un−1,vn,w) =
∫

Ω
[(un−1 · ∇)vn] ·w dΩ,

where n is a step of the iterative procedure. This will yield a global matrix
system for the calculation of the velocity and the pressure.

Let the initial velocity u0 and the initial pressure p0 be guessed.
In Uzawa algorithm, the velocity and the pressure at (n+1)-th iteration

are computed from(
D + C +

1
ε
QM−1

p QT
)
un+1 = F + Qpn,

pn+1 = pn − 1
ε
M−1

p QT un+1.

In the mixed method, they are computed from(
D + C −Q

QT εMp

) (
un+1

pn+1

)
=

(
F

εMpp
n

)
(6)

The notations used are the following:

• the diffusion matrix D is assembled with

[Dk]ij =
∫

Ωk

(
∂wi

∂x

∂wj

∂x
+

∂wi

∂y

∂wj

∂y

)
dΩ, i, j = 1, . . . , eu;

• the convection matrix C:

[Ck]ij =
∫

Ωk

(
ulwl

∂wj

∂x
+ vlwl

∂wj

∂y

)
wi dΩ, i, j, l = 1, . . . , eu;

• the matrix associated with the gradient operator Q:

[Qk]ij =
(∫

Ωk

qi
∂wj

∂x
dΩ,

∫
Ωk

qi
∂wj

∂y
dΩ

)T

,

i = 1, . . . , ep, j = 1, . . . , eu;

• the mass matrix for the pressure Mp:

[(Mp)k]ij =
∫

Ωk

qiqj dΩ, i, j = 1, . . . , ep;

F is the source terms; wi, qi are interpolating functions for the velocity
and the pressure, respectively; Ωk is element of the triangulation; eu, ep

depend on order of interpolating functions for the velocity and the pressure,
respectively.
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The velocity and the pressure are computed in the hypervector (u, p)T

and thus is a peculiarity of the mixed method (6). The LBB condition or
the inf-sup condition for a pair of discrete finite element spaces (V , p) is a
sufficient condition to ensure the existence of a finite element solution for
the Navier–Stokes equations. The Taylor–Hood elements for approximation
of the velocity and the pressure variables are selected as follows: 1) linear
interpolating functions for the velocity and piecewise constant functions for
the pressure; 2) quadratic interpolating functions for the velocity and linear
functions for the pressure. The Taylor–Hood elements satisfy the discrete
LBB condition [2].

4. Numerical solution of the Navier–Stokes equations

Consider the Navier–Stokes equations (1)–(3) with ν = 1. The source term
is chosen such that the exact velocity and pressure are given by

u(x, y) = (x2y + y3, −y2x− x3)T , (7)

p(x, y) = x3 + y3 − 0.5. (8)

The problem is solved in the domain Ω = [0, 1]2 with boundary condi-
tions for the velocity according to equation (7), (8). The algebraic linear
system obtained after assembling local matrices is solved by the BiCGStab
accurate to 10−9. Global matrices are performed by a compressed sparse
row involving a lower triangle, a diagonal, a coefficient for each triangle.
The size of an unknown velocity vector is 2Nu, size of unknown pressure
is Np, the size of the matrices D, C –– 2Nu × 2Nu, Q –– 2Nu × Np, Mp ––
Np × Np. The finite element grid is constructed dividing each rectangular
element into two triangles by diagonal.

Table 1 shows the number of nodal values of velocity components and
pressure on different grids.

The results of testing the mixed method and the Uzawa algorithm for
calculating the Navier–Stokes equations are illustrated for different values
of penalty parameters in Table 2.

The numerical values of velocity and pressure converge to the exact so-
lutions. Table 3 show the results of testing algorithms for calculation of the

Table 1. A number of nodal values of unknowns

Method
Interpolating

functions

Grid / number of triangles

10× 10 / 200 20× 20 / 800 30× 30 / 1800

Mixed 1–0 1003 3803 9242
Uzawa 1–0 882 3362 7442
Mixed 2–1 442 1682 3722
Uzawa 2–1 242 882 1922
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Table 2. The results of testing the mixed method and Uzawa algorithm
for calculating the Navier–Stokes equations

Number of
triangles

ε
Uzawa algorithm Mixed method

‖u− uh‖L2 ‖p− ph‖L2 ‖u− uh‖L2 ‖p− ph‖L2

Interpolating functions 1–0

10−1 1.247 · 10−3 0.0689 1.094 · 10−3 0.0675
200 10−2 1.108 · 10−3 0.0684 1.025 · 10−3 0.0541

10−3 0.891 · 10−3 0.0597 0.866 · 10−3 0.0395

10−1 0.884 · 10−3 0.0477 0.611 · 10−3 0.0405
800 10−2 0.835 · 10−3 0.0462 0.548 · 10−3 0.0371

10−3 0.672 · 10−3 0.0347 0.491 · 10−3 0.0297

10−1 0.748 · 10−3 0.0463 0.734 · 10−3 0.0441
1800 10−2 0.621 · 10−3 0.0438 0.619 · 10−3 0.0437

10−3 0.618 · 10−3 0.0341 0.595 · 10−3 0.0322

Interpolating functions 2–1

10−1 0.751 · 10−3 0.0496 0.745 · 10−3 0.0463
200 10−2 0.747 · 10−3 0.0439 0.638 · 10−3 0.0409

10−3 0.581 · 10−3 0.0375 0.617 · 10−3 0.0206

10−1 0.612 · 10−3 0.0324 0.736 · 10−3 0.0364
800 10−2 0.548 · 10−3 0.0317 0.519 · 10−3 0.0253

10−3 0.497 · 10−3 0.0302 0.475 · 10−3 0.0139

10−1 0.548 · 10−3 0.0415 0.531 · 10−3 0.0358
1800 10−2 0.497 · 10−3 0.0394 0.474 · 10−3 0.0207

10−3 0.481 · 10−3 0.0358 0.462 · 10−3 0.0124

Stokes equations using different values of penalty parameters. The influence
of the penalty parameters on convergence of the velocity and the pressure
for both algorithms is essential: smaller value of the penalty parameter cor-
responds to increasing the accuracy of solution. Quadratic interpolating
functions for the velocity and linear functions for the pressure allow us to
find a more accurate solution than the one for interpolating functions of
lower order.

The results of calculations of a fluid flow in the channel with a stream
bending by an angle of 180◦ are presented [1]. The stationary Euler equation
is written down as:

(u · ∇)u +∇p = f , ∇ · u = 0 (9)

in Ω ∈ R2, x = (x, y) ∈ Ω. The boundary condition on the boundary
Γ = ∂Ω : u|Γ1 = (0, 1), u|Γ2 = (0,−1), u · n|Γ0 = 0.

Equations (9) are solved with ε = 0.25 on two different grids using the
mixed finite element method and interpolating functions 1–0. Figure 1 shows
the velocity vector field of a two-dimensional flow.
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Table 3. The results of testing the mixed method and Uzawa algorithm
for calculating the Stokes equations

Number of
triangles

ε
Uzawa algorithm Mixed method

‖u− uh‖L2 ‖p− ph‖L2 ‖u− uh‖L2 ‖p− ph‖L2

Interpolating functions 1–0

10−1 1.088 · 10−3 0.0624 1.076 · 10−3 0.0573
200 10−2 1.095 · 10−3 0.0637 1.013 · 10−3 0.0466

10−3 0.753 · 10−3 0.0591 0.742 · 10−3 0.0256

10−1 0.704 · 10−3 0.0443 0.609 · 10−3 0.0402
800 10−2 0.689 · 10−3 0.0426 0.525 · 10−3 0.0370

10−3 0.620 · 10−3 0.0339 0.483 · 10−3 0.0286

10−1 0.724 · 10−3 0.0442 0.711 · 10−3 0.0439
1800 10−2 0.617 · 10−3 0.0425 0.612 · 10−3 0.0423

10−3 0.605 · 10−3 0.0340 0.592 · 10−3 0.0318

Interpolating functions 2–1

10−1 0.749 · 10−3 0.0493 0.742 · 10−3 0.0467
200 10−2 0.746 · 10−3 0.0434 0.634 · 10−3 0.0403

10−3 0.575 · 10−3 0.0371 0.611 · 10−3 0.0201

10−1 0.602 · 10−3 0.0319 0.729 · 10−3 0.0354
800 10−2 0.539 · 10−3 0.0316 0.504 · 10−3 0.0246

10−3 0.492 · 10−3 0.0301 0.436 · 10−3 0.0131

10−1 0.544 · 10−3 0.0413 0.528 · 10−3 0.0353
1800 10−2 0.496 · 10−3 0.0390 0.443 · 10−3 0.0204

10−3 0.475 · 10−3 0.0352 0.426 · 10−3 0.0116

a b

Figure 1. The fluid flow in the channel with a stream bending by an angle
of 180◦: a) 322 and b) 586 triangles
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Figure 2

Figure 2 shows x-component of the velocity on the cut x = 69 using
interpolating functions 1–0 (solid line) and 2–1 (dashed line).

5. Conclusions

The mixed FEM and the Uzawa algorithm using a variable penalty param-
eter allow us to build numerical schemes to satisfy the incompressibility
constraint. For the finite element approximation, the discrete spaces, ensur-
ing the LBB condition are used. The mixed FEM, using a variable penalty
parameter, gives the best results for the modeling problems in the square
and curvilinear areas. Quadratic interpolating functions for the velocity
and linear functions for the pressure allow us to solve the Navier–Stokes
equations rather than interpolating functions of lower degrees.
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