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On the influence of a grid on temperature
evaluation in Particle-in-Cell method∗

A.V. Snytnikov

Abstract. A technique for evaluation of temperature in the Particle-in-Cell
method is proposed. A number of computational experiments were conducted in
order to reveal how a grid step affects the temperature evaluation according to the
proposed technique both in 1D and 3D cases for electrostatic plasma. In order to
prove the correctness of the temperature evaluation, the energy of the short-wave
temperature harmonics is considered for grids with different steps. The non-physical
heating is studied in the self-consistent electrical field as well as the dependence of
a temperature decrease on the grid step. It is shown that the temperature values
converge with a decrease of the grid step. This allows to conclude that temperature
evaluated with the proposed technique is of the physical nature.

1. Introduction

In the Particle-in-Cell (PIC) method, every particle carries some attributes
of a medium, such as charge, mass, impulse, kinetic energy, etc. In order
to assign temperature to each particle in the same way, it is necessary to
presume some form of a distribution function at a given point (for example,
as is done in the SPH method [1]). On the other hand, it is possible to
compute temperature with an ensemble of particles. In the latter case, it
is necessary to separate temperature from non-physical effects (noises) that
occur in the PIC method.

The main source of non-physical noises in PIC method is a grid used
for evaluation of density, velocity, current. Because of the grid the question
arises: how strongly is the computed temperature affected by the grid? How
much are the temperature values alter when the number of grid nodes is
changed, or when a grid step is decreased? The objective of the present work
is to answer these questions in the case of electrostatic computer plasma.

In the case, when temperature in the PIC method is non-physical, it
essentially depends on the number of particles in each cell, on the value of
the grid step and on the stochastic drift of particles from one cell to another.
Thus, if one shows that the computed temperature does not depend on the
number of particles, that the dependence of temperature on the grid step is
not strong, and, finally, a stochastic drift of particles does not play the major
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role, then it will be possible to say that temperature is correctly evaluated.
The stochastic drift is shown by the amount of energy in the short-wave
temperature harmonics.

Consequently, it is necessary to define the following:

• values of temperature with a different number of particles

• the dependence of temperature on a grid step

• the amount of energy in the short-wave temperature harmonics

The plasma electron temperature was chosen for this study, because it
is mostly subject to all changes including those non-physical. The values of
all the quantities are given in non-dimensional units.

2. Temperature evaluation with an ensemble of particles

Let us compute temperature, as in [2], as dispersion of the particles velocity

T =
〈m~v2

2

〉
.

A difference with a physical definition is that in the PIC simulation we have
model particles with a sufficiently larger size than real physical particles.
So, it should be proved that the temperature evaluated with these large
particles is of the physical nature.

Temperature in the simulation could be evaluated either in the whole
computational domain

T =
1
NP

NP∑
n=1

m(~vn − ~v0)2

2
, ~v0 =

1
NP

NP∑
n=1

~vn,

or in a separate grid cell

Ti,j,k =
1

Ni,j,k

Ni,j,k∑
n=1

m(~vni,j,k − ~v0
i,j,k)

2

2
, ~v0

i,j,k =
1

Ni,j,k

Ni,j,k∑
n=1

~vni,j,k,

here NP is the total number of model particles, Ni,j,k is the number of
model particles in a cell with numbers i, j, k. Let Ti,j,k stand for the grid
temperature.
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3. The influence of a grid step in the 1D case: experiments
and estimates

3.1. The shape of temperature computed on grids with different
steps. To study the influence of a grid step on the evaluation of tempera-
ture, a 1D particle ensemble was set with a Gaussian velocity distribution
and the following parameters: the initial temperature T = 1, the number
of particles NP = 5 · 105, a distance between particles hp = 1/NP . Par-
ticles were distributed along the interval with the length L = 1, thus the
coordinate of the particle number j is xj = jhp.

This particle ensemble was applied to grids of a different size:

N = 2k, k = 5, . . . , 12.

It should be noted that particles did not move, and for every new grid the
same particle ensemble was used.

The coordinates of the grid nodes are

Xi = ih, i = 1, . . . , N − 1, h =
1
N
.

It is easy to conclude from Figure 1 that the temperature values are in
fact considerably different. One can see the temperature oscillations that
occur with the frequency increase with a grid size. It is possible to propose
that short-wave harmonics play a major role in the evaluation of tempera-
ture.

Figure 1. Grid temperature on a sequence of nested grids

3.2. The impact of the grid step on the amount of energy in the
short-wave temperature harmonics. Following [3], let us define the
spectral form of the grid value Gj as

G(k) = ∆x
N−1∑
j=0

Gj exp(−ikXj), ∆x = h, Xj = jh. (1)
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Wavenumber k depends on the harmonic number n as k = 2πn

L
, where

L is the size of the computational domain. Let us assume the harmonics
with the number from 0.9N to N − 1 as short-wave harmonics; here N is
the number of grid nodes. The amount of energy in short-wave harmonics
of the temperature could be derived as a ratio of the short-wave energy to
the total energy of the spectrum

S =
N−1∑

n=0.9N

|G(n)|2
/ N−1∑

n=0

|G(n)|2.

In order to estimate the quantity S it could be proposed that all the grid
values Gj are nearly equal (for the electrostatic plasma with uniform density
in the self-consistent field this proposition is true). Therefore, if we consider
the sum of the squares of absolute values of the harmonic amplitudes, and
the number of these harmonics is equal to one tenth of the total number of
harmonics, then the sum must be nearly equal to one tenth of the whole
sum (that is, the sum of the squares of absolute values of all the harmonic
amplitudes).

The above passage could be illustrated by the following expression. Let
us first denote two average values: Ash for the squares of absolute values
of amplitudes of short-wave harmonics, and Awh for the squares of absolute
values of amplitudes of the whole spectrum:

Ash =
1

0.1N

N−1∑
n=0.9N

|G(n)|2, Awh =
1
N

N−1∑
n=0

|G(n)|2.

Then the quantity S, as defined above, has the following form:

S =
0.1NAsh
NAwh

=
1
10

Ash
Awh

.

Thus we can make an estimate of the amount of energy in short-wave
harmonics of the temperature, provided Ash ≤ Awh

S ≤ 1
10
.

The meaning of this estimate is quite clear: if in a numerical experiment
the amount of energy in short-wave harmonics (the quantity S) exceeds one
tenth (it means that Ash > Awh or even Ash � Awh), then the course of
the experiment in mainly governed by the short-wave harmonics with the
wavelength near the value of grid step. It cannot be true for plasma simu-
lated with the PIC method, because at least four grid steps must correspond
the plasma Debye length. The Debye length is the minimal wavelength in
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plasma. Thus if the quantity S exceeds one tenth, then the experiment has
no physical sence. In the experiments that pretend to have physical sence
S must be significantly lower than one tenth.

In order to define the amount of energy in short-wave harmonics an
experiment was conducted. The particles with the above given initial pa-
rameters moved without any force (∂v

∂t
= 0) within the time interval ∆T = 1.

Periodical boundary conditions were set for the particles.
For the grid with the number of nodes N = 128 timestep is τ = 0.01,

number of timesteps M = 100, for other grids

τn = 0.01
128
2n

, Mn = 100
2n

128
, n = 5, . . . , 12.

The amount of energy in short-wave harmonics of the temperature is
computed as follows:

S =
N∑

i=0.9N

| ˆT (i)|2
/ N∑

i=0

| ˆT (i)|2.

Figure 2 shows the quantity S versus the number of grid nodes.

Figure 2. The amount of energy in short-wave harmonics
depending on the number of grid nodes; N = 2n, n = 6, . . . , 11

A decrease of S with decreasing the value of a grid step (the increasing
number of nodes) is confirmed by the fluctuation level estimate in a 1D case
given in [3]:

(ρ)2k,ω ≈ ρ0q∆t
(

1− 2
3

sin2 k∆x
2

)
,

here ∆t = τ , ∆x = h, q is the number of the time Fourier harmonics. The
time step τ in the computations was decreased together with decreasing the
grid step h.

It is possible to compare the fluctuation level and the energy of the
short-wave harmonics. The reason is the following: the shortest harmonics
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with the corresponding lengths of h or 2h store the effect of smallest-scale
processes. These processes either lack a correct approximation with a grid
(at least four nodes at a characteristic length of the process are necessary)
or the processes are non-physical at all, like a stochastic drift of model
particles from one cell to another. Let us imagine a particle going exactly
along the border of two cells. Just a very small deviation of the velocity
and the particle will go to one cell or to another, resulting in a significant
change of the corresponding density harmonic. Both cases–– the absence of
approximation and a stochastic drift –– could be called fluctuations.

3.3. Impact of the grid step on the computer plasma heating. The
objective of this computation was to study how the non-physical heating of
the computer plasma depends on the value of a grid step h. For each value
of h, different values were set for the time step τ , the initial temperature of
the particles T0, the total charge of positively charged particles q0 and the
number of particles NP . All the combinations of values of these parameters
were set to ensure the result depending only on h but not on a random
choice of other parameters.

The computation involves no external forces, no sources of thermal en-
ergy. There are no peculiarities leading to thermalization (density shears,
for example). Thus, any heating could be only non-physical [4, 5].

The following conditions were set for the experiment: the number of grid
nodes 100 (the size of the domain L changes together with h, L = 100h), the
number of particles, at least, 100 for each cell, the equal number of positively
and negatively charged particles of the same mass (like the electron-hole
plasma in a semiconductor or the electron-positron plasma). The electrical
field is computed with the Poisson equation, solved by the sweeping method.
Particles were reflected at the boundaries of the domain.

The initial parameters for particles are: the coordinate xj = jhp, here hp
changes together with h, hp = h

N

NP
the charge xj = (−1)j 2q0

NP
, velocities were

set according to the Maxwellian distribution with the initial temperature T0.
Parameters of the computation h, τ , T0, q0, NP were set as follows:

h =
0.01
2i

, i = 0, . . . , 3,

T0 = 0.1× 2j , j = 0, . . . , 10,

τ =
h

2
√
T0iτ

, iτ = 1, . . . , 5,

q0 = 0.0001× 2k, k = 0, . . . , 8,

NP = 10p+4, p = 0, . . . , 2.

Thus, 5,940 different combinations of parameters were set. Each combina-
tion could be given its number
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J = 1485i+ 135j + 27iτ + 3k + p,

corresponding to a definite combination.
In all the cases, heating is of interest. Heating here is the ratio of the

temperature at the end of computation to the initial temperature. And the
main objective of this study is the dependence of this ratio on the grid step
h.

Let us take the grid temperature Ti at the end of computation and
evaluate the two quantities:

Rmin =
1
T0

min
i
Ti, Rmax =

1
T0

max
i
Ti, i = 1, . . . , N,

corresponding to a maximal and a minimal grid temperature at the end of
computation.

First, let us consider a change of Rmin and Rmax when only h is changed
(Figure 3). Each marked point in this figure is an average over 1,485 com-
putations. It is clear that the dependence is only minor.

Figure 3. The ratio of a minimal and a maximal grid temperatures after the com-
putation to the initial temperature depending on the grid step, Rmin(h), Rmax(h)

Furthermore, the dependence of Rmin and Rmax on h takes place when
the number of particles is changed (Figure 4). It is clear from the figures
that the heating does not dramatically depend on a grid step with any
(big enough) number of particles.

It should be noted that the lack of a significant relation between the
heating and a grid step is in a qualitative agreement with the results [5], in
particular, with the estimate of the grid fluctuations given:

〈E2〉
nmv2

th

=
0.12

λ2
D +W 2

,

here vth is a thermal velocity of the model electron, λ2
D is the Debye length,

W = h. This means that the value of grid fluctuations does not depend on
the number of particles at all, and if h� λD, it depends on h only slightly.
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Figure 4. The ratio of minimal grid temperatures after the computation to the
initial temperature depending on a grid step with a different number of particles,
Rmin(h,NP ) and Rmax(h,NP )

4. The impact of a grid step on temperature in 3D
computations

In this section, the 1D results are confirmed by the 3D electrostatic plasma
simulations. The focus as well as in the 1D case is on the dependence of
temperature on a grid step.

4.1. Computation parameters. The following values of parameters were
chosen for the computation:

The number of grid nodes along one dimension 16
The size of a domain . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2, 1.6, 0.8, 0.4
The number of particles in each cell . . . . . . . . . . . 50
Ion mass (in relation to electron mass) . . . . . . . . 1
Initial temperature of electrons . . . . . . . . . . . . . . . . 0.8, 0.4, 0.2, 0.1
Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0, 0.5, 0.25, 0.125
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Every parameter combination could be given a number as follows:

J = 16i+ 4j + k. (2)

Here i, j, k define values of the domain size L, the initial electron tempera-
ture T 0 and the density of electrons ne, respectively:

L = 0.4 · 2i, i = 0, . . . , 3,

T 0 = 0.1 · 2j , j = 0, . . . , 3,

ne = 0.125 · 2k, k = 0, . . . , 3.

Thus, 64 different combinations were set.
A grid of such a small size enables us to test the temperature evaluation

technique with an ensemble of particles. Since the ion mass is equal to the
electron mass, the properties of the computer plasma are far from the real
plasma properties, but the energy exchange between the plasma components
goes much faster. Thus it is possible to study computer plasma fluctuations
in a shot period.

4.2. The impact of a grid step on the electron temperature change
rate. To study the impact of a grid step on the temperature evaluation, a
relative change rate for the electron temperature was computed

ξ =
δT

T0
, δT = T0 − T.

Here T0 is the initial electron temperature. The initial temperature of ions
is 0. A relative change is studied since the quantity T0 computed with
an ensemble of particles, slightly differs from one grid to another. The
temperature in this case is evaluated in the whole computational domain.

The number of particles was constant when the number of nodes was
changed. The size of a domain was also constant, thus a grid step was
changed.

It is seen from Figure 5 that ξ decreases with decreasing a grid step,
thus there is some relation between ξ and h. Nevertheless, this relation
converges with a decrease of h, and starting with a sufficiently big number
of grid nodes (64 in the case in question) this dependence comes to a steady
state. The same conclusion could be made from Figure 6.

4.3. The impact of a grid step on the amount of energy in short-
wave harmonics of temperature and density. The Fourier transform
was conducted for both the temperature and the density of electrons. Den-
sity is considered here in order to show the temperature spectrum stability.
Density affects particle velocities through the electric field, and a velocity
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Figure 5. The temperature change rate versus a grid step, L = 0.05,
the computation time δ = 0.01

Figure 6. The temperature change rate versus a grid step, L = 0.4,
the computation time δ = 0.36

distribution defines temperature. This means that if density contains a lot
of non-physical harmonics, the temperature distribution will be the same
soon.

The amount of energy in the short-wave harmonics S is computed in the
same way as in the 1D case. The sum should be, of course, three-dimensional
and the expression for S becomes

Sf =
nmax∑

nx=0.9nmax

nmax∑
ny=0.9nmax

nmax∑
nz=0.9nmax

f2
nx,ny ,nz

/
nmax∑
nx=1

nmax∑
ny=1

nmax∑
nz=1

f2
nx,ny ,nz

.
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Figure 7. The amount of energy in the short-wave harmonics Sne of
the electron density depending on J

Figure 8. The amount of energy in the short-wave harmonics STe
of

the electron temperature depending on J

Here N is a grid size, f is the quantity for the Fourier transform computa-
tion, either electron density ne or electron temperature Te.

Figures 7 and 8 show the dependence of the amount of energy in the
short-wave harmonics S on the number of experiment J (2).

It is seen from Figures 7 and 8, the short-wave harmonics contain a small
amount of energy in comparison to the rest of the spectrum–– less than 1 %
for temperature and less than 0.1 % for density.
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5. Conclusion

A technique for evaluation of temperature in the Particle-in-Cell method is
proposed: the temperature is computed as particle velocity dispersion and
confirmed by the estimate of the non-physical (short-wave) harmonics.

For the 1D computations, it is shown that the amount of energy in short-
wave harmonics decreases with a decrease of the grid step. The electron
heating in the self-consistent electric field is shown to have no dependence on
the grid step. Both results are in the qualitative agreement with theoretical
estimates.

For the 3D computations, the relaxation of the electron and the ion
temperatures was considered. The change rate for the electron temperature
appeared to be converging with decreasing a grid step. Finally, it is shown
that the amount of energy in the short-wave harmonics is very small in the
3D case as well.

Thus it is possible to state that the temperature computed with the
proposed technique does not depend on the grid step provided a sufficiently
large size of the grid and a large number of particles per cell.
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