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On numerical implementation
of the vector finite element method
for electromagnetic problems*

E.P. Shurina, M.A. Gelber

In this work we investigate some features of numerical implementation of the
vector finite element method of lower orders for different types of elements. The
comparison of data structures, computer memory requirements and application of
iterative solvers for nodal and vector finite element approximations are presented.

1. Introduction

Today, the finite element method [1, 2] is the most important and widespread
variational method. This method was successfully applied to analysis of var-
ious problems in electromagnetics including that of electrostatic and mag-
netostatic fields, eddy-current problems, high-frequency problems, electro-
magnetic scattering and waveguide propagation in the last thirty years.

The finite element method with degrees of freedom, associated with
nodes of a previously generated mesh, has shown itself rather successfully in
solution to electromagnetic problems involving scalar variables in the two-
or the three-dimensional domains. Shortcomings of the above technique was
discovered for problems involving vector field variables. Among them, the
occurrence of non-physical or spurious solutions, inconvenience of imposing
boundary conditions at material interfaces and conducting surfaces, diffi-
culties in treating the conducting and dielectric edges and angle due to the
field singularities associated with these structures [3, 4].

A new approach has been recently discovered. The vector finite elements
were for the first time described by Whitney [5] forty years ago as a family
of difference forms. Their importance and usefulness were not realized until
recently with the work by Nédélec [6, 7] in the early 1980s. Afterwards,
many authors contributed to the finite element analysis of electromagnetic
problems [4, 8, 9]. In all these works, the vector finite element method has
been shown to be free of all previously mentioned shortcomings.

Problems, such as long computational time and demand for a larger com-
puter memory are very common in the today’s finite element analysis due to
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increased interest to tackling high-scale, more complex and higher-dimen-
sional problems. The vector finite elements are very promising in the 3D
electromagnetic field computation for the aforementioned problems. Pro-
gram codes based on the vector finite element method are often much faster
and less “memory hungry” than the program codes based on ordinary nodal
finite elements. In addition, the vector finite elements satisfy the continuity
of only tangential or normal field components across the interfaces between
two adjacent finite elements. This property is advantageous for electromag-
netic field computation, because this approximation does not require any
additional constraints on approximated fields apart from those prescribed
from the nature of the field itself.

Although the vector finite elements are preferable for analysis of a vector
field problem, they also exhibit several problems owing to their properties
or numerical implementation. These problems were mentioned by many au-
thors (3, 10], and among them an increase in degrees of freedom ~ in compari-
son with nodal approximations, requirement of postprocessor. Moreover, the
numerical technique developed for the nodal-oriented finite element method
was found practically inapplicable for the vector finite element analysis.
These problems require further investigation and solution.

In this paper, some features of numerical implementation of vector finite
element method of lower order for electromagnetic calculations are inves-
tigated. The comparison of data and matrix structures, application of an
iterative solver of global systems of linear algebraic equations (SLAG), di-
mensionality and the machine memory requirements for nodal and vector
finite element approximations is made.

2. Model problem and vector variational
formulation

Let Q be a bounded Lipschitz polyhedron in R? with a connected boundary
8. The model problem to be considered is to compute a time-harmonic
electric field E in a cavity Q with a perfectly conducting boundary. Let w
denote a temporal frequency of the time-harmonic field, so that the corre-
sponding time-dependent field £(x,t) at the position €  and the time ¢
be given by

E(z,t) = R(E(x) exp(—iwt)).

Then FE satisfies the Maxwell system
Vxu'VxE—-k¥E=J in 9, (1)

where p, is a relative magnetic permeability and £, is a relative electric
permittivity in {2. We assume p, and &, to be real, positive and piecewise
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constant functions of the position 2. In addition, we denote as k = w,/Eolip @
real valued wave number, where 49 and € are the magnetic permeability and
the electric permittivity of free space, respectively. The source function J
is related to the applied current density driving the cavity. The assumption
that  has a perfectly conducting boundary gives the following boundary
condition: ‘

nx E=0 on 80, (2)

where n denotes the outward normal unit vector to 81.
Throughout the paper we will assume that k2 is not an interior Maxwell
eigenvalue.

The week formulation of problem (1) requires introduction of the Hilbert
space H(rot; ), defined by

H(rot; Q) = {u € L*(Q) | V x u € (L*(2))%}.

and equipped with the following inner product and graph norm
(0ot = [ w-vd+ [ Vxu-Vxvdd, Jullor = (w wor

A subspace of vectors in H(rot;2) with a vanishing tangential trace on 90
is denoted by Hy(rot;2). Then following the usual Galerkin strategy we
arrive at the problem of finding E € Hy(rot; £2) such that

f,u,“IVxE-Vdeﬂ—[k?e,E-FdQ:_/;J-FdQ, 3)
Q Q

for any F € Hy(rot; Q) and given J € (L%(Q2))3.

3. Mesh generation and data structure

In order that a vector finite element approximation be constructed we first
divide the computational domain 2 into non-overlapping finite elements T;
so as {} = U;T;. We denote by h; the tetrahedral diameter or the triangular
element T;. Then we assume this triangulation to be shape-regular if for all
T; there is a positive constant x such that h;/p; < k, where p; is diameter
of the biggest ball contained in T;.

Let us assume that all the tetrahedral and triangular meshes considered
in this work are uniformly shape-regular. This requirement is stipulated for
a higher sensibility of the vector finite element approximation for the mesh
quality. As will be noted below, directions of a local coordinate system
of such elements follow from the directions of edges or faces of the vector
finite element, and are usually not perpendicular like in the case of nodal
elements. Consequently, for triangles or tetrahedrons which disturb the
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Figure 1. Local coordinate system  Figure 2. Example of local (solid) and
for a faulty triangle global (dotted) orientation for a triangle
vector finite element

shape-regularity a local coordinate system can be found nearly degenerated
(Figure 1). These factors impair conditionality of SLAEs associated with
such approximations. Thus, faulty finite elements must be avoided when a
vector finite element approximation is constructed, or else it results in long
computational time and a great loss of accuracy.

A finite element mesh, developed for the nodal finite element analysis,
is node-oriented, while a mesh, constructed for the vector finite element
analysis must be edge- or face- oriented depending on the type of elements.
This dictates a special data structure for storage of non-regular mesh infor-
mation. In contrast to the nodal finite elements, the mesh data structures
constructed for the vector finite element method must contain definitions
of edges and their linkage into elements. Moreover, common with a local
node numeration for nodal-oriented finite element procedure, there is a local
edge orientation for the vector finite elements. This orientation is accepted
identical for all finite elements and can differ from the global orientation
(Figure 2). It is convenient to take into account this orientation in the mesh
data structure. We propose the following data structure oriented to the
vector finite element method:

o The list of N nodes n; of the mesh, prescribed by their spatial coordi-
nates: (z;,%i,2i),i=1,...,N;

o The list of N, edges e;, defined through numbers of the nodes - be-
ginnings and endings of the edges: (nj,ng), j,k € {1,...,N};

¢ The list of N; finite elements T; defined through numbers of the edges,
contained in this element and their orientation: (mje;, myex, mye;),
J k1 € {1,...,N.} in the order, where orientation markers m; are
determined as

~_ [ 1, if global and local orientations of the edge are identical,
™ = —1, otherwise.
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4. Discrete problem

The basis functions for the vector finite elements are not scalar but vector
functions. In this section, we describe such bases for the vector H(rot; (2)-
conforming finite elements of lower orders and formulate a discrete problem
. corresponding to the variational formulation (3).

For the parallelepiped and the rectangular finite elements of lower or-
der (k = 1), the basis functions arise from a simple tensor-product-based
construction. The basis function w,, corresponding to the edge e; belongs
to

P} ={u|tz € Qr—1k Uy € Qr-1,4 Uz € Qi k—1}

in a 3D case and the space

PP ={u|uz € Qr-1; Uy € Qrr-1,}

in a 2D case, where @, is the space of polynomials of the three variables
(z,y, z), whose maximum degrees are, respectively, ! in z, m in y, n in z;
Qi,m is the space of polynomials of the two variables (z,y) whose maximum
degrees are, respectively, [ in z, m in y. These functions are selected that the
following properties of H(rot; 2)-conforming finite elements of lower order
be satisfied:

1. A tangential component of the shape function at all edges of the ele-
ment is equal to 0, except the edge, associated with this function (the
tangential component is equal to 1 at this edge);

2. Basis functions have zero divergence and non-zero but constant rot.

We next introduce a vector basis function for the triangular and the
tetrahedral vector basis functions. For a certain edge e; of a triangular or
a tetrahedral element with the nodes n; and n; are the beginning and the
end of the edge, respectively, we define the basis function

We;, = (AﬂjVA"i - ’\"hv'\"i)leil’

where A, is a nodal shape function (2D or 3D for a triangular or a tetra-
hedral elements, respectively) associated with the node ng, |e;| is a length
of the edge e;. These vector basis functions also satisfy conditions 1, 2.

In [9], it is shown that the basis functions defined in this way are actually
the basis functions for vector H(rot)-conforming finite elements of lower
order. Then we have the following approximation of the field:

E* =" E.w.,
{e}

where {e} is a set of the edge indices of an element; E, are degrees of freedom
and equal to a tangential component of the vector E at the edge e; w, is the
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basis function corresponding to this edge. Such an approximation ensures
only the continuity of the tangential components of the sought for field due to
special properties of the vector H(rot)-conforming finite elements — exactly
what we need in electromagnetic field computations. 4

Note that the form of degrees of freedom of the vector H(rot)-conforming
finite elements of lower order accounts for the prevailing term edge whose
elements are used for denotation of these elements. In the case of a higher
order, moments of tangential components on edges and faces as well as
moments over the whole elements occur as degrees of freedom [9).

Using the aforesaid, we formulate a discrete analogue to problem (3):

For given J" € (L%())? find E* € V* such that for any F* € V'

fu;IVth-Vthdn-.fk’e,Eh-F"dnzf Jh.Fhan, (4)
1] 0 0

where V* is a finite dimensional subspace of H(rot; ).

The procedure of assembling a global SLAE is similar to a standard one
for a nodal finite element method. The consideration of boundary conditions
(2) is analogous to accounting the Dirichlet boundary conditions for the
nodal approximation.

5. Dimensionality and global matrix structure

The most frequently mentioned drawback of the vector finite elements is
larger dimensionality of global SLAEs in comparison with the nodal finite
element schemes. For the regular tetrahedral domain discretization there
are approximately five to six times as many edges as nodes. In the 3D
computations, to each node correspond three scalar variables for the nodal
finite element approximation. Whereas to each edge corresponds one scalar
variable for the vector finite element approximation of lower order. There-
fore, dimensionality of global SLAEs for the vector finite element method is
approximately twice as large as for a nodal one. It is an unattractive fact,
but we notice that using the parallelepiped edge elements does not lead to
increasing the number of degrees of freedom. Increasing N dimensionality
of global SLAEs for the regular discretization of a cube (ny is the number
of steps of discretization in each axial direction) for nodal, tetrahedral edge
and parallelepiped (hexahedral) edge elements is shown in Figure 3.
Nevertheless, even the tetrahedral vector finite elements occur compu-
tationally effective in terms of computer memory and time in spite of the
larger dimensionality. It is known that the amount of computer work re-
quired to solve a SLAE by means of iterative solvers is proportional to the
number of non-zero entries in the matrix. The number of non-zero entries
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Figure 3. Dimensionality of global = Figure 4. The number of non-zero en-
SLAE:s for different types of elements  tries in global SLAE for different types
of elements

is crucial for direct methods, too [3]. If we evaluate this number of non-zero
entries NN for vector and nodal approximations on the same mesh, we will
find that a rigidity matrix for vector approximation is sparser (Figure 4).
Therefore it is the comparison in favor of the edge elements. Computa-
tional efficiency of using the vector finite elements is also corroborated by
numerical experiments.

6. Nurﬁerical results

Problems concerned with solving SLAEs generated by the vector finite el-
ement method have been already discussed by many authors [3, 11]. Our
investigations demonstrate that using a restarted CG for solving SLAEs with
symmetrical matrices gives a good effect. The methods BiCG and restarted
BiCGStab prove their efficiency for solving SLAEs with non-symmetrical
matrices. ‘

In the table, the results of solving problem (4) for p, = 1, &, = 1 and
k? = 1 on different meshes are given. The problem was solved in the unit
cube (2, is the number of discretization steps in each axial direction) known
analytical solution

: —2 cosh(nz) sinh(7y) sinh(wz)
Ey = ( sinh(wz) cosh(my) sinh(wz) )
sinh(7z) sinh(7y) cosh(nz)

which is matched to the boundary conditions and the right-hand side. The
precision of solvers is fixed at 1071%, In the table, Nog is the number
of CG iterations, N,cg is the number of restarted CG iterations, n are
dimensionalities of the SLAEs.
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ny =10 ny =20

Element type
n | Neg | Nece n Nee | Nece

Tetrahedral edge 6930 | 276 97 | 51660 | 477 | 289
Tetrahedral node 3993 | 228 84 | 27783 | 1035 —
Parallelepiped edge | 3630 | 241 113 | 26460 | 362 | 163
Parallelepiped node | 3993 | 252 94 | 27783 | 1284 —

*

When the SLAEs of not a large dimensionality are solved, the number
of iterations for nodal and vector finite element approximations is compara-
ble, and the restarted CG yields better results than a standard CG for both
approximations. But when the dimensionality of SLAEs increases, the num-
ber of iterations of a standard CG is notably smaller for the vector finite
element method. This confirms the computational effectiveness of vector
approximations for solving high-dimensional 3D problems. Moreover, for
nodal approximation we failed to find a restart parameter for a restarted
CG to improve the convergence of the method in comparison with standard
CG.

Investigation of the edge element approximations for solution of the prac-
tical electromagnetic problems prove their advantage, too. In this case, if
we use the vector approximation, we obtain more physical solutions than
for a nodal one. In addition, these approximations are found to be more
effective in regard to computer memory and time.

Conclusion

In this work, we have carried out the analysis of features of numerical imple-
mentation of the vector finite element method of lower orders. The special
data structure for storage of the edge-oriented meshes is proposed. The com-
parison of the dimensionalities and numbers of non-zero entries in matrices
of discrete analogues is presented. This comparison have shown effective-
ness of the vector approximations with respect to the memory requirement.
Numerical experiments, realized for the model problem, have proved the
advantages of such approximations in regard to computer time, too.

Peculiar properties of the vector finite element approximations for solving
electromagnetic problems in domains with discontinuous physical parame-
ters call for further analysis.
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