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Solution of two-dimensional Prandtl
equations by Monte Carlo method

N.A. Simonov

New numerical method for approximating two-dimensional flow field for the viscous in-
compressible fluid in the vicinity of the flat boundary is introduced. Using the vorticity
formulation of the Prandtl equation we come to the heat equation with nonlinear right-
hand side.. We consider various boundary value problems for this equation and represent
its solution in the sum of three heat potentials. System of nonlinear integral equations for
the solution and its derivatives is constructed. Difference approaches to approximating
the derivatives in the direction along the boundary lead to the different structures of the
system. Randomization of the iterative method of solving this system makes it possible
to construct unbiased Monte Carlo estimate, its variance is proved to be finite.

Introduction

Two-dimensional Prandtl equations are considered in this paper. It is well-
known [8] that they govern viscous incompressible flows in the boundary
layer. In order to simplify our considerations we use its vorticity form thus
having the only function w which defines the whole of the flow field. Since
the vorticity equation from the mathematical point of view is a parabolic
equation with a nonlinear right-hand side, the initial value of w has to be
known and on the solid walls a classical boundary value problem has to be
set.

In [2] stochastic algorithm for solving the Prandtl boundary layer equa-
tions has been proposed by Chorin. Vorticity in this paper has been in-
troduced on the boundary in a way which ensured that zero boundary
conditions on components of the velocity field were approximately satisfied
at every time step. Many other different techniques for overcoming this
difficulty have been employed in various numerical methods. One possible
way of solving this problem is the method used by Anderson in {1].

Let the boundary value problem he posed. As a consequence we can
consider the governing equation as the heat equation with the nonlinear
, integral—diﬁ'erentia,l right-hand side. Solution of this problem can be rep-
resented as a sum of three potentials. We consider this relation as the
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equation for the unknown vorticity, obtain the analogous relations for its
derivatives and construct the iterative method for solving this system. Next
we randomize this iterative method and derive the desired stochastic algo-
rithm.

1. Integral equations

Consider a two-dimensional viscous incompressible flow in the boundary
layer. It is well-known [8] that the motion of the fluid near the solid walls
is governed by the Prandtl equations. We use them written in terms of
vorticity

Wy = VWyy — UW, — VWy,

(1.1)

uz + vy = 0.

Here u, v are components of the velocity vector and
W= -y (1.2)

is vorticity. The coordinate system is selected so that the flat part of
the body surface coincides with the X, Z plane. We suppose that velocity
distribution does not depend on z coordinate and that the third component
of the velocity is constantly equal to zero. As a consequence vorticity is
governed by one scalar function which does not depend on z. So we can
consider all functions as defined only in the region z > 0, ¥ > 0. By the
physical reasons we have that velocity of the fluid is equal to zero on ‘the
surface of the solid body. In our particular case it means that

u=0, v=0, (1.3)

when y = 0, 2 > 0. We suppose that the flow is undisturbed at the infinity,
its velocity is constant and parallel to the plane X, Z

nlim (%,v) = (20, 0),

and, also, .
(u,v) = (U0, 0),
when z < 0.

Relation (1.2) follows from the definition of vorticity and originates in
the fact that v < u in the boundary layer. Taking into account (1.3)
and the equation of continuity for two-dimensional incompressible fluid
this equality makes it possible to determine the velocity vector using the
following formulas. Let us suppose that the vorticity is already known.
Then integrating (1.2) over y from y to infinity we have
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u(z,y,t) = oo + ]w(m,s,t)ds. (1.4)
v

Next we differentiate this equality with respect to z and then integrate it
one more time over y. Then from the equation of continuity we have

v 0o
v(z,y,t) = —/ds/w,,(z,s',t)ds'. (1.5)
0 s

Suppose now that the initial value of vorticity is known

w(z,y,0) = wo(z, y) (1.6)

and that wo(z,y) is a continuous function of y. We consider (1.1) as
a one-dimensional heat equation with a nonlinear right-hand side. From
mathematical point of view we have to define some boundary condition at
y = 0 in order to complete formulation of the problem.

One of the possible ways is to use difference approximation of the re-
lation (1.2) in order to define vorticity at y = 0 [10]. So we have

w(z,0,t) = P1(z,1), (1.7)
where o
__u=0t) _ 1
hi(z,t) = Ay - By (um + /w(m,s,t)ds)
0

with an accuracy of O(Ay)?, when Ay tends to zero. Then we can write
down the solution of problem (1.1), (1.6), (1.7) in the following form: (see,
for example [12])
t
wy [ 1 y?
w(z,y,t) = Jor aawl(:c,'r)exp ( - 202)(11'
0

e [l )l El

0 0
t o0 1 2 9
“¥=Y e (= X))
+ fdf/ \/2_1ro_[exp( 202) exp( 202)]f(x,s,t)ds
0 0
= K}y + Kjwe + K2 f. (1.8)

Here
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f = UWp — Wy (1.9)

is the bilinear functional of w and we denote for brevity y, = y + s,
Y- =y—8, 02 =2w(t-r1), 0} = 2wt. :
Substituting 1, in (1.8) we come to the integral equation for w

w = —Kjw— Kj(uw;) — K}(vw,) + Kjwo — K} (us(Ay)™),  (1.10)

which defines vorticity with an accuracy of C(Ay)?. Here we denote the
integral operator

o0

¢

. ' 2vy y?
Klw(z,y,t) = /dr ds —=———exp ( - —)w(:c,s,r).
' V2ra3A 202
J ) 2rosAy

Another, to somewhat extent more productive approach is to pose
boundary value problem of the Neumann type. Let us suppose that the
first derivative w, is known at the boundary

wy(2z,0,t) = P(a,t). (1.11)
Then, (see, for example [12]) the solution of problem (1.1), (1.6), (1.11)

may be written in the following form:

2

=22 [Lueron (-2

2 )dr

42 2
Y+

\/2_7|'0'0./WO($ s)[exp( 0) + Xp( %g)]ds (1.12)

¢
+/dr/\/_—21;—;[exp(— 2@%) +exp(—~ %)]f(:c,s,t)ds.
0o 0

In order to determine the value of ¢ we proceed as follows ( see [1]).
Let ug(z,0) = 0, where

oo
uo(T,Y) = Uso + /wo(:r,s)ds.

It means that the initial vorticity distribution satisfies zero boundary condi-
tion for X' component of the velocity. Next we use (1.4) to define u(z,0,t)
for t > 0 and take the derivative of this expression with respect to time.
If we set 3~u('r 0,1) equal to zero, then this requirement will ensure that
zero boundary condition holds for u for an arbitrary time ¢. So we have
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%/w(r,s,t)ds =0, /?w_ z,s,t)ds =0
0 0

It will be recalled now that vorticity satisfies the Prandtl equation (1.1).
As a consequence the latter equality is equivalent to

o0

][uw,, — uw, — vw)(z,s,t)ds =0
0

and after integrating the first term we have

s}

wy(z,0,t) = %_/[—uw,, — vws)(z, s, t)ds. (1.13)
0

Now the desired boundary condition can be written in the following form:
1 o0
Pat)= 1 / f(z,,8)ds. (1.14)
0

Thus, after substituting (1.14) in (1.11) we can consider it as the inte-
gral equation for w

w = Kowg + Kq(vwz + vwy). (1.15)

We use the following notations for the integral operators here:

Kowo(z,y,t) = \/2_“_00 7100(:5 s)[exp (— 3—2) + exp( 3;":")]a!s,

0 0
K, f(z,y,t) = /dr/ds
2 2

X[Qexp(—é%-i) --exp( 2%7)—e p( 23,5'2)]

We see now that the right-hand sides of equations (1.10) and (1.15)
depend on w, w; and w,. So we have to construct closing integral equations
for w; and w,. In order to do that we proceed as follows.

Let us denote the heat differential operator

f(a: 5,7) (1.16)
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0 8?
1=5 "oy
and suppose that w is differentiable to the required extent. Then we have
from (1.1)

Huwy, = —(uwgz + vwy)y = fy.

Differentiating (1.6) with respect to y we obtain the initial value for w,

i)
wy(z,y,0) = ﬁwo(-’b’s )

and (1.13) determines the boundary value for this function. As a result a
mixed problem of the Dirichlet type is posed for w, and its solution can
be written in the following form [12]:

t

2vy 1 y?
’th(IL‘, y7t)=_E ;¢(msf) €xp ( - F)dr
0

+ \/2%00 /woy(m,s)[exp (— %) — exp (— %)]ds (1.17)

0
t 0o
+/dr/ 211[_0_ [exp (- g‘%) — exp ( - %)]f,(m,s,t)ds.
0 0

Next we substitute (1.14) in this equality and integrate the latter term by
parts. As a consequence we have the integral equation for w,

Wy = I\"((,l)woy + Ko (vw, + vwy), (1.18)

where the integral operators are denoted as follows:

L(1) _ 1 i AN %
Ky woy(z,y,t) = \/Q_WUOO/woy(m’s)[exp( 03) exP( ag)]ds’
t [s5] 1
Kaf(z,y,t) = —/dr/ds————f(w,s,r) (1.19)
2rod
o o
2 2

[ovesn (- 55) + a0 (- 33) e (- 25)]

It is obvious enough that we can integrate Ix’((,l)woy by parts and sub-
stitute it by the resulting integral
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oo

Ii’(gz)-wu(a:, y,t) = \/2_111_0_3 O/wo(.r,s)
X [y_ exp ( - %}g) + yt faxp ( - %)]ds.

Remark 1. In [10] another presentation of Hw, was used, the first term
of the function f was differentiated and so the second derivative w,, was
involved in consideration. In order to pose boundary value problem of
the Dirichlet type the expression for Hu was used (see [8]) and equality
Wy = —uUyy. As a consequence boundary values of w, and w;, have been
set equal to zero that lead to the following integral equation:

wy = —K}(uywy + vwyy) + Ki(vw,) + Kiwoy,

where K is the integral operator, emerging after integrating K3 by parts

t o0
-1 —- . 1
K f) = I)/a!‘ro ds—\/2_7r03f(m’s’t)

o (- ) ravoo(- )]

Differentiating Hw, with respect to z we come to the following expression:
Hw:cy = Wy — UpWyy — (vwee + vz Wy + 'v'wzy)ya

which contains wy, in the right-hand side. As a consequence we have the
following integral equation for wz,:

-1 1 1
Wy = —K3(Uyz Wy + UpWoy + Uywes) + K (v2wy + vwzy) + K wozy.

We pass on to the equation for w, now. In order to obtain the in-
tegral representation of this function we take (1.18) and differentiate it
with respect to . The right-hand side of the resulting equality contains
fz = —(uwz + vwy ), which depends on the second derivatives of w, so our
aim is to rearrange it.

Remark 2. In [10] integral equations were constructed not only for function
w and its first derivatives w,, w, but to the second derivatives wg, and
wz, also. So it is obvious enough that the equation for w, has no need to
be rearranged and it was used in its natural form
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Wy = —Kllw:,; - K;(uwwx + vpwy + vWey + UWyy ).

Let us differentiate the continuity equation with respect to y and (1.2)
with respect to 2. From here we have

Wy = Vyy.
In the boundary layer v satisfies the following differential equation [8]:
Hv = —(uvg + vvy),

and so
fr = Hw, = Hvy = —(uvz 4 vvy)yy- (1.20)

From here we have
wy = Kowoz + K1 [(vvg + VU )yy)-

The latter integral can be integrated by parts thus leading to the following
expression:

t

D/dTo/dS\/’;;ﬁ(uvx-l— 'U'Us)s

-0 (- )+ v (- 35)

Kq[(uwvz + vvy)yy)

t 0 1
= O/dTO/dS-—ﬁ—;;(uvx-l-vv,)

2 2 2

(- 5) exw (- 43) + (1 ) 0 (- 5]

Ki(uvgy + vvy),

1l

and so (since vy = —ug)
wy = Kowog + Ka(uvgy — vug). (1.21)

From (1.5) we see that v, depends on wg, and so we have to define
this function somehow.

In order to do that we can use different approaches. One of them is to
use some integral equation of the first kind. For example, we can consider
the integral equation for w, as the equation for w;.
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- ~1 -
K} (uwg,) = —w, — Kjw, — K3 (uzwy + vzwy + vwzy)

and use an iterative method for solving such system of four integral equa-
tions of the second kind for the functions w, wy, wz, w,y and one integral
equation of the first kind for wy,.

Another method of computing w,, was introduced in [10], where some
suppositions about the smallness of third derivatives of function w in the
boundary layer were introduced. As a consequence the exact formula for
Hw,, was simplified in such a way that lead to the closed system of five
integral equations of the second kind.

The third approach is to use some difference approximation for w,.
Suppose that w and its derivatives are to be computed at some point
(z,y,t). We divide the interval [0, 2] into m intervals of the equal length
Az = z/m and then substitute different approximation

wr(a:, y,t) - wx(:r - AI, Y, t)
Az

Wz, y,1) = (1.22)

for wy, in (1.21).
Taking into account this substitution we can rewrite now our system
of the integral equations for W = (w, wy, w,)" in the following form:

w = Kowo+ K;((teo + Liw)ws — wyLy(Lyw,)),

wy = K+ K3((teo + Liw)wy — wyLa(Liwy)),

. 1 (1.23)
wy = Kowor + 1(3( - E(uoo + Lyw)

X Ly (Ll(wa:(x? ) — wz(z — Az, -, ))) + LlerZ(Llwz‘)),

where, bearing in mind (1.4), (1.5), we denote the integral operators L;
and L, as follows:

0 Y
Liyw(y) = | w(s)ds, Law(y) = [ w(s)ds,
[ [
Y 0
Ly(Lyw)(y) = /ds/w(s’)ds’.
0 8

It follows from the third equation in (1.23) that we have to define
W at = 0. Since u and v are constant for z < 0 then we can set
w=w; =wy, =0, when 2 =0, y > 0.

Remark 3. From now and on we consider only the system (1.23) and
construct a stochastic method of its solution.
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2. Iterative method and its convergence
For brevity we rewrite (1.23) as a single integral equation
W=A(W,W)+ F _ (2.1)
and consider the following iterative process:
W) = (1 — )W 4 ok (WD W) 4 aF = PWW, (212)

where 0 < a < 1.is a real parameter.

Suppose now that all the components of the vector function W consid-
ered as functions depending only on y lie in the closed subdomain S(C") of
the function space L(c). We define this space as follows. Integrale function
w belongs to L(¢) if there exists such positive constant ¢ that the integral

+00

J(g,z,t) = / |w(z,y,t)| exp(ey)dy ' (2.3)
0

is finite for all values of parameters 2 and t. Supposing that J is bounded
uniformly over 2 and ¢ we can define the norm in L(¢)

“’w”(e) = J(g,2,1).

Note that finitary functions belong to this space with arbitrary .
The following definition will be also in use:

lwl* = sup |lwll,
oLr<t

where the norm in the right-hand side is considered in one of the spaces
L(¢), Ly or Ly, and

Wil = m?'XNWall(s),

where W, = w, W, = wy, W3 = w; in our particular case.
We can define domair S(C') now as the set of such functions w that

uniformly over z for one positive constant C.
Let wg, woy, woy lie in $(C/3). Then the direct evaluation gives us the
upper bound for the norm of the free term components of equation (2.1)
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+2o +oo ( )

exp{cy

F; < ds|W iz, s dy——=
” l”(s} = U] "I Ut(' “)IO/ J\/:E(TU

2

x[exp ( - 5‘?};':2-) + exp (— 225'5)]

0 0
400
2 (2.4)
= exp(e?nt) / |Wo,'(-’v,-5)f[exl)(53)‘1’(3-;605)
J 0
’ —-s+ole
+exp(—68)‘1’( 70 )]

1A

2
exp(eut) [ Woill o + [ Woillz, B(o0e)] < 2C,

where the latter inequality can be made true by the corresponding choice

of ¢ for particular t. Here ®(z) is the distribution function of the standard

normal distribution.

Next we evaluate components of the term X depending on W. Our
objective is to prove that the operator P maps the set of vector-functions

W with components in S(C) into itself.

In order to do that we integrate values of the integral operators K 1,

K3, K3 multiplied by exp(ey) over y from zero to infinity. So we have (in
analogy with (2.4))

+o0

¢
K (wwy + vwy)|le) < /d‘r / ds|luwz + vw,|(z, s,7)exp(eu(t — 1)) x
0 0

[2@(50) + exp(es)® (ea + g) + exp(—¢es)® (acr - 2)]

4 .
< (lullz o Nzl + Il'v“imllwyllf;))sg—y(exp(fzvt) - 1), (2.5)

t +oo

| K2(uwz + vwy)||(e) < /dr / dsluwg + vw,|(z,s,7) X
0 0

{72_2?6—(1 + exp(es)) + ¢ exp(e®v(t — T))(Q@(sa) +

exp(es) (28(e0) - ®(eo+ 2)) + exp(—es)®(e0 ~ 5))]

t\1/2 exp(ve?t) — 1
<a[(5) "+ ZEEE Ul oty + ol ), (26)
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+oa t oo
1
[[Ka(ubz — vae o) = / dyexp(cy) /‘37/‘53 NI X
0 o o
2 . yi
[RTEE PP Y

t o0
< jdr/ds| — wiy — Uullgy + uf. + vwy|(x,s,7) X

0
[2 exp(es)
V2ra

(2@(50) - fb(so‘ + 2)) + exp(—ss)@(sa - 2))}

< 2[(L)1“ N %ﬁf);l.] y @2.7)

- v §7 VE

+eexp(e?u(t — T))(exp(ss) X

(15l ey + ol Dol + Nl sy + ol Nl ),

where obvious inequality [Jw||z, < |[wl|() is used.
It will be recalled now that

lwllty € C, llwyllly <€ lluallfyy < €,

and so we have to evaluate only the norms of u, v and their derivatives
that are used in the right-hand sides of (2.5)-(2.7). It follows from (1.4)
that:

HullLe < Uoo+ ||w|\L; < e + C,

”u-'l'“Loo < ”wI”Ls < c’

oo

oo
1 C
luzlle < /dyexp(&y) walds = =([lwzlle) ~ lwallz,) € 7
0 y
o 0 (2.8)
liaelloy= [ dvexpien)| [ besds
0 oy
1
< ;A’_:E(llwrll(s)(w) + Jlwe |y (z — Az)—
: 2C
lwallr, (2) = llwallz, (2 — Az)) < Az

Using the definition of » from (1.5) we have
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Y
Nl Lo < /(ls exp(— /|w,,| exp(es’)ds' < —||wx||(c) < g
s (2.9)
2C
ol < o (lwalla(@) + leliate - A2) < o

Summing up (2.4)-(2.9) we come to the following inequalities:

JEW (o) < C(1 = & + da(ue + €+ T)ra®),
NPW )iz < C(1- 5 +dafua +C+ C)(rl(t)+r2(t))), (2.10)
W sl(ent) < C(1 = 54 22 (2= 2201 20) (rate) + 7200)),
where

r(t) = (exp(s vty —1),  rot) = (mw) VA2

We see that r1(t) = O(¢) when t tends to zero and so
1wl < C (2.11)

for sufficiently small ¢.

In order to complete the proof of convergence of the iterative process
(2.2) it remains to show that operator P is contracting on S(C). We have
wnt) _w= pw) _ pwy (-1

= (]_ - a)(W(”) - W[n—l))
+ a(;(;(w(n), wn)y — ,C(w(ﬂ-l), W(n-l)))

=(1- a)(w(n) - W(n—l)) + a(;c(w(n) - w1, W)
+ WD, W) _ w1y, (2.12)

where the latter equality is the consequence of bilinearity of operator K.
Applying inequalities (2.5)-(2.9) to (2.12) we arrive at

lw™+) — wjy < (1= @)™ — i+

o -4Cr1(t)[||w("') - 'w("'l)ﬂil +

n n 1 n n—
( 1 52 ) = DY + el = wf |

C
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Hw!(,,n+1) —_ w;'n}”(e} <(1- a)“wz(;n) _ win_])llie)-l-
a-4C(r(t) + r2(1)) [”w(“) ~w V|, +

1 u (e 1 -
(E +1+4 _g)”w:(rﬂ} _ wi‘n 1)”25) + E”w!{;‘-) — w;ﬂ l)llie)] ,

lwl ) — wile < (1= @)jwl” - w V)i, +
4 n n—
@20 (ra() + ra() [ 7 o™ - w G, +

Llg0 2, B \itm) -1t
1 Yoo \ 1o (7) _ n=Dit (5 _
eAz (2 tC )""’*‘ —wr V(e A‘"‘)]'

So, for sufficiently small ¢ we have
[PW ) — WD) < (1-a+aR@)IWM - WED|L, - (213)

where R(t) = O(t!/?), when ¢ tends to zero.

Thus, conditions of the fixed-point theorem [5] are fulfilled and so the
iterative process (2.2) converges to the unique solution W of the integral
equation (2.1) with components in S(C).

3. Random estimate

We construct a stochastic algorithm now for solving the system of nonlinear
integral equations (2.1). Randomizing iterative algorithm (2.2) we come to
the need of modelling of the branching Markov chain.

There exist different approaches to defining a branching process (see,
for example [3, 4, 6]). Starting with the constructive convenience consider-
ations we choose the phase space of the chain states to be [0,+00) x [0, T}
with the natural Lebesque o-algebra of subsets.

We turn to the computation of the solution of system (2.1) now. In or-
der to do that we construct, as it is called in the theory of the Monte Carlo
methods, a conjugate estimate and construct it in accordance with the re-
currence relation emerging from the definition of iterative process (2.2). We
set @ = 1 in order to simplify formula manipulations. We can do it since
this parameter does not affect the convergence of the algorithm. Denote by
z = (y,t), &(z) - random estimate for the function w;(z). This estimate
and the branching Markov chain are constructed simultaneously. Let 2}
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be the k-th point in the n-th generation of the process. We have to choose
the law of branching now. First, we set that with probability g(2¢) this
particular branch of the chain terminates independently of other branches.
Or, alternatively, we terminate all branches of the chain simultaneously
with probability g. We require that our branching process is degenerating
so the mean value of the number of branches that are given rise at every
point must be less or equal to one. Let p;(z,2') be distribution density of
z' subject to condition that z is fixed. We choose it in accordance with
the kernels of the integral operators K;, K3 and K3. Denote by v the
random variable which is equal to zero with probability ¢ and v = 1 with
probability 1 — g.

According to the double randomization principle [3] we can use in (1.23)
instead of the integral operators L;w, Ly(Lyw) their conditionally indepen-
dent unbiased estimates. Let py(y,s), p3(y, s) be distribution densities on
[y, +00) and [0, y] correspondingly. Then

_ w(s)
Liw(y) = E(Pz(y,s))’ 3.1)

Ly(Lyw)(y) = E(WE;)@S,S’)),

So we have the following recurrence formula:

ki(2g, 237 )
(1= g(22))pr(2p, 253¢)
[( 61(:’732;}:-_11)
Uoo

e (e, ) -
P2(Y5 " 95) *

ntl £3(z, z;l;l-lz)
62(-"7,231: n+l _, ISR
p3(¥ar ¥)P2(¥'s y30 2,

&i(z, 25) = Fi(zf) + v(2})

ka(2f, 258 ")
(1= g(z2))p1(27, 2531)
n+1l

{1(3,23*._1
Uoo + —— k=L V(g pnly (3.2)
[(“’ pz<y3,;“,y;‘,;*_‘1)) 3k

§a(2, 2) = Fa(zg) +7(27)

+1
x(, 25 ) —— 3 Pk

Wy &g 3
pa(y3 L v )p2(s yitY,)
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ka( =) :;":l) .
(1= gz a5

[_(H + &z, 253 )x
= s
Ea(x, 257 ,) — Galw — Ax, 25)
Az - pa(yi v )2y v,
&2, 350, £l 2500, ]

P2yl ) paluat v ma(Y U3 '
n

Thus every point =7 with probability 1 —g gives birth to three points in
the next generation for given x and one point for @ — Az, ¥’ is an auxiliary
point and does not belong to our branching chain.

We pass to the problem of the choice of distribution densities p1, P2, P3
now. First, p; must be taken in accordance with the kernels of the integral
operators Ky, A and Aj. This condition is not so strict as it may seem
since K;(y,t;s,7), ¢ = 1,2,3 are continuous and bounded functions for all
(s,7) € [0,400) x [0,1). Exponential type of these kernels suggests that we
can use 7 distribution in the process of random sampling of 7 for given ¢,
y and s. This procedure, however, seems to be ineffective for small ¢ as it
has been noted in [7]. Requiring that our estimates have finite variance,
we come to conclusion that integrals of the following type must be finite

also. t
T L2t
I = /dr/dsk—’—gwwz(s,*r),
0 0

E3(x, z}) = Fa(zx) + 7(zk)

IJl(y,t;S,‘T) J

% 9 .
12=/ i) g, (3.3)

p2(y.s)
0

(e o]

(e

v
I; = L'/ , ls.
i 0/( q ;;3(5,,3');)2(3',5){ i

r

It will be recalled now that w; € L(¢) so it is sufficient to require that
w; € Lo also. From here we arrive at the following consequence: we can
use exponential densities

Pl(?)'at;SaT) = Elp(](taf)exp(ﬂsls)a
p2(y,s) = e2exp(—e2(s - ¥)),
pa(y,s) = ezexp(—e3s)(1 — exp(—‘.;;y))_l,
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with some positive constants €}, €2, €3 and the choice of po is rather arbi-
trary. For example, we can set 7 to be uniformly distributed on (0,2). As
a result we come to the following simulation formulas:

1 _ n+l _ 4n
ygl.:‘ = =& ll'l aq, t3k - tk + g,
n+l _ ontl n+l _ ntl
Yak—1 = Yar — €2lnay, t3p-1 = lak >
+1 _ ! +1 __ yn+1
Ysp_o = Y — E2lnay, ety = ok s

y = —%ln (1-a3(1- exp(—eay™t'3k))).

Note that the distribution of yg,;" ! does not depend here on ¥}, so we can
evaluate the solution in the set of points y{(,’) for given fp on the same
trajectories of the Markov chain.

We prove now that the estimates constructed in accordance with (3.2)
are unbiased estimates for the solution of the system of integral equations
(1.20). Applying the operator of conditional mathematical expectation to
(3.2) we come to conclusion that E&;, i = 1,2,3 satisfy (1.23). It is the
consequence of independence of £;(2) and &;(2}) for all ¢, j, n when k # [.
In order to conclude the proof we have to show that E¢; are finite. From
clarity considerations we take the particular law of branching in which we
terminate all branches of the Markov chain in one generation of points
sitnultaneously with the constant probability g. Then we have

£(2)) = F(zD)+ ®(F) + ...+ 8(...(3(F(zV1))...), (3.4)
N

where £ = (&,£2,&3)', 2" denotes all points in n-th generation, ® is the
functional from (3.2) if we rewrite it as

£=F+9(5),

and N is a random number of generations.
Consider (2.2) and set & = 1, W(® = F. Then we have

E(£(:}) | N =n) = W,

and W™ can be represented as a finite segment of series (3.4), where ®
has to be substituted by K, and N is equal to n. It follows from (2.13) that
series W) converges absolutely at a geometric progression speed. This
makes possible to evaluate the right-hand side in the expression
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BE() = SE(E() [ N = n)P(V = n) = Y W(h)g(1 - g,
n=0 n=0

using an arbitrary convenient norm, and so we have
[E€(21)] < const,

thus accomplishing our proof of unbiasedness. The analogous but more
cumbersome expressions and considerations lead to the same result in the
case of other branching laws.

It remains to prove that the estimate constructed in accordance with
(3.2) has finite variance or finite second moments, which is equivalent. In
order to do that we proceed as follows. We take (3.2), multiply these expres-
sions term by term and apply the operator of mathematical expectation.
As a result we come to the system of integral equations satisfied by com-
ponents of the second moments matrix R;;(z) = E&(2)€;(2), 4,5 =1,2,3

Ry = F(W, - Fi) + K [Rag(2uue, — v, + LP(Ryy)) -
RzzLép)(Lgp)(Ras) + 2uvRa3)],
Ris(z,:) = W3+ F3W, - 1 F3 +
K%g) [ - W3(2uueo — uZ, + Lip)(Ru))ﬁ X
La(Ly(Wa(z,-) — Wa(z — Az,-))) +

Wau: =L (L9 (Rss(z,) - S(z,2 ~ Az)) +
Ws - La(L1(Ws)) - (uec Wi + Lgp)(Rm(l', ) - (3.5)

Wa - LiWs) - L (10 (Ras(s, )|

R33($, ) = F3(2W3 — F3) +

E® | (2ute — u2, + LP(R11))

1
(Az) ©

LY (LY Ray(z, 7)) + Ras(z — Az, ) - 28(,z - Az)) +
LY (Ras(x, ) - LY (L Raa(z,)) -
1
E X
1 (1 (Rxs(&, ) - S(z,2 - Az))]

2(uooWi + LP(Ras(2, )
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Rz, Ra; look like as Ry; and Ry is similar to Ry3. Here

ki(z,2")k;j(z, 2")
(1-9(2))Pi(2,2")

[Py = [ g5 PP w) = [ds wls) g,
O | o= [od |

KD (w)(z) = - w(2')dz,

pa(y,8) p3(y, 8')pa(s', 8)
y

and §(z,z — Az) = E(&(z, )&(x — Ag,+)).

Next in the full analogy with the case of Kj;, : = 1,2,3, we can prove
that Ix‘"{;’ ) are contracting operators on S(C) and L(l”)(w), L (L) (w)) are
finite on that set of functions for the appropriate choice of densities p;,
pa2, p3. The same arguing leads to the fact that for sufficiently small ¢ the
analog of the Neumann series for the system of nonlinear integral equations

(3.5) converges to the finite solution R;; which, considered as a function of
y, belongs to S(C).

4. Conclusion

In this paper we have introduced new stochastic algorithm for solving two-
dimensional boundary layer equations. It is based on the representation of
a solution of heat equation as a sum of three potentials. Having desired
to obtain a closed system of integral equations we have come to the need
of using difference approximation for w,,. As a result the solution of this
system is equal to w, w,, w, with an accuracy of O(Az)?. It should be
noted that Az must not be constant.

Another characteristic feature of the algorithm is that we have to use a
sufficiently large probability of terminating of the Markov chain and thus
only its first terms are effectively computed. One of the possible ways
of overcoming this difficulty is to simulate several initial steps without
termination.

The idea to write this paper have been provoked by works of Chorin
[2], and there exist some ways of combining the algorithms. It means that
we can track the motion of vortex sheets with the help of the method
described in this paper. Thus, the stochastic algorithm may be considered
as a new mathematical model for the two-dimensional fluid motion.
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