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A scalable parallel algorithm of solving
the Poisson equation for stellar dynamics problems∗

N.V. Snytnikov

Abstract. We present a new parallel algorithm for solving the Poisson equation
in the context of non-stationary stellar dynamics problems, e.g. rotating galaxies
or circumstellar disks. This allows us to conduct numerical experiments on a mesh
with 10–100 billion of nodes and to use more than 10 thousand of processors.
This algorithm is based on a finite difference method, 3D domain decomposition,
partial pre-computation of Green’s function for subdomains boundaries and parallel
implementation of the James method. All the computations have been conducted
in the Siberian Supercomputer Center (Novosibirsk) and the Joint Supercomputer
Center (Moscow).

1. Introduction

The particle-in-cell (PIC) method is among those that are used [1, 2] for
solving the stellar dynamics equations, consisting of the collisionless Boltz-
mann equation (also known as the Vlasov equation)
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= 0, f(0, r,u) = f0(r,u)

and the Poisson equation for isolated systems with a special Dirichlet con-
dition

∆Φ(t, r) = 4πGρ(t, r), Φ(t, r)||r|→∞ = 0,

Here f = f(t, r,u) is the distribution function of a matter (the stars in
galaxies or the dust in circumstellar disks), Φ = Φ(t, r) is the gravitational
potential, and ρ = ρ(t, r) is the density, which can be calculated using the
following equation:

ρ(t, r) =

∫
f(t, r,u) du.

The PIC method requires the computation of individual movements of
a large number of particles that represent the distribution function f , and
of the self-consistent gravitational field using a finite-difference method on
a regular mesh.

The present paper is focused on the latter problem–– solving the Poisson
equation, which in this context has the following difficulties to address:
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• Non-stationary processes in galaxies or circumstellar disks require cal-
culation of a gravitational potential for each time step. And the total
number of steps may exceed hundreds of thousands.

• It is needed to use a fine mesh (of order of 10003 nodes) for simulating
physical processes, like planet formation, in a correct way.

• It is necessary to conduct tens or hundreds of numerical experiments
with different input parameters.

The only way to meet all these requirements is to develop a scalable
parallel algorithm aimed at running on a supercomputer with more than
104 processors.

There are several methods to deal with the Dirichlet problem for isolated
systems. Among them are potential approximation on the domain bound-
aries [3], convolution method [4], and the most efficient sequential algorithm
James method [5], which was also recently adopted for the use in cylindrical
coordinates [6].

Parallel algorithms for solving the Poisson equation for isolated systems
can be divided into the following groups:

1. potential approximation on a finite domain boundary and parallel so-
lution of finite difference methods [7];

2. parallel convolution method using a parallel Fourier transform [8, 9];

3. method of local corrections [10].

This paper describes a new parallel numerical algorithm which employs
a method of partial pre-computation of Green’s function (which is similar
to an idea proposed in [11] for the parallel solution of three-diagonal linear
algebraic equations), calculation of a single-layer potential in a spirit of [12]
and the use a modification of the James method [6].

In Section 2, we describe the Green’s function partial pre-computation
algorithm, 2D domain decomposition methods being given in Section 3. The
general algorithm for 3D domain decomposition along with testing results
are described in Section 4. Section 5 outlines a parallel modification of the
James method.

2. Partial pre-computation of Green’s function

Let us consider the Dirichlet problem for the 2D Poisson equation

∆Φ = ρ, Φ|Γ = 0,

which is solved on Lx × Ly mesh with the spatial steps hx and hy using a
5-point approximation stencil (or any other compact stencil). We suppose
the density ρ to be equal to zero everywhere, except for a layer with the
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Figure 1. The problem of gravitational potential cal-
culation on a layer with index i1, which is generated by
charges (masses) ρi0k located in the layer i0

index i0: ρi0k 6= 0. It is required to calculate a gravitational potential Φi1k

on a layer with the index i1 (Figure 1).
Applying the Fourier transform for the sine functions and taking into

account the fact that ρi = 0, if i 6= i0, we write down

Φi1k =

Ly−1∑
n=1

Ai0(n) ·Bi1,i0(n) · sin πnk
Ly

,

where
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.

As the auxiliary function Bi1,i0(n) does not depend on density and can
be calculated one time for a given mesh and a stencil, then it ap-
pears that the computational complexity of calculating Φi1k is of order
O(Ly log2 Ly). Note, that if we solve the same problem with the well-known
fast Fourier transform, then the computational complexity will be equal to
O(LyLx log2 Ly log2 Lx).

Thus, if we compute the function Bi1,i0(n) for all necessary values of
i1, i0 before solving a non-stationary problem, it will drastically reduce the
amount of computations to be carried out.

3. The 2D domain decomposition

The method of domain decomposition is based on the idea of a single layer
calculation, which is used in a number of algorithms [5, 12].

Let us consider the Dirichlet problem for
the 2D Poisson equation in the 2D domain Ω,
and assume that we subdivide Ω into 2 subdo-
mains Ω1,Ω2 with the boundaries Γ1,Γ2 and the
common boundary (interface boundary) γ (Fig-
ure 2).

The decomposition algorithm consists of the
following steps:

Figure 2. Subdivision of
2D domain into 2 subdo-
mains
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1. Assign Φi|γ = 0, and then in each of the subdomains solve a subprob-
lem

∆Φi = 4πρi, Φi|Γi = 0, i = 1, 2.

2. Calculate Φ0 in Ω as a union of Φ1 in Ω1 and Φ2 in Ω2. Then Φ0 is a

continuous function on the interface γ, but its normal derivative
∂Φ0

∂~n
has a discontinuity on γ.

3. This discontinuity of the normal derivative generates a layer of “screen-
ing charges” q, located on γ, which can be calculated by applying a
finite difference Laplace operator to the function Φ0: q = ∆Φ0(γ).

4. Screening the charges q generate the gravitational potential Φscr in the
domain Ω.

5. It is sufficient to calculate Φscr at the nodes of the boundary γ using
a partially pre-computed Green’s function.

6. For each subdomain we solve the Dirichlet problem for the Laplace
equation ∆Φi = 0, Φi|Γi\γ = 0, Φi|γ = Φscr

γ .

7. A required solution to the initial problem is the sum of homogeneous
and inhomogeneous Dirichlet problems which were calculated at the
first and the last steps.

Now let us proceed to the algorithm for an arbitrary number of subdo-
mains P . The main difficulty is that we have P − 1 interface boundaries,
and each of them has its own layer of screening charges. All those charges
generate their “own” gravitational potential.

We have developed special algorithm, which uses binary tree of subdo-
mains, where a root of a tree is the domain Ω, child nodes being 2 “half-

Figure 3. 2D domain
subdivision into 4 subdo-
mains

domains” of a parent node, and leaf nodes are
P subdomains. Starting from the leaf nodes we
apply the algorithm proposed for 2 subdomains
on each tree level until we reach the tree root.

Thus, the boundary conditions for each of the
subdomains can be calculated for logP steps.

Here we give an example, how the algorithm
works for P = 4 (Figure 3):

1. Solve the Poisson equation with homogeneous boundary conditions.
Calculate screening charges q1,2 on γ1,2 and q3,4 on γ3,4.

2. Calculate the gravitational potential, which is generated by q1,2 and
q3,4 on γ2,3 and is adjacent to γ2,3 nodes. Calculate screening charges
q2,3 on γ2,3.

3. Calculate the gravitational potential, which is generated by q2,3 on
γ2,3, γ1,2, γ3,4.



A scalable parallel algorithm of solving the Poisson equation 97

4. This gravitational potential defines the boundary conditions of the
Dirichlet problem for the Laplace equation.

4. The 3D domain decomposition

Let us describe a 3D domain decomposition method. First, it is worth to
note that an “elongated” 3D parallelepiped domain is quite similar to the 2D
case. If the required number of processors P is much less than the number of
nodes Lx, Ly, or Lz (e.g., P ≤ 128 and Lx = 2048), then a 3D decomposition
method is a straightforward generalization of a 2D decomposition. After
applying the fast Fourier transform to the direction z and dealing with
Lz independent systems of linear algebraic equations with regard to 2D
Fourier harmonics of the gravitational potential, we apply a 2D domain
decomposition algorithm to each of them.

However, in the case of a “cubic” 3D domain, this algorithm is not
suitable, because for a mesh with 10243 nodes it is needed to have not
less than 1024 processors in order to accomplish one time step in several
seconds.

That is why a 3D decomposition must be applied in 2 directions in the
following way:

1. Suppose that P = Px × Py and apply a 2D decomposition twice: first
subdivide the domain into Px layers and then subdivide each layer into
Py columns.

2. For each layer solve in parallel the homogeneous Dirichlet problem for
the Poisson equation.

3. Apply a fast Fourier transform in the direction z and solve Lz indepen-
dent systems of linear equations with regard to 2D Fourier harmonics
of the gravitational potential.

4. Re-distribute the interface boundaries data: it is required to apply
the matrix transposition of Ly × Lz and “all-to-all” communications
in processor groups, each of them comprising of Py processors.

5. Compute screening charges on the interfaces of x layers and their im-
pact on “parallel” layers.

6. Apply the inverse matrix transposition and fast Fourier transform.

7. Solve the inhomogeneous Dirichlet problem for the Laplace equation
and obtain a required solution.

The computational complexity of the algorithm for a cubic 3D domain is

O
(N3 logN

Px · Py

)
+ T (Py, 6N

2) + SR((logPx + logPy) · 4N2 logN),
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where T (Py, 6N
2) denotes the transposition of six 2D matrices of N × N

dimension inside the processor group of Py entries, and SR denotes oper-
ations of send/receive data for 2 processors. This estimation shows that
interprocessor communications do not require transferring a 3D data array
among all the processors.

Profiling, testing and proof-of-concept experiments were carried out on
supercomputers of the Siberian Supercomputer Center (Novosibirsk) and
the Joint Supercomputer Center (Moscow).

The performance measurements for the algorithm implementation are
presented in the table.

Parallel algorithm performance.
Computations have been conducted in the JSCC

Number of proc.,
P = Px × Py

Solving time for 1024× 1024× 1024 mesh, seconds

Dirichlet SendRecv AllToAll Total

512 = 32 × 16 1.6 0.38 0.33 2.3
1024 = 64 × 16 0.6 0.44 0.33 1.5
2048 = 64 × 32 0.35 0.6 1.2 2.15

5. Parallel implementation of the James method

Let us outline the parallel James method for isolated systems, which is an
ongoing focus of the present research:

1. Decompose the domain boundary Γ to “patches” and re-distribute
them among processors. Pre-compute all the necessary values of
Green’s function for each of the patches.

2. Solve a homogeneous Dirichlet problem for the Poisson equation with
the algorithm described. Compute screening charges on the domain
boundary.

3. Compute the gravitational potential, which is generated by screening
charges located on the opposite patches, using a modification of the
convolution method [6].

4. Solve the Laplace equation with new boundary conditions. Compute
the gravitational potential.

6. Conclusion

We have developed a parallel algorithm for solving the 3D Poisson equa-
tion for isolated systems, aimed at the simulation of non-stationary stellar
dynamics problems. This algorithm is based on domain decomposition in
2 directions, the subdomain coupling with a screening charges technique,
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and a partial pre-computation of Green’s function. The proof-of-concept
tests have shown that the Poisson equation on a mesh with 10243 nodes can
be solved in less than 2 seconds using 1024 processors.
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