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A variant of the residual correction
method for the numerical solution
of the Laplace and the Poisson equations*

V.S. Synakh

The high accuracy numerical solution of the Laplace or the Poisson equation is
reduced to a sequence of the more simple finite difference problems of the second
order accuracy. Some algorithms to realize effectively this scheme are discussed.

1. Introduction

Let us consider the classical problem: the approximate solution zp of the
ordinary nonlinear equation f(z) = 0 is known, its deviation from the exact
solution does not exceed h, but a more accurate approximation is wanted.
There exists the following effective way to solve this problem: the function
f(z) in the vicinity of the point zq is approximated with the first order
polynomial

p(z) = e + f'(zo)(z — z0),

where the residual ¢ = f(z), then the zero of this polynomial is the next
approximation to the exact solution. Thus, the main part of the residual is
cut off. Then the process is repeated if it is needed. It is the well-known
linearization method which provides an accuracy O(h?) at each stage and,
generally speaking, fast converges. ‘

At the first sight, it seems that this method can be improved in such a
straightforward way: replace f(z) with a polynomial of a higher power (say,
second or third) and then obtain a more accurate approximate solution from
the arising algebraic equation. However, disadvantages of this approach are
well-known.

Meanwhile, various analogies of the latter approach prevail in attempts to
create effective methods for the numerical solution of the partial differential
equations. These are so-called “high accuracy schemes”, when a differential
equation is replaced with a finite difference equation of as high order of
accuracy as possible, and then one has to elaborate cumbersome algorithms
to solve it.
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The aim of this work is to propose a variant of the analogue of the first
above-mentioned approach to the numerical solution of the Laplace and the
Poisson equations and to illustrate its advantages.

2. Outline of the approach

The following example exposes further the features of the proposed ap-
proach. Let us consider the Laplace equation

Au=0 (1)

with the Dirichlet boundary condition, that is, the values of the unknown
function v in all the boundaries are given.
Let us approximate equation (1) by the finite difference equation

Lpa =0, (2)

where Ly is the finite difference approximation of the nth order of accuracy
for the Laplace operator.
The conventional algorithms to solve equation (2) are rather cumber-
some, if n exceeds 2, therefore we shall attempt to try the following way:
First of all, let us put n equal to 2. It means that equation (2) is replaced
with the difference equation of the second order of accuracy

Loug = 0. (3)

The solution of equation (3) may be obtained more or less easily with the
accuracy O(h?), where h is a typical grid step.

The next stage is the calculation in each grid node the quantity py =
Lyug, which is further called the “computational charge”. In other words,
po is the residual, which arises, when g is substituted in (2).

Now, let us look for the solution of the difference Poisson equation

Lypiig = —pyg (4)

with zero boundary conditions. It means that the solution of (4) with these
boundary conditions is equal to zero anywhere, if the source pg is absent.
It is obvious that the grid function @ + ug is the solution of (2).
But equation (4) may be approximately replaced in its turn with the
equation of the second order of accuracy

Louy = —p1 = — Ly (5)

with zero boundary conditions as well. Thus, as a result we obtain a more
accurate approximation:
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Uy = ug + u1 + ug,

where the prevailing part of the residual of the first approximation is cut
off.
Then this approximate solution may be improved in the same way, etc.

Thus, we obtain a set of the difference equations with zero boundary
conditions

Louy, = —pg_1, (6)

where Pk-1 = Lnuk_l.

This process of the successive “cutting off” the residuals is quite similar to
the linearization method for the numerical solution of the ordinary nonlinear
equations. Hence, one may conclude that the limit of the sequence

Ug + Uy +ug + ...

should fast converge and this limit is the solution of (2).
Some remarks should be made here:

1. The same scheme works for numerical solution of the Poisson equation.
The only distinction is that at the first stage the Poisson difference
equation (instead of the Laplace equation) must be solved.

2. Residuals must be cut off not only in the equation, but also in the
boundary conditions, if they are of the Neumann or of the third type.
The same takes place for the inner boundaries, i.e., at the lines, which
divide heterogeneous media.

3. The above approach essentially mollifies the difficulties, connected
with possible peculiarities in the geometry of the problem. The rea-
son of it is that the loss of accuracy of the computational schemes at
the peculiar points originates the great computational charge which is
then cut off. The possible irregularities in the computational charge
distribution can be eliminated by smoothing procedures.

Thus, the numerical solution of the initial differential problem is reduced
to a sequence of the finite difference problems of the second order of ac-
curacy. Hence, it is necessary to have effective solvers for these problems
which are well adapted to the algorithm as a whole. First of all, it implies
that the solvers must take advantage of the existence of the good initial
approximation which is the result of the previous stage of the proposed al-
gorithm. Therefore, for instance, a well-known method of the incomplete
factorization [1] is not suitable here, because it almost does not response to
the quality of the initial approximation.
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3. The second order scheme

The features of the proposed scheme may be shown using as an illustration
the Laplace equation in axially symmetrical geometry within the rectangular
calculation region

0<r<R, 0<£2z2z<L7Z

The comparison of the numerical solution with the known analytical one
U(r,2) = (Cre™ + C2e™*) Jo(A2), (7)

will show the effectiveness of the scheme. Here Jj is the Bessel function and
C1, Cy, and ) are varying parameters.

It means that function (7) yields the boundary conditions for the numer-
ical problem (except the axis), then the obtained numerical solution is to be
compared with (7). The symmetry condition along the axis r = 0 further
replaces here the Neumann boundary condition usually used in this case.
All the parameters in (7) and grid parameters varied within the wide range,
so that all the following conclusions were reliably checked.

For the sake of simplicity, we here consider only the uniform grids. In
fact, this restriction does not matter, because only the form of the approxi-
mating operator L, must be otherwise changed.

We set further n = 4, i.e., all the numerical derivatives in the operator
L,, are determined by 5-point stencils.

Let us now list all the features of the proposed technique to numeri-
cally solve the Poisson equation with the second order scheme, because this
problem arises at each stage of the general approach due to (6).

1. Averaging. Let the axially symmetric function u(r, z) satisfy the Pois-
son equation in the 3D space

Au = p. (8)

and a node (r,z) be encircled with the 3D sphere of the radius r,. This
quantity will be further called “the radius of averaging”.
Now let us carry out the following operations:

1. The known Green formula which relates the value of the function in
the centre of the sphere to the volume and surface integrals

1 1 ou 1
- ?fuds+4-7; a—ndS—m/Audv. ()

2. The transformation of the volume integrals in (9) into the surface ones
and the numerical evaluation of the surface integral on the sphere with
the known formula which has the form in the Cartesian coordinates

u
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u(a:,y—rs, z) it u(m, Y, z'*"‘”s) + ’U.(:l!, Y, z*ra)) . (10)

The last two nodes of this quadrature do not belong to the plane
(r, z), but they can be easily projected onto this plane due to the axial
symmetry of our problem.

3. Because the nodes of quadrature (10) do not coincide with the grid
nodes, the values of the function u in the quadrature nodes can be
expressed by those in the adjacent grid nodes with the help of the
quadratic interpolation.

All these are rather cumbersome, but straightforward transformations lead
to the relation between the value of the grid function in (3, j)-node with the
values in the adjacent nodes:

QijUij = Qit1,jUitlj + Qi-1,jUi-1,5 +
Qi j+1%ij41 + i1 -1 + B jpij- (11)

Here all the coefficients depend on the averaging radius r,, the grid steps
and the distance r from the axis. Relation (11) is valid with the accuracy
O(h*). Of course, the latter is true only for harmonic in the 3D space and
axially symmetric functions wu.

Relation (11) is the basic averaging formula. It is important that a varia-
tion of averaging radius r; only slightly affects the accuracy of this relation.
In other words, the change of r, causes small changes of the coefficients
in the formula which estimates the error of relation (11). The numerical
experiments, where r; varied from 0.05h to 2h, confirmed this conclusion.

It is here worth to mention that for a “truly” 3D geometry (i.e., without
axial symmetry), the formula of averaging is even simpler.

By the way, the use of the averaging algorithm provides an additional ad-
vantage: it gives the possibility to avoid troubles caused by the appearance
of the small quantities in the dominators in the numerical axially symmet-

ric Laplace operator near the axis. Of course, it is valid for the spherical
coordinates, too.

2. The Seidel scheme and reordering of grid nodes. Formula (11)
permits to use the well-known Seidel scheme (see, e.g., [2]), when one has
to substitute into the right-hand side of (11) the values of the grid function,
obtained at the previous stage of the iteration process, and to determine
in such a way the more accurate value for u;j. These operations are to
be carried out successively for all the nodes and then the process must be
repeated again until the desired accuracy is attained.
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This scheme provides the accuracy O(h?), is very simple and has an
important advantage: a good initial approximation essentially decreases the
number of needed iterations.

But the fault of this scheme is well-known, too: it converges, generally
speaking, very slowly.

Some ways to overcome this fault are considered below.

First, it is useful to reorder grid nodes according to their distances to the
nearest Dirichlet boundaries. The meaning of the reordering is clear, because
the Seidel scheme realizes the “growing” of the Dirichlet boundary conditions
inward the computational domain. Hence the reordering should essentially
accelerate the calculation due to decreasing the share of the “blank” or
almost “blank shots” in (11). Of cousse, this effect increases together with
the total number of the nodes. For 60x80 grid the gain in the computer
time due to the node reordering appeared to be about ten times.

Surely, the reordering itself must not be too expensive. A special tech-
nique for this purpose has been created and realized as a set of programs.
This technique is effective for any 2D geometry of the computational do-
main, including multiply connected cases, because the number of operations
for its realization is proportional only to the first power of the total number
of nodes. For 60x80 grid the reordering takes no more than 2% of the to-
tal computer time of solving the whole problem. For larger grids a relative
time of the reordering respectively drops. This technique will be described
separately.

Unfortunately, this reordering algorithm cannot be directly applied to
the case of the 3D geometry. It is the subject of the future work.

By the way, the reordering yields no gain, when the incomplete factor-
ization method is used for the numerical solution of the same problems.

3. Embedded grids. The averaging method is sensitive to the quality of
the initial approximation. It makes the embedded grids approach advan-
tageous, when one firstly obtains the numerical solution on the sparse grid
and then uses it as the initial approximation for the twice denser grid.

In our numerical experiments, the grid halving was performed twice. It
gives the possibility to carry out the local Richardson extrapolation in each
node (of course, in the grid version, when the extrapolation is performed to
the numerical solution on the densest grid).

4. Successive over relaxation (SOR). It is possible to take the value
u;; “partially” from the previous iteration, having rewritten relation (11)
in the form

(I = Y)aijuij = @ip1,jUir1,j + Q1%im15 + Qiji1tijpn +

Qi j1Uij-1 — V%,j + Bijpi;j- (12)
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It is known (see, e.g., [3]) that this technique can accelerate the conver-
gence of an iteration process by several times. The only problem is a proper
choice of the relaxation parameter y. An improper choice can cause even
the divergence of the process. It is impossible to estimate the optimal « the-
oretically, especially in the cases of complicated geometries and non-uniform
grids. Therefore a great number of numerical experiments, concerning this
problem, were carried out for various grids and domain geometries, so that
the following results are reliable and can be used in practice.

1. Increasing the relaxation parameter, starting with zero, accelerates the
convergence until the optimal value is attained. The further growth
abruptly leads to the divergence of iterations.

2. The halving of the grid almost does not change this optimal value.
Probably, it is due to the chosen method of the node reordering.

Thus, we can propose a practical way to obtain nearly the best value of the
parameter -y: we approach to it as near as possible on the sparsest grid (and,
consequently, with low expenses) and then use the obtained parameter for
the denser grids. The search for the best y on the sparsest grid may be easily
made automatically if one takes into account the first above-mentioned item.

In our numerical experiments, the SOR technique accelerated the con-
vergence by 5-7 times.

The weak dependence of the result of the averaging on the averaging
‘radius r, makes it possible to use small r, in the near-boundary nodes to
avoid crossing the boundary. This gives the possibility to use for averaging
in these cases not only the values of the grid function in the adjacent nodes,
but in the nearest boundary points, too. It permits, in turn, to avoid a
sophisticated procedure of the so-called local grid modification, i.e., to avoid
the grid node transfer to the boundaries. The corresponding numerical
experiments with “declined” boundaries appeared to be successful.

However it should be mentioned that the further improvements of the
averaging technique require the quadratures on the sphere which include the
irregularly located quadrature nodes. The same problem arises at the bound-
aries of the grid subdomains, where the grid becomes sparser or denser.

4. Some general remarks

The tests of the proposed method have revealed some peculiarities which
may be used and are indeed used in real programs.

1. The loss of accuracy of the five-point stencils for the numerical deriva-
tives in the difference Laplace operator at the boundaries does not
cause the corresponding loss of accuracy of the numerical solution.

N
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2. One may carry out the residual correction periodically, say, after 5, 10,
or 20 SOR iterations. Let us call such a set of the SOR iterations “the
big iteration step”. Numerical experiments show that if the number of
the big steps IV is great enough, the deviation of the numerical solution
4y from the exact one u after the Nth big step obeys the rule:

Uy —u = ‘I('&N—l —-u), g<1 (13)
and the decrements ¢ in all the nodes tend to the same value.

This rule may be used to accelerate the convergence of the method. To this
end let us store the grid functions on three successive big steps N, N — 1,
N — 2. Then the increments q in each node may be easily estimated from
the relation - .

gr TN (14)

UN-1 —UN-2

If the dispersion of this quantity in different nodes does not exceed, say,
10%, one can make the prognosis due to rule (13).

Since this decrement-analysis is seldom performed, it takes relatively
small computer time, but provides an essential gain in the total computer
time, up to 2-3 times.

On the whole, the numerical experiments show that the proposed ap-
proach with all the described improvements yields the solution with an ac-
curacy up to 6th decimal place on 60x80 grid about 500 time faster, than the
incomplete factorization method with the conjugate gradients acceleration.
The gain in required computer memory is about the same.

5. Verification of results

Some empirical facts are revealed in the described numerical experiments.
Of course, it is necessary to be sure that they are reliable. A large number
of special programs was worked out for this purpose. For example, the
expected order of the accuracy was checked at least by three ways:

1. The direct comparison of the numerical solutions on three successive
grids with the known analytical solution.

2. The comparison of the numerical solution on the densest grid with the
Richardson extrapolation from two previous grids, assuming the order
of accuracy n to be equal to 4.

3. Finally, the order of the accuracy was estimated directly from the data
on all three successively twice denser grids:
u®) — 42

~ N
w0 —a® S
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The thus obtained values n deviate from 4 not more than by 5% in all
the nodes.

Another example: the analysis, which verifies the rules of the behaviour
of the decrement g, was based on the estimation of the decrement in all the
nodes from the data from three successive big iteration steps according to
(14). Then the investigation was continued with the usual data processing
technique: the determination of the mean value for g and the analysis of the
distribution of deviations of the decrements from the mean value.

Thus, all the above facts are confirmed quite reliably and can be used in
practice.

6. Prospects

Apparently, the most important problem now is to create an effective al-
gorithm for reordering the grid nodes according to their distances to the
nearest Dirichlet boundary in the 3D geometry. It will give us the hope
to effectively solve the 3D problems, because the above algorithm provides
fairly high accuracy and requires little computer memory. Probably, it will
open the way to get over the “fatality of the dimension”.

Another important problem is to apply the approach to the numerical
solution of the Helmholtz equation and to the systems of these equations.
It is of great interest for Geophysics.
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