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Mathematical modeling of
3D non-stationary electromagnetic fields
using the vector finite element method*

E.P. Shurina, A.V. Gelber

This paper is dealt with investigation of the numerical aspects concerned with
using the vector finite element method for solvihg non-stationary electromagnetic
problems. A special variational formulation and its discrete analogues are offered.
Peculiarities of inputting a source current into such statements are considered. The
results of some numerical experiments are presented.

1. Introduction

In the last decades, advent of a more powerful computer hardware com-
bined with development of the numerical techniques enables carrying out
complicated three-dimensional (3D) electromagnetic field computations.

The finite element method (FEM) is widespread and regarded as one of
the most powerful numerical schemes. With the classical FEM, the domain
of solution is subdivided into a finite number of elements, and scalar contin-
uous trial functions are associated with each of them. The main drawback
is that all the electromagnetic quantities can be discontinuous at material
interfaces. Therefore, in such cases they can hardly be expanded in the
terms of continuous functions [1).

The first way of overcoming this problem is introduction of vector of
scalar potentials. However, the potential-based statements are related to
the loss of accuracy due to the required spatial differentiation of computed
potentials {1-3]. The second way is based on using the vector-shaped func-
tions for which continuity of only one (tangential or normal) component is
preserved between the adjacent elements, allowing for the discontinuity of a
normal or a tangential component of the calculated field, respectively. Such
a family of finite elements which use the vector basis functions was intro-
duced in [4]. Afterwards, this theory was generalized in the vector finite
element method (VFEM). Note that the wide-spread term “edge elements”
coined for the vector finite elements of lowest order is explained by the form
of degrees of freedom associated with edges of geometrical elements [1].
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The advantages of edge elements for solving the time-harmonic electro-
magnetic problems were mentioned in a number of works [5, 6]. For the
time-dependent cases, this question has not been answered yet. In [7], a list
of criteria to be satisfied by any numerical method for solving an electro-
magnetic problem in the time domain is presented:

e “good” dispersion properties,
e handling of discontinuous electric and magnetic coefficients,

e prevention of resolution of a linear system at each time step.

The edge elements completely correspond to the first and the second re-
quirements. Unfortunately, an edge element mass matrix is not diagonal,
and there is no convenient lumping technique. Nevertheless, as we will show
in the sequel the computational costs of resolution of a linear system ob-
tained from the edge element discretization of a 3D time-dependent problem
are lower in comparison with a classical scalar FEM. This allows us to use
the VFEM-approximations for the numerical modeling of the the 3D non-
stationary electromagnetic fields.

The most prevailing numerical scheme for solving time-dependent elec-
tromagnetic problems is the explicit finite difference time-domain method
(FDTD) [2]. This method is proved to be a highly efficient technique [8].
The time discretization schemes for the VFEM have also been implemented
in both implicit [9] and explicit [10] versions. Note that most of implicit
schemes are conditionally stable and the stability requires time steps which
can be even smaller than those required for the explicit FDTD method [8].
Fortunately, unconditionally stable vector finite element implicit Newmark-
Beta scheme was proposed in [8].

In this paper, we introduce a special variational formulation and con-
struct its discrete analogue for solving a 3D electromagnetic non-stationary
problem in inhomogeneous medium. The specialities of realization of the
VFEM concerned with inputting a current source is investigated. The nu-
merical properties of the Newmark-Beta scheme are analyzed. We also
represent the results of a number of numerical experiments.

2. Statement of problem

A general form of Maxwell’s equations in the charge-free region, where the
electromagnetic quantities are smooth, is the following:

Vxu'H+8,E =0, (1)

VxH+08(cE)=J, (2)

V-(p'H)=0, V-(cE)=0. (3)
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Here E is the electric field intensity, H is the magnetic field intensity, J is
the electric current density:

J=Jy+0E, (4)

where Jg is the source electric current density.

The domain 2 C R? is assumed to be simply-connected Lipschitz poly-
hedral domain with the boundary 42. 2 may be inhomogeneous, consisting
of several dielectric, magnetic and metallic regions ;. Let us denote by I
an arbitrary interface between the subdomains ;. Across the interface I'
the conservation laws imply the following conditions:

(BE1- E2) xn=0, (Hy-H;)xn=1Jr,
(i Hy—py'Ha) n=0, (e1B1—&E;)-n=0,

where Jr is the surface current density, n is the outward normal to I'. This
system is also supplemented by the following initials:

H|i=0 = Hic, Elt=0 = Ejc,
and the boundary conditions
Hxn=0, Exn=0 on 9.
We consider here the constrained second order problem which is obtained
by elimination of the magnetic field intensity from (1)-(4) and introduction

of the Lagrange multipliers p to impose the second constraint in (3)

EOE +0BE+V x (u™'V x B) — eVp = -8, Jy, (5)
V-(eB)=0 (6)

with the appropriate conditions at the interface I

(E1—E32) xn=0, (1B —¢e2E2)-n=0, (7)
p—-p2=0, (u'V x By —p;'V x E;) x n = 8Jr, (8)

the boundary conditions
p=0, Exn=0 on 89, (9)
and the initial conditions

E|i=o = E°, 0,E|t= = E". (10)
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3. Variational problem and discretization
We consider the functional space
H(rot; Q) = {v € L*(Q)® | V x v € L}(Q)%}
equipped with the norm
el Frrorsery = llelizn + IV x wligq.

Here we write down || - [|o,p for the L?(D)-norm and (-,-)o,p for the L2(D)
inner product. We also denote by Hy(rot; 2) the subspace of H(rot; ) with
u X n vanishing tangential trace on 91.

The mixed variational formulation of the problem (5)-(10) is set by

For given Jo € L%(Q)? find E € Hy(rot; ), p € H} () such as for any
F € Hy(rot; ), ¢ € H}(N):

8}(cE, F)oq + 8i(cE, F)oa + (67'V x E,V x F)oq ~
(Evpi F)O;Q + ((M_IV X E) Xn, F)O;Bﬂ = _(atJO:F)D;n1 (11)
— (¢E,Vq)o,a = 0. (12)

The pair of functional spaces (H (rot; ), H3(f)) is chosen according to
the Ladyzhenskaya-Babushka-Brezzi (LBB) constraint [11].

For the spatial discretization of (11)-(12) we construct the following
approximations for E and p:

NE

Ey = Y eF; € Wh =span{Fy,F,...,Fng} C Hy(rot; ),
i=1
Ny

Pr = Y piti € V" =span{q, @,..., any } C Hp(D),

i=1

where W is a discrete space with the basis of Nédélec’s vector shape func-
tions [4], VP is a discrete space with the basis of a standard scalar first order
shape function, Ng and Ny being the number of edges and nodes of the
finite element grid, respectively.

The above-said brings about to the matrix system of ordinary differential
equations:

M.8%e + M,8e + Ge — Cp = 8,3, (13)
—CTe=0, _ (14)

where e = [e;, €2,...,en.|T, P = [p1,P2,---,PNy]T, 7 is the discretization of
the right-hand side in (11), and the matrices are given by
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M, ;; = (eF, F;)o,n, Mg i; = (oF;, Fj)oq,
Gij = (07'V x Fy,V x Fj)oa + ((#7'V x F;) x n, F;)o.00,
Cij = (eVa, Fj)oa-

Using the Newmark-Beta approximation at each time step k, we obtain
the following discrete-time analogue to problem (13), (14):

M (At)"2(e* — 2¢F! + €F2) 4 M, (At) " (e* — eF 1) +
G(Be* + (1 - 2B)e*~ + pe*~2) — C(Bp* + (1 — 2B)p* ! + Bp*~?)
= (A% - *1),  -CTe* =0,

where e*, p*, j* are the discrete-time representation of e, p, j at the time
step k, namely, e* = e(kAt).

It is shown in [8] that the VFEM-Newmark-Beta approximation is un-
conditionally stable for 8 > 1/4. In this paper, we investigate this numerical
scheme with the object of finding the optimal parameter 3.

4. The features of implementation

One of the difficulties arising in the edge finite element analysis of electro-
magnetic problems is the necessity of inputting source current in a manner
satisfying the solenoidal condition V - Jp = 0. This constraint strongly in-
fluences the convergence of the iterative process for solving systems of linear
algebraic equations (SLAE) generated during the edge finite element anal-
ysis [12]. This problem is rather hard to solve on account of properties of
the vector finite elements, an appropriate mesh structure and the form of
vector shape functions.

Consider a simple situation, when

4 the direction of a source current coin-

% '3 5 cides with the directions of some edges

o 12| of the finite element grid (Figure 1). In

A A this case, the value of the source cur-

9 I\ I 'G“ rent must be uniformly distributed on a
P | S closed-loop subset of edges. Then the

I, 1 2 module of the current source density at
/ @»‘" B " @Oy~  these edges can be evaluated in the fol-

lowing form:

Figure 1. The situation when the [Zo]

direction of the source current I ]Jﬁedsel = W'

coincides with those of a subset of ¢

edges (in this figure, the labels of where |Ip| is the source current module,
such edges are encircled) |S| is the area of the conductor cross-
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section, n. is the number of the edges coinciding with the direction of a
source current. For example, if |I| =1 A, and we consider the case, shown
in Figure 1, the source current density for each of the edges with numbers
5, 6, 7, 8 will be |Jgeqge| = (0.25 A)/[S].

Note that for the case, when the direction of the source current does not
coincide with any of edges of the grid, it is not possible to obtain exact rep-
resentation of the current. The algorithm of inputting the source current in
this situation is very complicated and leads to unjustified outlay. Therefore,
the way out is in constructing a finite element grid whose edges are known
to coincide with source current direction.

As we mentioned before, the VFEM requires the total revision of the
classical FEM technique. In this connection, we will dwell on the structure
of the program complex which realizes the VFEM. This program complex
consists of the following modules:

e the builder of the finite element meshes oriented to the VFEM,

e the generator of the matrix portraits in some sparse format,

e the module, responsible for evaluating and assembling the VFEM ma-
trices,

the iterative solver of SLAEs,

the post-processor which prepares the data for interpretation and vi-
sualization.

The VFEM imposes strict demands for the quality of a grid. Moreover, if
there is an electric current source in the solution domain, the mesh generator
has to properly take into account its configuration. The outcome of the mesh
generator module is mesh data oriented to the edge finite elements, namely,
those containing information on the edge orientation and linkage.

The structure of the global VFEM SLAE’s is highly sparse in compar-
ison with a classical FEM, therefore the special matrix portrait generator
is required for efficient solution of the large-scale problems. The evaluation
and assembling of local VFEM matrices into the global ones do not essen-
tially differ from this step in the FEM analysis except for the procedure
of imposing the boundary conditions, which are associated with tangential
components of the sought for fields.

Note that in this work we use the conjugate gradient iterative solver
(CG), which is proved to be an efficient tool in the VFEM analysis (3].

It is obligatory that a program complex oriented to the VFEM should
include a post-processor. This is concerned with the form of degrees of
freedom which are not the valués of the sought for fields at mesh points
as in the classical FEM, but the values of tangential components at each
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edge. The majority of the available visualization tools deal with the nodal-
oriented data. Consequently, it is necessary to construct a procedure for the
translation of the edge-oriented data to the generally accepted format.

5. Numerical experiments

In this section, the results of investigation of properties of the proposed
numerical schemes are presented.

To validate the accuracy of the Newmark-Beta scheme, we solve the
model problem for which a smooth analytical solution ug(z, y, 2, t) is known.
The solution domain is cube with the lateral length of 0.2 m. The mesh has
the cell size h = 1072 m, the number of unknowns being 26560. The time
step is fixed At = 2.5-10~¢ 5. The compu-
tations are performed over the time period
t = 0 to 0.25 ms. For the solution to the
resulting SLAE, the iterative method CG
with precision 10710 is used. The average
number of CG iterations at each time step
is 64. As expected, the solution error is in-
creased in time. In Figure 2, the behavior
of H(rot;Q)-norm of the difference § be-
tween analytical and computed solutions
for a family of parameters # is shown.
The performed investigations show that
the choice of the parameter 8 = 1/4 mini-  Figure 2. The behavior of the
mizes the solution error and dissipation of ;’l“tmn error of t.he Newmark-
the scheme. eta scheme for different 3

Characteristics of the proposed numerical scheme in view of solution of
the electromagnetic problems in the domains with discontinuous magnetic
and electric coefficients are investigated. The model problem of simulation
of the electromagnetic field caused by the coil in vacuum (the diameter is
0.025 m), which is located above the steel plate (the thickness is 0.02 m,
o =13-10"% Sm/m, u = 50uy, € = 0). There is a transparent hole with
the square cross-section (the lateral length is 0.02 m) in the plate. The
amplitude of the source current is |Ip] = 1 A. At the time 0 = 3:107% s
the source current is switched off. The computations are performed over the
time period t = 0 to 6 ms. The solution domain is the cube, the number of
unknowns is 270641. The times step is At = 3-107% 5. We use the iterative
method CG with precision 1071%, the average number of CG iterations at
each time step being 208.

The classical FEM-approximation for solving such a problem requires, on
average, 2600 CG iterations for the dimensionality of the SLAE 270763. In
addition, the SLAE, generated from the classical FEM has a noticeably more

§-10"3
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Figure 3. The field component E, for ¢t = 0.51 ms (left) and 0.9 ms (right)
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denser matrix structure, i.e., imposes higher demands for computer memory.
This confirms the efficiency of the VFEM for solving 3D electromagnetic
problems. In Figure 3 the distribution of the field component E, in the cross-
section passing through the middle of the plate hole at the times ¢ = 0.51
and 0.9 ms is presented.

Conclusion

The investigation of the VFEM approximation for solving 3D electromag-
netic problems in the inhomogeneous media was performed. The special vec-
tor mixed variational formulations oriented to the VFEM were constructed.
The peculiarities of inputting the source current for the VFEM approxima-
tions and the program complex structure were analyzed.

A number of numerical experiments were carried out. It was experi-
mentally shown that choosing the parameter 8 = 1/4 in the Newmark-Beta
method minimizes the solution error. The efficiency of the VFEM schemes
in comparison with the classical FEM was shown.
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