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Quasi-stationary distribution function of the
rotating collisionless gravitating disk∗

N.V. Snytnikov

Abstract. We have constructed a quasi-stationary distribution function of the
rotating collisionless gravitating disk with an oblate spheroid-like structure at the
center. The construction technique is based on the numerical tracking of the evo-
lution of the initially non-stationary thin disk on time scales of dozens of rotations.
We show that a distribution function can be approximated using the axially sym-
metric density σ(r, z) and the velocity dispersions cr(r), cφ(r), cz(r). The numerical
analysis of the disk stability in the vertical direction has been made. It was found
that a forced compression of the disk height implies the development of a bending
instability.

1. Introduction

For the study of the dynamics of collisionless gravitating systems (such as
galaxies or a dust component in circumstellar disks) it is important to know
parameters of the stationary distribution functions (DF) of the matter f =
f(x,v) in a self-consistent gravitating field. First, it is useful in order to
estimate an impact of the external forces produced by a central body, a
gaseous component, a dark matter, etc. Second, applying perturbations of
the known form to a stationary system it is possible to analyze their influence
on the global stability of a DF, separating true physical instabilities from
the numerical fluctuations and noises [1]. At last, while studying processes
that are specific to the multiphase systems (e.g. a gas-dust circumstellar
disk) it is necessary to make sure that non-stationary state of a component
does not have a dramatic impact on the evolution of the whole system.

The fact is, the analytical reconstruction of the consistent pair–– DF and
gravitational field–– is a very difficult task, and there are only a few analytical
solutions for the disk systems [2, 3], most of them hardly corresponding to
real systems, because they are unstable (for example, a uniformly rotating
Maclaurin disk is one of those). Although analytical approaches help to do
some qualitative estimations for the disk galaxies [4,5], at the same time they
have restricted application for constructing the three-dimensional stationary
rotating disk systems. The only way is to numerically solve equations of the
stellar dynamics consisting of the collisionless Boltzmann equation (CBE) for
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DF (also known as the Vlasov equation in plasma physics) and the Poisson
equation for the gravitational field:

∂f

∂t
+ u

∂f

∂r
−∇Φ(t, r)

∂f

∂u
= 0, f(0, r,u) = f0(r,u),

∆Φ(t, r) = 4πGρ(t, r), Φ(t, r)|r→∞ = 0,

ρ(t, r) =
∫
f(t, r,u) du.

(1)

The main idea of this approach is based on the numerical technique of
tracking the disk evolution [6]. At the initial moment, f0(r,u) is given
and assumed to be close to equilibrium state. Then system 1 is numerically
integrated to the moment when it becomes clear either f is stable or not. Of
course, it cannot be treated as a rigorous proof even in a case of the perfect
stability of f in the course of simulation because of the two main reasons.
The first one is possible artefact of a numerical code, which prevents the
growth of instability. The second one is that some instabilities may have a
growing time that exceeds the chosen time of numerical calculation. However
for most applications it is sufficient to make sure that DF does not change
during a characteristic time scale (e.g. several rotation periods for rotating
disks). Henceforth, if DF is stationary in numerical simulation, it is called
quasistationary to distinguish it from an exact stationary solution of the
CBE-Poisson system.

The first attempts to numerically analyze stability of DF [7–9] have
shown that this is a very powerful tool, but nevertheless it is of great compu-
tational costs. So, the later efforts were mainly concentrated on constructing
DFs, which are close to the observable galaxies and include some external
fields of the galactic halo, buldge and dark matter ([10–12] and references
therein). But today, with the help of advanced numerical techniques [13–15]
and with the use of supercomputers it becomes possible to solve system (1)
on a large time scale without significant simplifications.

This paper presents results of the numerical simulations aimed at con-
structing quasistationary DF for the rotating collisionless disk. It is shown
that a thin non-stationary disk evolves to the axially-symmetric quasista-
tionary DF, which has a shape of a disk with a spheroid-like structure at
the center. We briefly discuss some features of its evolution and then nu-
merically test the stability of the obtained DF with regard to the growth of
the bending instabilities.

2. A numerical model and basic tests

This section briefly describes a numerical model and is mainly concentrated
on the test scenarios, which demonstrate its reliability and robustness in
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the case when a solution is unstable. A detailed description of the used
numerical methods and parallelization techniques can be found in [15,16].

To solve (1), we use a cylindrical system of coordinates. A CBE is solved
using the PM (particle-mesh) method [13] (that is known as, particle-in-cell
method in plasma physics [17]). One of the main features of the devel-
oped numerical code is that in order to find a gravitational field, we solve
the Dirichlet problem for the Poisson equation, while some other implemen-
tations [18, 19] employ a convolution method (an extensive review of the
methods of the gravitational field calculation can be found in [20]).

In addition to a usual analysis of the numerical convergence of the
method, testing its computer implementations and checking the runtime
accuracy criteria such as conservation laws, we have to make sure that:

• the growth of gravitational instabilities is not suppressed in the nu-
merical integration of (1) (if these instabilities are present in the initial
system of PDE).

• numerical instabilities, caused by interactions of particles with a
mesh [17], do not appear for a stationary solution of (1).

If these requirements are met, then it allows us to conclude:

• if f0(r,u) is stationary, then it remains stationary in the numerical
integration of (1).

• if a numerical approximation of DF is quasi-stationary, then the cor-
responding solution of (1) is quasi-stationary as well.

To test these properties, it is useful to adapt well-known analytical solu-
tions [2].

Instability of the uniformly rotating the Maclaurin disk. The
Maclaurin disk is a thin disk (the vertical height is zero) with the surface
density:

σ(r) =

 σ0

√
1−

(
r
R0

)2
, r ≤ R0,

0, r > R0,
(2)

where R0 is a radius of the disk and σ0 is calculated from the condition

M0 = 2π
∫ R0

0
σr dr =

2π
3
σ0R

2
0,

where M0 is the mass of the disk.
The radial and the vertical velocities are vr(r) = 0 and vz(r) = 0, the

azimuthal velocity vφ(r) is derived from the equality of centrifugal and grav-
itational forces:
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Ω2r = −∂Φ
∂r
, (3)

where Ω is an angular velocity (which is constant for the Maclaurin disk).
It is known that the Maclaurin disk is in equilibrium, but unstable to the
growth of the Jeans instabilities [2].

The first test is to make sure that DF, defined from (2),(3) and numeri-
cally implemented in the code, is in the equilibrium state. To perform this
test, the Poisson equation is solved only at the initial moment and then a
mesh function of the gravitational field is stored in the course of the sim-
ulation. So, the disk evolves in a constant field and indeed it has shown a
perfect stability.

The second test is to check the Toomre criterion [21] of the stability of
rotating disks against axially symmetric perturbations:

cr ≥ cT = 3.36
Gσ

κ
, (4)

where κ = 2Ω
√

1 + r

2Ω

dΩ

dr
is the epicyclic frequency. The Toomre parameter

Q = cr

cT
is often used.

To implement this test, the gravitational field is calculated at each time
step, but the azimuthal forces are neglected. This implies that all motions
of the particles are axially symmetric. The results of numerical simulations
are shown in Figure 1, for Q = 0.1 ÷ 1.5. Axially symmetric instabilities
(rings) grow, when Q < 1 and are suppressed, when Q > 1, that corresponds
to the analytical predictions.

The next test is to simulate a cold Maclaurin disk (Q � 1) in a self-
consistent field. Since the disk is unstable, then it should fall into pieces,

Figure 1. The surface density in
the equatorial plane of the Maclaurin
disk in axially symmetric field with
different values of the Toomre Q pa-
rameter. Logarithmic density scale
is at the right side
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Figure 2. The surface density in the equatorial plane of the
cold Maclaurin disk in a self-consistent field

which correspond to the Jeans masses. Figure 2 shows the fragmentation of
the disk after less than 1/4 of its rotation period.

The last test is the self-consistent evolution of a hot Maclaurin disk
(Q = 1) with a non-zero vertical height. In this case, the azimuthal disper-
sion was chosen from the Lindblad relation [5]:

cφ = cr
κ

2Ω
. (5)

The results of simulation are presented in Figure 3. The disk is stable against
the axially symmetric perturbations but unstable against the nonlinear non-
axially symmetric bar instability. The results are in agreement with earlier
works [7, 8] performed with different numerical techniques.

Stability of the Einstein model. The DF of the Einstein model for spher-
ical galaxies or globular clusters of stars is defined as follows. Particles are
distributed on a sphere (for simplicity, we take a uniform density). Radial
velocities of particles in spheroidal coordinates are equal to zero. Tangent
velocities are chosen with arbitrary directions and an absolute value corre-
sponding to the rotation of the particle around the sphere’s center. Since
this DF is stable [2], then we expect the stability of the corresponding nu-
merical approximation of the DF. Figure 4 shows the surface density of the
sphere at t = 0.0 and t = 10.5: indeed, the sphere is stable.
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Figure 3. The surface density in the equatorial and in
the meridian planes of the hot Maclaurin disk in a

self-consistent field

Figure 4. The surface density of the Einstein model in the equatorial plane

3. Evolution of a non-stationary thin disk

The surface density and the vertical density of the initial DF are given by
the equations:

σ(r) =
{
σ0e
−r/L, r ≤ R0,

0, r > R0,
, σ(z) ∝ cosh−2

( z
z0

)
, (6)

where L and z0 are the density scale parameters. Equations (6) are consid-
ered to be the first simple approximation to the density of real disk galax-
ies [3,5]. The mean velocities correspond to circular rotation (3) and initial
dispersions are given by cr = 0.5, cφ = 0.25, cz = 0.0. These values of radial
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Figure 5. Dynamics of a non-stationary disk at a large time scale. The surface
density in the equatorial and in the meridian planes of the disk for different time

instants
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and azimuthal dispersions do not satisfy equation (5), hence the initial DF
is far from the equilibrium state.

Figure 5 shows the evolution of the DF. At the first moment (t = 3.0),
we can see a ring-like structure produced by violation of the Lindblad re-
lation (5). The density in the ring is stronger than in the initial disk, and
the Toomre parameter Q becomes less than 1. This means that the Jeans
instabilities are not suppressed, and the ring falls into pieces (t = 6.0), which
collapse with the formation of a transient 3-arm spiral structure (t = 9.0).
In less than half a rotation period, the spiral arms disappear, and we observe
a rotating bar in the central area (t = 12.0). At the same time we can see
bending deformations of the disk in the vertical direction (t = 3.0).

A subsequent bar evolution is the following. Beginning with t = 20.0 to
t = 90.0 (six rotation periods) no significant changes are observed: the bar
rotates with a weak slowing down of the angular velocity and demonstrates
the stability both in the equatorial plane and in the vertical direction. But at
the moment t = 90.0, one can notice the growth of the bending instability. It
weakens the bar at the moment t = 100.0 forming an ellipsoid-like structure,
which rotates with a constant angular velocity till the end of simulation
(t = 120.0).

Results of this simulation: the growth of the bar instability, the bar
weakening due to the growth of the secular bending instability are in good
agreement with a number of publications ([22, 23] and references therein).
The authors [24] state that they failed to find parameters of the initial DF
when the bending instability in a bar leads to the formation of a bulge (an
axially-symmetric bar). We have observed the same behavior: bending of
a bar decreased the relation of the axis parameters, but could not make it
completely axially-symmetric.

4. Construction of an axially-symmetric quasi-stationary
disk

In order to construct an axially-symmetric DF, we take the DF obtained by
the simulation in from the previous section and then take mean azimuthal
values of the following functions: the density σ(r, z) and the dispersions
cr(r), cφ(r), cz(r). It turns out that the DF approximated by these functions
is close to the quasi-stationary state. Figure 6, shows the simulation results
with approximated axially-symmetric DF at a time scale of four rotations
of particles with the radial coordinates r = 1. It is clear that there are no
significant modifications of DF. These results are in agreement with those
presented in [8] (2D numerical model).

To validate the stability of the disk against the bending instabilities and
to find if it is possible to construct a thin stable disk, we use the following
method.
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Figure 6. Dynamics of the axially-symmetric DF. The surface densities in the
equatorial and in the meridian planes of the disk for different time instants

Figure 7. Dynamics of the quasi-stationary disks with different compression fac-
tors (a) kh = 1.0, (b) kh = 0.5, (c) kh = 0.25. The upper row corresponds to
the time t = 0.0, the lower row to the time t = 22.5. The surface density in the

meridian plane of the disk

A disk is artificially compressed in the vertical direction with the factor
kh so that the vertical length is zh = khz

0
h (where z0

h is a vertical length of
the disk). It was found that when kh is less than 1/4, there was a bending
instability of a spheroid-like structure at the center. Figure 7 demonstrates
the comparison of the results of the three simulations with the compression
factors kh = 1.0, 0.5, 0.25.

There are no significant differences with a compression factor kh = 0.5,
i.e., the disk is stable at a time scale of two rotation periods. However, with
further compression to kh = 0.25, one can observe the bending instability.
Numerical simulation with kh = 0.25 has been checked on a fine grid with
a number of nodes in the vertical direction Mz = 512 and shows the same
result. It is in agreement with simulations performed in [22, 25] and known
observational data of the absence of elliptical galaxies with a compression
factor exceeding E7.

5. Conclusion

Using the numerical model developed in [15,16] for solving problems of grav-
itational collisionless physics, we succeeded to construct quasi-stationary
distribution function for the rotating three-dimensional collisionless grav-
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itating axially-symmetric disk. We found that the obtained DF can be
approximated using the density function σ(r, z) and the velocity dispersions
cr(r), cφ(r), cz(r). Numerical simulations with a compressed DF in the
vertical direction shows that it becomes unstable to the growth of bending
instabilities if a disk is thin.
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