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Computation of gravitational potential of isolated
systems in cylindrical coordinates∗

N.V. Snytnikov

Abstract. We present the new method for computation of a gravitational poten-
tial for isolated systems in cylindrical coordinates. This method solves the main
difficulty arising when treating isolated systems: in order to correctly state the
Dirichlet problem for the Poisson equation at the boundary of a finite computa-
tional domain, one must provide the boundary values of a gravitational potential
which are unknown.

To develop this method, we adapt the ideas of the convolution method and
the James algorithm to the Cartesian coordinates and rectangular computational
domains. To solve the Dirichlet problem for the Poisson equation, we use a finite
difference 7-point stencil. System of linear equations obtained after a difference
approximation is solved by means of Fast Fourier transform applied to the az-
imuthal coordinate, Fast sine transform for the vertical coordinate and 3-diagonal
elimination to determine the radial component of potential.

1. Introduction

In order to simulate the dynamics of galaxies or circumstellar disks it is
needed to solve systems of differential equations for the motion of a medium.
Although the motion may have a different nature for different processes (e.g.
collisionless or hydrodynamic), a common part is that the force is produced
by gravitation, which is described by the Poisson equation. Its right-hand
side, the density of the matter, has a finite support (density is non-zero only
for some bounded domain) and the natural boundary conditions are written
down in the form:

∆Φ(r) = 4πGρ(r), Φ|r→∞ = 0, (1)

where G is a gravitational constant.
Formally, the Dirichlet problem for the Poisson equation is correctly

stated, but in practice, in numerical experiments, one deals with a domain
bounded in space, so the natural boundary condition cannot be directly
used. One popular approach is to use a well-known fundamental solution of
the Poisson equation:
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Φ(r) = −G
∫
ρ(r′) dr′

|r − r′|
. (2)

The direct computation of this integral requires O(N3) operations for one
spatial point r (where N is taken to be the number of grid nodes along
one direction; for simplicity we assume the number of nodes to be of the
same order for all the directions). If a potential is needed for any point of a
3D computational domain, then the total number of operations is equal to
O(N6).

This great number of computations can be significantly decreased to
O(N3 logN) with Hockney’s method based on the convolution theorem and
Fast Fourier transform, which requires doubling a grid size for each direction
and modifying a gravitational potential at close distances [1]. However, the
straightforward implementation for cylindrical coordinates has a complexity
of O(N4 logN) [2], because the convolution theorem can be applied only for
azimuthal and vertical coordinates but not for radial coordinates (this will
be discussed in more detail in Section 3).

Another approach to solve (1) is to specify values of the gravitational
potential ΦΓ for the boundary Γ of the given computational domain Ω:

∆Φ(r) = 4πGρ(r), r ∈ Ω, Φ|Γ = ΦΓ, (3)

and then to apply one of the well-known methods of solving the Dirichlet
problem for the Poisson equation [3, 4]. Apparently, the complexity of the
computation ΦΓ must be of the same order as that of solving (3).

There are three different ways to compute ΦΓ:
Direct calculation. Using formulas (2), we can compute only boundary

values of the potential. It takes O(N5) operations for an arbitrary density
distribution and can hardly be used for the general case. However, if density
is known to be non-zero only in some plane, then complexity is decreased
to O(N4) [5].

Computation of approximated values using multipole moments. Under a
reasonable assumption of the mass sources concentration near to the center
of a domain, we can compute approximated boundary values of a potential
using its multipole expansion [6–8]. The method takes O(N3), but its main
drawback is that to attain desired precision (for example, 1 %), boundaries
should be moved back by a factor of 3 from the place, where the main part
of mass sources is concentrated. Another drawback of this approach is in
the difficulty of using it in the domain decomposition techniques.

The James method. The fastest and most powerful method to deal with
the potential of isolated systems in the Cartesian coordinates is the James
method [9] based on the well-known phenomenon of electrostatics. If a
charged body is encompassed by an earthen conductor, then charges in this
conductor will be redistributed in such a way as to provide the total zero
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potential in the conductor (these charges will be further denoted as screening
charges). This phenomenon combined with Hockney’s algorithm leads to the
following method:

1. Solve the Poisson equation with zero Dirichlet boundary conditions
imposed on Γ:

∆Φ0(r) = 4πGρ(r), r ∈ Ω, Φ0|Γ = 0. (4)

2. Taking into account the fact that Φ0 is zero outside of Ω, apply a
difference Laplace operator to Φ0 at the boundary nodes of Γ to obtain
density of screening charges.

3. Compute potential Φ1 in Ω generated by the surface screening charges
using the idea of Hockney’s algorithm (the convolution method).

4. The desired potential Φ = Φ0 − Φ1.

In other words, the James algorithm reduces the computation of a bound-
ary potential generated by the density ρ ∈ Ω to the computation of a volume
potential generated by screening charges located on the surface Γ. The lat-
ter turns out to be simpler because of the convolution method adaptation
(but of course it is not evident at first glance).

However, as a matter of fact, for cylindrical coordinates, Step 3 of
the James algorithm cannot be directly employed because of the above-
mentioned impossibility of using the convolution theorem.

The present paper is focused on the adaptation of the James method
for the cylindrical coordinates. Also, we present our implementation of this
method for solving the Dirichlet problem for the Poisson equation (Sec-
tion 2). The method of screening charges computation is described in Sec-
tion 3, while convolution method and its application to our needs is discussed
in Section 4. A brief description of the combined algorithm and its com-
plexity is discussed in Section 5. The main results and application of the
created method are summarized in conclusion.

2. The Poisson equation solver

Assume that we have a cylindrical computational domain:

Ω =
{

(r, φ, z) : r ∈ [R0, Rmax], φ ∈ [0, 2π], z ∈ [Z0, Zmax]
}
.

If R0 > 0, this means that the central cylindrical domain is cut off and
the boundary conditions should be set for both the exterior (Rmax) and the
interior (R0) boundary faces of the cylinder.
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The Poisson equation in the cylindrical coordinates is written down as

1
r

∂

∂r

(
r
∂Φ
∂r

)
+

1
r2

∂2Φ
∂φ2

+
∂2Φ
∂z2

= ρ, (5)

where the right-hand side ρ already contains the factor 4π, and the grav-
itational constant G is taken to be unity in dimensionless variables. We
consider the Dirichlet conditions to be specified for the boundary Γ.

To solve this equation, we use a finite difference method. In the domain
Ω, we introduce a grid with Nr ×Nφ ×Nz nodes:

ri−1/2 = R0 + (i− 1/2)hr, i = 0, . . . , Nr, hr =
Rmax −R0

Nr
,

φk = khφ, k = 0, . . . , Nφ, hφ =
2π
Nφ

,

zl = Z0 + lhz, l = 0, . . . , Nz, hz =
Zmax − Z0

Nz
.

We assume that Nr, Nφ, Nz are of the same order (denoted as N). To
approximate equation (5), the following difference scheme is used:

1
h2
rri−1/2

[
ri(Φi+1/2,k,l − Φi−1/2,k,l)− ri−1(Φi−1/2,k,l − Φi−3/2,k,l)

]
+

1
h2
φr

2
i−1/2

(
Φi−1/2,k+1,l − 2Φi−1/2,k,l + Φi−1/2,k−1,l

)
+

1
h2
z

(
Φi−1/2,k,l+1 − 2Φi−1/2,k,l + Φi−1/2,k,l−1

)
= ρi−1/2,k,l, (6)

i = 1, . . . , Nr, k = 1, . . . , Nφ, l = 1, . . . , Nz.

From the boundary conditions it follows that the values Φ−1/2,k,l, ΦNr−1/2,k,l,
Φi−1/2,k,0, Φi−1/2,k,Nz are known and Φi,0,l = Φi,Nφ,l for i = 0, . . . , Nr, l =
0, . . . , Nz.

If R0 = 0, then a cylinder domain does not contain a cut off area in its
center. In this case, the interior values Φ−1/2,k,l are not needed at all (the
property of a difference scheme shifted at 1/2 of a node [11]).

Linear system of equations (6) is solved in a way based on the ideas
of [6, 10].

First we construct a homogeneous problem with zero boundary condi-
tions by modifying the right-hand side:

ρ̃1/2,k,l = ρ1/2,k,l −
1
h2
r

r0

r1/2
Φ−1/2,k,l,

ρ̃Nr−3/2,k,l = ρNr−3/2,k,l −
1
h2
r

rNr−1

rNr−3/2
ΦNr−1/2,k,l,
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ρ̃i−1/2,k,1 = ρi−1/2,k,1 −
1
h2
z

Φi−1/2,k,1,

ρ̃i−1/2,k,Nz−1 = ρi−1/2,k,Nz−1 −
1
h2
z

Φi−1/2,k,Nz−1.

Then we write discrete Fourier series for Φ and ρ:

Φi−1/2,k,l =
Nφ−1∑
m=0

Fi−1/2,l(m) exp
(
−2πīkm

Nφ

)
,

ρi−1/2,k,l =
Nφ−1∑
m=0

Gi−1/2,l(m) exp
(
−2πīkm

Nφ

)
(where ī denotes an imaginary unit) and substitute them into equation (6)
thus obtaining a difference scheme with regard to the complex azimuthal
harmonics:

1
h2
rri−1/2

[
ri(Fi+1/2,l(m)− Fi−1/2,l(m))− ri−1(Fi−1/2,l(m)− Fi−3/2,l(m))

]
−

1
h2
φr

2
i−1/2

Fi−1/2,l sin
2 πm

Nφ
+

1
h2
z

(
Fi−1/2,l+1(m)− 2Fi−1/2,l(m) + Fi−1/2,l−1(m)

)
= 4πGi−1/2,l(m), (7)

i = 1, . . . , Nr, m = 0, . . . , Nφ − 1, l = 1, . . . , Nz.

The true number of independent equations is Nφ/2, because a harmonics
with wavenumbers exceeding Nφ/2 are a complex conjugation for harmon-
ics with wavenumbers less than Nφ/2, so the corresponding equations are
redundant. Harmonics with wavenumbers 0 and Nφ/2 are purely real (both
properties follow from the properties of the complex discrete Fourier series
for purely real functions).

At the next step, we apply a discrete sine transform in the vertical di-
rection:

Fi−1/2,l(m) =
Nz−1∑
n=1

Hi−1/2(m,n) sin
πln

Nz
,

Gi−1/2,l(m) =
Nz−1∑
n=1

Ri−1/2(m,n) sin
πln

Nz
.

Substituting into(7) we obtain (Nz − 1) × Nφ independent three-diagonal
systems of equations:
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ri
h2
rri−1/2

Hi+1/2(m,n) +(
− 2
h2
r

− 1
h2
φr

2
i−1/2

4 sin2 πm

Nφ
− 1
hz

4 sin2 πn

2Nz

)
Hi−1/2(m,n) +

ri−1

h2
rri−1/2

Hi−3/2(m,n) = Ri−1/2(m,n). (8)

i = 1, . . . , Nr, m = 0, . . . ,
Nφ

2
− 1, n = 1, . . . , Nz − 1,

that are solved by a three-diagonal elimination method.
Now we can summarize the steps of the Poisson equation solver:

1. Modify the initial inhomogeneous boundary conditions to homoge-
neous conditions.

2. Apply the Fast Fourier transform to ρ(ri−1/2, φk, zl) and obtain
G(ri−1/2, zl)(m).

3. Apply the Fast sine transform to G(ri−1/2, zl)(m) and obtain
R(ri−1/2)(m,n).

4. Solve independent linear systems of equations with a three-diagonal
elimination and obtain H(ri−1/2)(m,n).

5. Apply the inverse Fast sine transform to H(ri−1/2)(m,n) and obtain
F (ri−1/2, zl)(m).

6. Apply the inverse Fast Fourier transform to F (ri−1/2, zl)(m) and ob-
tain Φ(ri−1/2, φk, zl).

3. Screening charges calculation

Assume that we have a solution Φ0 of homogeneous problem (4). The sim-
plest way to calculate screening charges is to apply a difference Laplace
operator (the left-hand side of (6)) to Φ0 at the boundary Γ (i.e., to the
nodes i = Nr, l = 0, Nz), taking into account the fact that Φ0 is equal to
zero at Γ and outside of Ω.

However, it is more convenient to use the following formulas for the
surface density of screening charges [12]:

σ(Γ) = − 1
4π

∂Φ0

∂n
, (9)

where n is an outward surface normal. We can approximate it by the di-
rected second order finite difference, which is written, for example, for the
lateral exterior boundary ΓR0 and the “floor” boundary ΓZ0 in the following
way:
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σ(ΓR0) = − 1
4π

1
2hr

(
Φ0(rNr−5/2, φk, zl)−

4Φ0(rNr−3/2, φk, zl) + 3Φ0(rNr−1/2, φk, zl)
)
,

σ(ΓZ0) = − 1
4π

1
2hz

(
−Φ0(ri−1/2, φk, z2)+

4Φ0(ri−1/2, φk, z1)− 3Φ0(ri−1/2, φk, z0)
)
.

(10)

4. Calculation of the potential generated by screening
charges

The key idea of the James algorithm is the method of a volume potential
calculation generated by the screening charges. To use this idea in the
cylindrical coordinates we have reformulated the problem in the following
way.

Let us consider an arbitrary domain Ω1 with the boundary Γ1 such as
Ω1 ⊃ Ω. The task is to find the potential ΦΓ1 produced by surface screening
charges located in Γ.

It is easy to see that the direct calculation takes O(N4) operations, that
is not satisfactory. To compute the potential ΦΓ1 efficiently, we have to use
the convolution theorem [13]. First let us rewrite (2) in the following way:

Φ(r) = −
∫
ρ(r′)K(|r − r′|) dr′ = −ρ ∗K, (11)

where K(|r − r′|) = 1

|r − r′| and ρ ∗K denotes the integral convolution.

If an integrand in (11) is absolutely integrable and the following integrals
exist (i.e., there are bounding constants C1 and C2):∫

ρ(r′) dr′ < C1,∫
K(r′) dr′ < C2, (12)

then it follows that

FT[Φ](k) = −FT[ρ](k) · FT[K](k), Φ = −FT−1
[

FT[ρ] · FT[K]
]
, (13)

where FT [·] is a Fourier transform. This means that in order to compute
integral (11), we have to compute the Fourier coefficients for the functions K
and ρ, multiply them and apply the inverse Fourier transform. This theorem
holds for discrete functions and discrete Fourier transform as well.

It is very useful if one needs to compute the integral for the values of
Φ defined on the same grid as values of ρ. In this case, the total number
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of operations can be reduced to O(N) logN because of the Fast Fourier
transform algorithm, while the direct computation takes O(N2).

Thus if we apply a discrete analog of the convolution theorem to (2)
defined on the Cartesian grid, then the computation complexity could be
reduced to O(N3 logN). However it is not easy to do it, because of the two
important obstacles. The first obstacle is a divergence of integral (12), when
r′ = 0. To overcome this problem some authors [1, 2, 14] used a modified
Newtonian potential, by cutting off the interaction force at close distances
to provide K(0) <∞.

The second obstacle appears due to the fact that a discrete Fourier trans-
form deals with periodic functions, while both K and ρ are not periodic. To
walk around this problem, Hockney [15] proposed to extend a grid in all
directions by a factor of 2 and defined both functions in a specific way. It
was proved that this method gave a correct result for the potential Φ defined
on the initial grid.

Now let us consider the convolution method in the cylindrical coordi-
nates. Integral (2) takes the form

Φ(r, φ, z) = −
∞∫

0

2π∫
0

∞∫
−∞

r′ρ(r′, φ′, z′) dr′ dφ′ dz′√
r2 + r′2 − 2rr′ cos(φ− φ′) + (z − z′)2

. (14)

Its kernel can be represented in the form of (11) only for z and φ coordinates.
So, the computation complexity will be of order O(N4) logN , because the
potential values for a radial coordinate can be computed only by the direct
summation.

However, we can adapt this method to compute potential values gener-
ated by the screening charges. Consider a “ring” of nodes belonging to Γ1

with the cylindrical coordinates

(ri1 , φk1 , zl1), k1 = 0, . . . , Nφ − 1,

and a “ring” of nodes belonging to Γ:

(ri2 , φk2 , zl2), k2 = 0, . . . , Nφ − 1.

Now we denote Φi2,l2(ri1 , φk1 , zl1) as a potential, generated by screening
charges located in the ring indices i2, l2. We can write a discrete analog
of (14) as follows:

Φi2,l2(ri1 , φk1 , zl1) =
Nφ−1∑
k=0

Qi2,k,l2√
r2
i2

+ r2
i1
− 2ri2ri1 cos(φk − φk1) + (zl2 − zl1)2

=
Nφ−1∑
k=0

Qi2,k,l2K(ri1 , ri2 , zl1 , zl2 , φk − φk1), (15)
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where Qi2,k,l2 is a screening charge located at the node (i2, k, l2). Then we
apply a discrete convolution theorem with regard to φ:

FT[Φi2,l2(ri1 , zl1)](m) = FT[Qi2,l2 ](m) · FT[K(ri1 , ri2 , zl1 , zl2)](m).

Henceforth, this means that to evaluate a contribution of the ring from Γ to
the potential of the ring Γ1 it is needed to perform O(Nφ logNφ) operations.
The total potential in the ring Φ(ri1 , φk1 , zl1), k1 = 0, . . . , Nφ−1, is evaluated
as

Φ(ri1 , φk1 , zl1) =
∑

(i2,l2)∈Γ

Φi2,l2(ri1 , φk1 , zl1),

and it can be done in O(N2 logN) operations. Since the total number of
rings in Γ1 is of order O(N), then we find the complexity of the algorithm
to be O(N3 logN).

Note that both problems mentioned for a classical convolution algorithm
(divergence of an integral at close distances and non-periodicity of inter-
grands) do not exist for the algorithm presented, because Γ and Γ1 do not
contain common points, therefore the kernel’s denominator is strictly greater
than zero, and both K and ρ are true periodic functions.

5. The James algorithm for cylindrical coordinates

Now we can summarize the James algorithm for cylindrical coordinates.

1. Solve Poisson equation (5) in Ω with zero Dirichlet conditions imposed
on the boundary Γ using difference operator (6) and the corresponding
method based on Fast Fourier transform and three-diagonal elimina-
tion. It takes O(N3 logN) operations.

2. Compute screening charges on the boundary Γ using a finite difference
discretization of (9). It takes O(N2) operations.

3. Take arbitrary Ω1 such as Ω1 ⊃ Ω and calculate the potential ΦΓ1

(where Γ1 is a boundary of Ω1) produced by screening charges located
in Γ. The method is based on the convolutions applied to the rings
of nodes and direct summation of the contributions from all the rings.
In practice, Ω1 contains slightly more grid nodes than Ω. It takes
O(N3 logN) operations.

4. Solve Poisson equation (5) in Ω1 with the Dirichlet boundary condi-
tions on Γ1. The solution is a desired potential. It takes O(N3 logN)
operations.

So, the total complexity of the algorithm is O(N3 logN) and does not
need any approximations of boundary conditions or assumptions about a
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density distribution inside Ω, which are vitally important for the previously
created algorithms [6, 8, 16].

Although the key steps of the algorithm have the same complexity it is
interesting to find an appropriate ratio between them in order to understand
whether there is any need for optimization. In our prototype implementation
(using FFTW 3.1.5 [17,18] for Fast Fourier transform), we have found that
Steps 3 and 4 take approximately the same time, while Step 1 is about 2–4
times faster depending on the size of a mesh. The most possible reason is
that the FFTW algorithm may produce significantly different performance
results for good grid sizes and for the general case.

6. Conclusion

We have adapted the James algorithm for the use in the cylindrical co-
ordinates by employing the convolution method to compute the boundary
potential generated by the screening charges. The created method needs no
assumptions on the density distribution in the computational domain. We
also implemented a general method for solving the Dirichlet problem for the
Poisson equation, which can be used for cylindrical domains with a cut off
central area.

This work is the first step on the development of a scalable parallel algo-
rithm based on domain decomposition, the James method and the method
of local corrections [19,20], but intended for cylindrical coordinates.
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