Bull. Nov. Comp. Center, Num. Anal., 17 (2015), 69-78
(© 2015 NCC Publisher

A domain decomposition algorithm using SPH
and PIC methods for simulating gas-dust
gravitating disks*

N.V. Snytnikov, O.P. Stoyanovskaya

Abstract. We present a new parallel algorithm for supercomputer simulation of
gas-dust circumstellar gravitating disks. The algorithm uses the domain decomposi-
tion technique and combines numerical methods of smooth particle hydrodynamics
(SPH), particle-in-cell (PIC) and grid-based gravitational solver with the convolu-
tion method and parallel multidimensional Fast Fourier Transform.

The algorithm is designed to address the specificity of simulating non-stationary
rotating disks, where the matter, represented by SPH and PIC particles, moves
across a computational domain, and therefore requires efficient load-balancing meth-
ods. The parallel algorithm is suitable for running on supercomputers with differ-
ent types of architectures: standard (CPU-based), and hybrid (CPU with NVIDIA
GPU and Intel Xeon Phi).

1. Introduction

Supercomputer simulation of the dynamics of gravitating systems (such as
galaxies and circumstellar disks) is one of the biggest challenges in the
modern computational astrophysics. On the one hand, numerical methods
aimed at simulating these processes were developed rapidly over the past 2—3
decades. A variety of sophisticated algorithms were proposed. Among them
are: smooth particle hydrodynamics [1-4], particle-in-cells [5,6], treecode [7],
piecewise parabolic method [8], adaptive mesh refinement [9] and others.
On the other hand, existing parallel implementations of these methods are
not suitable for an extensive set of astrophysics problems and usually focus
on one particular astrophysics problem like well-known cosmological sim-
ulations (Millenium [10], Bolshoi [11], BlueTides [3] and others). Parallel
implementations rely on some special conditions that are typical of a par-
ticular problem, but could hardly demonstrate good performance in other
contexts.

Another important challenge is the requirement to develop algorithms
that could be used for different types of supercomputer architectures: con-

*Supported by the RFBR under Grants 14-01-31088, 14-01-31516, and 14-07-00241.
The ministry of Education and Science of the RF. Numerical experiments were conducted
at the Siberian Supercomputer Center, Joint Supercomputer Center, and MSU Lomonosov
Supercomputer.

70 N.V. Snytnikov, O.P. Stoyanovskaya

ventional (comprising CPUs only) and hybrid (comprising of CPUs and
massively parallel processors like NVIDIA GPU and Intel Xeon Phi).

In this paper we propose a parallel domain decomposition algorithm for
the earlier developed numerical model of gravitating circumstellar
disks [12,13]. Currently we are focusing mainly on the model of a thin disk
(where the movement of the matter in the vertical direction is neglected),
although the proposed parallel algorithm can be used in 3D simulations
without any restrictions.

The novelty of our approach is a method of dynamic load-balancing for
SPH and PIC particles (which move among computational subdomains).
This method uses features of numerical methods and underlying astrophys-
ical problem.

The model of a thin circumstellar disk includes the gasdynamics equa-
tions for surface density, which are solved with the SPH method:

+oo +00
Ogas = / Pgas dz; p*= / pdz.
—00 —00

oo . v "

5 + div(ov) =0, o +o(v,V)v=-Vp" -0V,
0S5* * *
5 + (v,V)S* =0, p"=T"c.

Here we use the notations: v is the velocity of gas in a disk plane, p* is
the surface pressure of gas, v* is the effective polytropic exponent for quasi-

3D model that has the following relation with v: +* = 3 — %, T = %

*

and S* = In % are variables corresponding to the gas temperature and
entropy, and a = —V® is the acceleration of particles in the external and
self-consistent gravitational field.

The gravitational potential ® is defined as a sum of the central body
potential and the disk potential:

)

M.
r

where M, is the mass of the central body, the potential ®5 of the self-
consistent gravitational field satisfies the Poisson equation:

A(I)Q = 4770'ga57 o, —— 0.

r—00

The dust phase dynamics of a circumstellar disk is defined by the Vlasov
equation. It is solved with well-known particle-in-cell method (PIC) [6]:

A domain decomposition algorithm using SPH and PIC methods. . . 71

8—f+ug—vti>ﬁ:

ot " or 5a =0 fOrw) = f(r).

Here f(t,r,u) is a distribution function of the matter (dust in circumstellar
disks), ®(t,r) is the gravitational potential, and p(t,) is the density, to be
calculated using the following equation:

p(t,r)—/f(t,r,u)du.

The initial densities of gas and dust are defined as a Mclauren disk with
the mass Mg,s and radius R:

Mg [, 2
 2TR2 R?’

Tgas(T)

The gas temperature at the initial moment is defined as T*(r) ~ o(r) the
temperature Ty at the center of the disk.

The numerical method for solving this system of equations can be briefly
described in the following way:

1. Introduce a uniform grid in the Cartesian computing domain, and fill
in it with SPH particles and PIC particles according to the gas and
dust densities.

2. Solve the gas-dynamics equations using SPH method: compute the
new coordinates of SPH-particles and the corresponding gasdynamics
parameters. This step requires that each particle have links to its
neighbor particles (which are not necessarily located in the same grid
cell), therefore some kind of particles sorting and searching procedure
is needed.

3. Solve the Vlasov equation using the PIC method. Since PIC-particles
are interacting with each other through the grid-based gravitational
field, their trajectories can be interacted independently in an arbitrary
order. However, it is much more efficient to process particles in a
cell-by-cell order, because of using a fast cache memory of modern
CPU/GPU/Phi processors (all values of a cell will be loaded in the
cache memory only once). Thus, special data structures for the PIC
particles are also needed.

4. Compute the grid-based gravitational potential using the convolution
method with Fast Fourier Transform.

A parallel algorithm should address the two issues: (a) to divide the
computational domain into subdomains to make sure that grid functions
for each subdomain can be calculated by a single processor with 1-4 GB
of memory, and (b) to distribute particles among processors in such a way

72 N.V. Snytnikov, O.P. Stoyanovskaya

that particles could access values of the grid function, freely move among
subdomains, and the total amount of particles transferring at each step
among subdomains be minimal.

In Section 2, we give a description of the proposed parallel domain de-
composition method. The parallel algorithm of the gravitational potential
calculation is discussed in Section 3.

2. Parallel domain decomposition

The main difficulty in developing a parallel algorithm is how to couple a
numerical method of integrating individual trajectories of modeling particles
with grid-based methods for calculating density, gravitational potential and
forces. Typically, a maximal number of grid nodes to be placed into a
single computational processor (CPU, GPU, Phi) is equal to 8-16 million
(256 x 256 x 256 for a 3D problem and 4096 x 4096 for a 2D problem). This
means that larger computational domains (1024 x 1024 x 1024, for example)
should be divided into smaller subdomains. At the same time, SPH and
PIC particles may easily cross the initial domain many times during a single
computation (for example, if we consider the simulation of disks on the
timescale of dozens rotations, where each particle has an elliptic or epicyclic
orbit around the center of mass).

Another problem arises because particles are non-uniformly distributed
among subdomains. A rotating disk may develop small and large clumps,
spiral waves, and other transient or secular structures that move over a
computational domain in an unpredictable manner. This implies that the
number of particles in each subdomain may differ up to orders of magnitude.
In addition, their number may drastically change over time: for example,
when one of the clumps containing a large number of particles starts the
rotation around the central body.

0

Simulation of gravitational instabilities in a circumstellar disk using SPH method
and grid-based gravitational calculation

A domain decomposition algorithm using SPH and PIC methods. . . 73

A general scheme of the new algorithm, that addresses all the mentioned
issues, is described below. It uses the following assumptions:

e computational complexity of solving the Vlasov equation and the hy-
drodynamics equation (i.e. integrating SPH and PIC particle trajec-
tories) is greater (up to 10 or 100 times) than the computational com-
plexity of calculating the gravitational potential. This assumption is
justified because the complexity of calculating the gravitational poten-
tial scales as O(nlogn) (where n is the total number of nodes), while
a typical number of PIC particles per one grid cell (a grid node) is
usually within the range of 10 < 100. Also, the number of arithmetic
operations per each particle is greater than the number of operations
per one cell (a grid node). For SPH particles the situation is similar,
although the number of particles per grid cell can be taken within the
range of 1 + 10.

e each particle should satisfy the Courant condition (otherwise, the sim-
ulation becomes numerically unstable): this means that a particle may
travel less than half of a minimal cell dimension during one time step.
In fact, for overwhelming the majority of particles the speed is much
lower. This implies that the number of particles, that should be trans-
ferred between the adjacent subdomains is much less than the total
number of particles in each subdomain. This number can be estimated
as 10n, for a 2D problem and 10nyn, for a 3D problem, where coeffi-
cient 10 is the estimated number of migrating particles and n,, n, are
the number of boundary grid nodes.

Based on these assumptions we have developed the algorithm of dynamic
load-balancing, which transfers particles between processors and correspond-
ing computational domains and provides a moderate amount of communica-
tions. This algorithm is in the process of implementation, and preliminary
results and experiments have shown good scalability at least up to a thou-
sand of processors. For simplicity, we split the algorithm to several proce-
dures: Algorithm 1 is a general scheme with references to the subroutines
described as Algorithm 2-6.

Algorithm 1: A general scheme of parallel domain decomposition. The
initial computational domain (2D or 3D) is uniformly subdivided into K
subdomains S1,S59,...,Sk in X direction. A group of processors Gy is
assigned to each subdomain S;. The number of processors in the group
Gy is equal to P, P, > 1. The total number of processors is equal to
P =" P;. The number of nodes (cells) in each computational domain is
chosen in such a way, that all subdomain grid functions used in the PIC and
SPH methods (gravitational potential, density, force, pressure, etc.) should
be entirely located in memory of one processor with a sufficient room to store

74 N.V. Snytnikov, O.P. Stoyanovskaya

arrays of particles (i.e their spatial coordinates and velocities). Usually the
number of nodes is equal to 0.5 + 2 million nodes (128 or 10242?). The
number of processors in the group Gy, is chosen to provide approximately a
uniform number of particles per processor (see Algorithm 2). This means
that if the subdomain Sy, contains more particles than the subdomain Sk,
then the number of processors Py, in the group Gy, will be greater or equal
to the number P, in the group Gg,. Each group of processors Gj and
the corresponding subdomain Sj has its main processor gg, that cannot be
reassigned to any other subdomain in the coarse of simulation (even if the
subdomain Sy does not contain any particles).

1. At the beginning of the simulation (the time instant ¢ = 0):

(a) for each subdomain Sy, compute the total number of particles, the
corresponding number of processors in a subdomain group, and
the number of particles per each processor (see Algorithm 2).

(b) allocate arrays in each processor and generate the spatial coordi-
nates and velocities.

(c) populate PIC and SPH particles in the computational domain
according to the user-defined density functions and distribute the
particles among processors.

2. Compute the density grid functions of PIC- and SPH-particles (see
Algorithm 3).

3. Compute the gravitational potential using the parallel convolution
method (see Algorithm 6). At this step, only the main processors
gg from each group Gy are used. The rationale outside this approach
is that the computation of gravitational potential takes much less time
than computation of particles, so it can be accomplished with a fewer
number of computational resources in a reasonable time. If hydrid
computers (CPU and GPU) are used, then this step is done only on
CPUs, while GPUs are reserved for integrating trajectories of parti-
cles. (Anyway, it is possible to make a massive parallelization of this
step, using all the processors.)

4. Redistribute the computed potential grid function from the main pro-
cessor gg to all other processors g;. of the group Gj..

5. For each processor compute the new coordinates of SPH and PIC
particles for the next time step (see Algorithm 4).

6. Compute a new number of particles that should be located in each sub-
domain Sy (this information is transferred among processors). Com-
pute the number of processors that should be assigned to each subdo-
main (see Algorithm 2). Redistribute particles among the new proces-
sor groups (see Alorithm 5).

A domain decomposition algorithm using SPH and PIC methods. . . 75

7. Increment the time step and go to Step 2.

Algorithm 2: Calculating the number of processors in a group. Let us as-
sume that each subdomain Sy, contains Ny, particles (these values are known
beforehand), and the total number of particles N = > N;. We have to
figure out how many processors should be assigned for treating N particles
to provide a uniform load of processors. Each processor group contains at
least one (the major) processor gg even if the number of particles in this
subdomain is small enough. At each time step we have to calculate number
Npax: this is a maximum number of particles per processor. If a processor
contains exactly Npmax particles, then the computer costs for this time step
will be defined by this processor. So, our task is to make Np.x as minimal
as possible. We use a bisection algorithm to find this value:

1. Compute values Nioy = N/P and Nypp = 2N/P. One can see that
Niow is less than the desired Nyax and Ny, is greater than the optimal
Nax. Assign Npmax := (Niow + Nupp)/2-

2. Calculate the values Py = (Ni/Nmax) + 1. Calculate the value P* =
> P,. Compare P* with P:

o If P* < P, then Nypp := Npax, g0 to Step 3.

o If P* > P, then Njoy := Npax, g0 to Step 3.

o If P* = P, then Nypp := Nmax, check whether Nypp—Niow < Neps
(where Neps < Nmax and is defined by the user), then go to Exit,
otherwise go to Step 3.

3. Assign Nmax = (Now + Nupp)/2 and go to Step 2.

The density and integrating trajectories of particles are computed using a
usual particle-in-cell algorithm. However, for parallelization it is important
to have appropriate data structures combining cells and particles. Algo-
rithms 3-4 below outline properties of these data structures.

Algorithm 3: Computation of the density inside subdomains.

e Particles are sorted in each subdomain, where the sorting key is a
serial number of a cell (firs, by ordering by the coordinate X, then by
Y and, finally, by Z). This kind of a sorting algorithm has a linear
complexity and can be done when flying while integrating the particle
trajectories (see Algorithm 4).

e Then particles are redistributed among processors of this group ac-
cording to their serial number in a sorted array.

e The sorting procedure provides an efficient use of the processor cache
memory, while calculating the coordinates of PIC-particles and a fast
search for the neighbors in SPH method.

76

N.V. Snytnikov, O.P. Stoyanovskaya

e [t is required to keep ghost boundary cells for SPH particles on each

processor (these cells are boundary cells from the adjacent subdomain
and require computing hydrodynamic parameters).

e The density grid function is calculated using PIC kernel (multilinear

interpolation to the cell nodes). And after that, it is gathered as a
grid function on the processor gg.

Algorithm 4: Computation of particles coordinates (trajectories integrat-

ion).

e A special data structure is developed: a cell with a linked array of

particles that are currently located in this cell.

For each cell, integrate the trajectories of particles that are linked with
a current cell.

Particles that move to other cells are to be linked with their new cell,
while all links with a previous cell are erased.

Particles that move to the cells located outside of a current subdomain
(or outside of the cells assigned for this processor) are marked as exter-
nal particles and will be moved to another subdomain (or a processor)
(see Algorithm 5).

Algorithm 5: Particles redistribution among subdomains after the new
coordinates computation.

1.

After applying Algorithm 4, each processor has the three types of par-
ticles: particles that are kept inside a current subdomain, particles
that are to be transferred to the left adjacent subdomain, and parti-
cles that are to be transferred to the right adjacent subdomain. The
number of transferred particles is not really big because of the Courant
condition: particles cannot cross the boundary of more than one cell
at one time step.

. Compute a new number of particles for each subdomain (this can be

done with Algorithm 4 and transfer this information among proces-
sors).

. Compute the number of processors for each subdomain (see Algo-

rithm 2).

Determine processors of each group that should be transferred to other
subdomains (to other groups). Transfer particles that should be kept
on a current subdomain.

. Transfer other particles from the processors of this subdomain to the

processors of the adjacent subdomain.

A domain decomposition algorithm using SPH and PIC methods. . . 77

3. A parallel algorithm for calculating the gravitational
potential

We use a parallel version of the convolution method proposed by Hockney.
The sequential version is described in details in [5,12], while the present pa-
per provides a brief description of the parallel algorithm. The 2D algorithm
is essentially the same as in the 3D case with the only difference of omitting
the steps with applying Fast Fourier Transform to the direction Z.

Algorithm 6: A parallel convolution method in the 3D case.

1. A 2D or a 3D computational domain is divided into subdomains in
the direction X.

2. Apply Direct Fast Fourier Transform to the density grid function and
the kernel grid function in direction Y.

Apply Direct Fast Fourier Transform in the direction Z.
Make a transposition of slabs from Y- to X-direction.
Apply Direct Fast Fourier Transform in the direction X.

S U W

Multiply the transformed kernel grid function by the transformed den-
sity grid function. Store the multiplication result (MR).

Apply Inverse Fast Fourier Transform in the direction X to the MR.
Make an inverse transposition of slabs of MR from X- to Y-direction.

© N

Apply Inverse Fast Fourier Transform in the direction Z.
10. Apply Inverse Fast Fourier Transform in the direction Y.

As one can see, the only interprocessor communications are the direct and in-
verse transpositions (that correspond to MPI Alltoall communication). The
numerical experiments have shown that for moderate grids and a correspond-
ing number of processors (about 10243 nodes and 256 + 1024 processors) the
time spent on communications is acceptable (about 30 % of the total time
spent on the gravitational potential calculation), so the calculation takes
less than 1 second.

The algorithm was implemented using the FFTW library [14], and the
results of the computational experiments (performed in Siberian Supercom-
puter Center, Joint Supercomputer Center, and the Lomonosov supercom-
puter in MSU) is to appear [15].

4. Conclusion

We have developed parallel domain decomposition algorithm for simulat-
ing two-phase (gas-dust) circumstellar gravitating disks with the SPH and
the PIC methods. The software implementation will be used to study pro-
cesses in gravitationally unstable protoplanetary disks and to develop of
high-density clumps with a fine resolution and acceptable time steps.

78

N.V. Snytnikov, O.P. Stoyanovskaya

References

[1]

2]

Gingold R.A., Monaghan J.J. Smoothed particle hydrodynamics— theory and
application to non-spherical stars // Monthly Notices of the Royal Astronom-
ical Society.—1977.— Vol. 181.—P. 375-389.

Springel V., Yoshida N., White S.D.M. GADGET: a code for collisionless and
gasdynamical cosmological simulation // New Astronomy.— 2001.— Vol. 6. —
P. 79-117.

Feng Y., Di Matteo T., Croft R.A.C., et al. BlueTides: First galaxies and
reionization // Monthly Notice of Royal Astronomical Society.— 2015 (to ap-
pear).

Pearce F.R., Couchman H.M.P. Hydra: a parallel adaptive grid code // New
Astronomy. — 1997.— Vol. 2, Iss. 5.—P. 411-427.

Hockney R.W., Eastwood J.W. Computer Simulation Using Particles. — New
York: McGraw-Hill, 1981.

Berezin Yu.A., Vshivkov V.A. Particle-in-Cell Method in the Plasma Dynam-
ics.— Nauka, 1980.

Barnes J.E., Hut P. A hierarchical O(N log N) force-calculation algorithm //
Nature. —1986.— Vol. 324. —P. 446-449.

Colella P., Woodward P.R. The Piecewise Parabolic Method (PPM) for gas-
dynamical simulations // J. Comput. Phys.—1984.— Vol. 54, Iss. 1.—P. 174—
201.

Dubeya A., Antypasb K., Ganapathyc M.K., et al. Extensible component-
based architecture for FLASH, a massively parallel, multiphysics simulation
code // Parallel Computing. —2009. — Vol. 35.—P. 512-522.

Springel V., White S.D.M., Jenkins A., et al. Simulations of the formation, evo-
lution and clustering of galaxies and quasars // Nature.— 2005.— Vol. 435. —
P. 629.

Klypin A.A., Trujillo-Gomez S., Primack J. Dark matter halos in the standard
cosmological model: results from the Bolshoi simulation // Astrophys. J.—
2011.—Vol. 740. No.. 2.—P. 102.

Stoyanovskaya O.P., Snytnikov N.V., Snytnikov V.N. An algorithm for solving
transient problems of gravitational gas dynamics: a combination of the SPH
method with a grid method of gravitational potential computation // Vychisli-
tel’'nye Metody i Programmirovanie.—2015.— Vol. 16.—P. 52-60 (In Russian).

Snytnikov N. Scalable parallel algorithm for solving the collisionless Boltz-
mann—Poisson system of equations // Astronomical Society of the Pacific Con-
ference Series.—2012.— Vol. 453.—P. 393.

Frigo M., Johnson S.G. FFTW software. — http://www.fftw.org.

Snytnikov N.V. Parallel algorithm for calculating gravitational potential of
isolated systems // Computational Technologies.— 2016 (to appear).

