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Threshold functions for inserting or deleting
particles in the PIC method with adaptive mass∗

T.V. Snytnikova

1. Introduction

The Particle-in-Cell methods (PIC) [1–4] are widely used in the numerical
simulation. The media under study in these methods are represented with a
sufficiently large number of model particles with definite characteristics such
as mass, charge, velocity. The evolution of a system of particles at each time
step is evaluated in two steps. First, the Euler step computes the impact
of particles on a medium with fixed particles in grid values. Second, the
Lagrange step computes the positions and velocities of particles from the
equation of motion with the right-hand side computed at the Euler stage.

Since it is possible to trace trajectories of model particles, the PIC
method allows studying the evolution of a medium. But it is necessary
to keep in mind that model particles do not exactly correspond the real
prototypes. Thus, it would be a mistake to directly compare them. The
number of e model and the real particles significantly differ.

The PIC method has a relatively low precision due to several sources of
errors. One of them is the interpolation of forces from the Euler grid nodes
into the position of particles as well as approximation of grid functions.
Another source of an error is the so-called self-force. It is the impact of the
particle field on the particle itself through a spatial grid. To decrease errors
of the above two given sorts, various particle form-factors are used [1,3,5,6].

One more source of errors is statistical fluctuations and noise that arise
due to a difference of model particles and real particles. It was proved [4]
that the precision of computation depends not only on the time and the
spatial steps but, also, on the number of model particles. Thus, the only
universal way to reduce the noise is to increase the number of particles. But
it is not always possible, especially for the 2D and the 3D computations.
Moreover, this greatly increases computer costs.

Nevertheless, the PIC method is capable of simulating many physical
effects that are unreachable for other computational schemes.

Due to this reason, new methods are being developed that enable us to
control the number of particles in a cell [7,8,10] to add new particles if their
number is lower than some definite number, or to remove particles if their
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number is too high. The main characteristics such as density, momentum,
the center of mass and energy in a cell, must not be changed in the course
of adding or removing model particles. At this point, model particles start
having different masses. This may improve the precision of computation
when the process involves masses or numbers of atoms less than the size of
one model particle. This situation may take place in the following problems:
gas dynamics at the boundary with vacuum, chemical processes with a low
concentration of reagents, multistream flows.

There was found that not only the method of inserting or deleting parti-
cles has a meaning, but also the choice of particle number limits (the thresh-
old functions). Three types of threshold functions are given and compared:
constant functions, spatial averaged functions and local averaged functions.

In Section 2, the PIC method with an adaptive mass is presented. In
Section 3, threshold functions for inserting and deleting particles in a cell
are described. In Section 4, the model problem statement and methods
of its solution are described. In Section 5, computing experiments for the
PIC method with adaptive mass with different threshold functions and an
adaptive mass are given and their results are compared with results of the
PIC method with a constant mass.

2. Definition of the PIC method with adaptive mass

It is known [4] that the precision of calculation for the PIC method depends
on the number of model particles in a cell. Therefore, when solving equa-
tions, it is necessary to know the number k of cells, in which the number
of particles Nk is reduced below the threshold. In this case, it is necessary
to add particles to a cell for reaching the given level N∗. In addition, one
should decide how mass, velocity and position of new particles are deter-
mined. The conservation laws and velocity distribution should be satisfied.
The latter condition is necessary for a multi-stream velocity distribution to
be undestroyed.

For satisfying the above conditions, we place an auxiliary 2D grid by
space and velocity into a cell, in which the number of particles should be
changed. Experiments show that 5× 5 grid is sufficient in this case.

The following characters are computed in each subcell:

• the total mass of particles

Mi =
∑
j∈Ni

mj ; (1)

• the total energy

Qi =
∑
j∈Ni

mjv
2
j

2
; (2)
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• The weighed average velocity

Vi =
∑
j∈Ni

mjvj
Mi

; (3)

• The center of mass
Xi =

∑
j∈Ni

mjxj
Mi

. (4)

Now, the procedure of adding or deleting a particle is split to the follow-
ing steps for every subcell:

1. Calculating the number of particles ki;

2. Calculating the mass m′j so that M ′i = Mi;

3. Calculating the velocity v′j so that V ′i = Vi and Q′i = Qi;

4. Calculating the position x′j so that X ′i = Xi.

We use the weight averaged method for calculation the number of parti-
cles:

ki =



⌊
N∗Mi∑
Mi

+ 0.5
⌋
,

N∗Mi∑
Mi
≥ 1,

1, 0 <
N∗Mi∑
Mi

< 1,

2,
N∗Mi∑
Mi

< 2,
MiV

2
i

2
< Qi,

0, Mi = 0.

The first condition provides a greater number of particles in subcells, where
the total mass is greater. The second condition prevents the loss of parti-
cles in a subcell when the total mass is less than the mass of one particle.
The third condition prevents the loss of energy in the case when several
particles are united into one. If energy is badly conserved, then the number
of particles must be at least 2. This provides the choice between 2 and⌊

N∗Mi∑
Mi

+ 0.5
⌋
.

The mass is calculated in the following way:

m′j =
Mi

ki
. (5)

On the one hand, this distribution is natural, and on the other hand it
enables making even the mass of particles in a cell.

The velocities are specified as follows: v′j = Vi+νj , where νj satisfies the
condition

∑
νj = 0, and

∑
ν2 = 2kiQi/Mi − V 2

i .
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The new positions are calculated as x′j = Xi + δj , where δj satisfies the
following conditions: h(l − 1) < Xi + δ ≤ hl and

∑
δj = 0, here l is the

cell number. The first condition provides the presence of particles in the lth
cell. The second condition provides conservation the position of the mass
center. This means that the density in grid nodes does not change.

3. Threshold functions for changing the number of particles

Since the PIC method is sensitive to the number of particles in a cell, the
following questions arise: when it is reasonable to change the number of
particles, and how much the number of particles should be changed?

The constant threshold functions. Particles are inserted when their
number has lowered below Nlow, and particles are deleted when their number
has enlarged above Nhigh.

These are the simplest threshold functions, which do not need an ex-
panded calculation. The number of particles in a cell is strictly restricted.
On the one hand, this prevents an essential increase of the total number of
particles, but on the other hand, this can add noise to the density calculation
because of a difference in mass values.

Note that the initial distribution should satisfy the threshold values.

The spatially averaged functions. The recommended number of parti-
cles is the value of the following function of density

N(ρ) =
ρ

ρ∗
n∗.

Here ρ = max(ρi−1, ρi) is a maximum density of nodes of the ith cell, ρ∗

is the averaged density of computational domain, and n∗ is the averaged
number of particles.

The threshold functions are Nlow(ρ) = 2
3N(ρ) and Nhigh(ρ) = 2N(ρ) in

this case.
The recommended number of particles depends on the density ρ, and

n∗/ρ∗ is a normalization factor. In this case, particles are inserted because
of the density drop, but not only because of a small number of particles.
Also, a condition of the initial distribution is simplified.

However, averaging by the hole area can loose local features of the solu-
tion.

The locally averaged functions. The number of particles is chosen under
assumption of averaged values in the nearest cells. In experiments with the
constant and the spatially averaged threshold functions, some conditions
were found, namely:
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• locality: values of the nearest cells (the nearest nodes) are considered;

• the direct relation of the particle mass and density: the higher density,
the greater mass of particles in a cell; the lower density, the lesser mass
of particles in a cell;

• when adding particles, the averaged mass in a cell should be less than
0.9 averaged mass by the localization area;

• when deleting particles, noise in the nodes of a cell should not grow.
Otherwise, the averaged mass should be not more than a minimum of
the averaged mass of the adjacent cells.

Noise is considered as a maximum of particles contribution to the value
of density:

Shi = ρi
−1 max
|xj−xi|≤h

mj

h

(
1− |xj − xi|

h

)
,

where j is the number of particles, and i is number of the node in the cell.
As the value of real media is too small, the value of model media is excited
by a large size of model particles.

To satisfy the above conditions, the use of the averaged mass of particles
mi, but not the number of particles in the cell, is convenient.

The localization is performed by 5 cells and 4 nodes. Below, the whole
indices are node indices and half-indices are cell indices. The recommended
averaged mass m′i is calculated with the following formula:

m′i−1/2 =
ρi−1 + ρi

2

0.2
2∑

k=−2

mi+k−1/2

0.25
1∑

k=−2

ρi+k

.

The number of particles could change if mi−1/2 > 1.1m′i−1/2 or
mi−1/2 < 0.9m′i−1/2. In this case, the new number of particles is calcu-
lated as

n′i−1/2 = ni−1/2

min(m′i−1/2,mi−3/2,mi+1/2)

mi−1/2
.

The use of the locally averaged threshold functions needs an additional
memory and calculations, but this enables one to essentially reduce the
density noise.

4. Problem statement

Let us consider an example of a model 1D Riemann problem for the ion
density in a dispersive medium [9]. The medium is a non-isothermal rarified
plasma with the Boltzmann electron distribution.
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The problem has one dimension along the spatial coordinate x. The
following system of equations is the basis:

∂f

∂t
+ u

∂f

∂x
− e

mi

∂φ

∂x

∂f

∂u
= 0,

∂2φ

∂x2
= 4πe

[
n0 exp(

eφ

Te
)−

∫ ∞
−∞

f ∂u

]
,

E(x) = −∂φ
∂x
.

(6)

Here f is an ion distribution function, u is the ion velocity, e is the elec-
tron charge, mi is the ion mass, φ is the potential, n0 is a non-perturbed
plasma density (plasma is assumed to be quasi-neutral), Te is the electron
temperature, E(x) is an electric field.

After transition to non-dimensional variables and to a finite computa-
tional domain, the system of equations has the form [4]:

∂xj
∂t

= uj ,
∂u

∂t
= E(xj), β

∂2φ

∂x2
= exp(φ)− ρ. (7)

Here j is the index of a particle, the potential is measured in the units of
Te/e, the velocity u is measured in the units of the ion sound cs = Te/mi,
β = (D/L)2, D = (4πn0e

2/Te)−1/2 is the Debye length, ρ =
∫ L
0 f ∂u is the

density, L is the size of the computational domain.
Let us set the following boundary and initial conditions:

u(x, 0) = 0, ρ(x, 0) =
{
C, 0 ≤ x ≤ x0,
1, x0 < x ≤ L, (8)

u(0, t) = u(L, t) = 0, φ(0, t) = lnC, φ(L, t) = 0, (9)

where C is a shear of the ion density, x0 is the position of the shear. The
boundary conditions are set under assumption that the wave does not reach
the domain boundaries, thus the velocity and the potential at the boundaries
do not change.

The system of equations (7) with initial and boundary conditions (8), (9)
satisfy the conservation laws for mass, impulse and energy [4]:∫ L

0
ρ dx = const,

P =
∫ L

0
ρu dx = (eφ0 − 1)t,

W =
∫ L

0

[1
2
ρu2 +

1
2
βφ2

x + eφ0(φ− 1)
]
dx = const .

(10)
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The computational domain is split to Nc equal cells by the nodes with
the coordinates xk = kh (k = 0, 1, . . . , Nc); h = L/Nc is a splitting step.
At the initial moment of time, Nk immobile particles are placed in each cell
[xk−1, xk] (Np =

∑Nc
k=1Nk is the total number of particles). The potential

φk and the density ρk are computed in the grid nodes, and the electric field
Ek−1/2 is computed in the centers of cells [xk−1, xk].

The density ρk is computed in the grid nodes with the PIC form-factor

R̄(x, x′) = h−1 max(0, 1− |x− x′|/h)

by the formula
ρk =

∑
j

mjR̄(xk, xj).

The electric field is interpolated into the position xj , where a particle is
placed, by the formula

E(xj) =
(xk+1/2 − xj)Ek−1/2 + (xj − xk−1/2)Ek+1/2

h

if xj ∈ [xk−1/2, xk+1/2].
A computational loop at each time step τ is implemented in the following

way.
Lagrange stage. For each particle with index j, the position xn+1

j and
the velocity un+1

j for the time t = (n+ 1)τ are computed from the values at
the previous moment of time t = nτ as follows:

un+1
j − unj

τ
= E(xnj ),

xn+1
j − xnj

τ
= un+1

j ,

Euler stage. Values of the potential in the grid nodes φk are computed
as limit of the sequence φs of solutions to the linear equation

β
φs+1
k−1 − 2φs+1

k + φs+1
k+1

h2
= exp(φsk)(1 + φs+1

k − φsk)− ρk;

φs+1
0 = lnC, φs+1

Nc
= 0.

This equation is solved by the sweep method. The value of the potential
obtained at the previous time step is set as an initial approximation. The
interactional process goes until the condition ‖φs+1 − φs‖ < ε = 10−8 is
satisfied.

Then the electric field is computed by the formula

Ek−1/2 =
φk−1 − φk

h
.
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The problem is of interest because the particles motion essentially differs
due to a different shear of the density:

• when C < 5, the laminar percussion moves to the right and the vacuum
wave–– to the left;

• when 5 ≤ C ≤ 13, the percussion is frustrated with the formation of
the precursor and pulsar particle reflection;

• when 13 < C ≤ 225, the percussion with a sharp front between the
main wave and the precursor is formed, at the same time, the front
persistently reflects particles;

• when C > 225, the initial shear is persistently blurred without per-
cussion formation partial reflection.

5. Numerical experiments

To solve this problem, the following modifications of the PIC method are
used:

• PIC-1 with a constant mass;

• PIC-2a with an adaptive mass and the constant threshold functions;

• PIC-2b with an adaptive mass and the spatially averaged threshold
functions; and

• PIC-2c with an adaptive mass and the locally averaged threshold func-
tions.

For all modifications, the computations were carried out on the grid with
10001 nodes (Nc = 105 cells) and Np = 107 particles.

The laminar percussion. The computations were conducted with C = 2.
In this case, blurring a shear step forms the laminar percussion moving to
the right and the vacuum wave –– to the left. The positions of some model
particles are shown in Figure 1a. The result of the PIC-2c method is shown
in Figure 1b. For all modifications, potential values agree with five digits.

Table 1 shows the mean noise, the maximum noise, and an error of
executing the energy conservation law. When the PIC-2c method is used,
application of the locally averaged functions allows one to reduce maximum
noise by 12 %, whereas using the constant threshold function increases a
maximum noise by 5 %.

The pulsar particle reflection. When the initial density shear C = 5,
the motion character is changed (Figure 2). The pulsar particle reflection
occurs by using all the modifications.
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Figure 1. The laminar percussion for C = 2: the particle distribution (left)
and the density and the potential (right)

Table 1. The noise and the error of the energy conservation
law (%) for different variant of PIC method for C = 2

Method Mean noise Maximum noise Error

PIC-1 6.0 · 10−3 1.47 · 10−2 1.044 · 10−6

PIC-2a 6.0 · 10−3 1.54 · 10−2 1.043 · 10−6

PIC-2b 6.9 · 10−3 1.33 · 10−2 1.043 · 10−6

PIC-2c 6.0 · 10−3 1.29 · 10−2 1.043 · 10−6

Apparently, in Table 2, the PIC method with an adaptive mass allows
one to essentially reduce the maximum noise in this case. The ratio error
of the energy conservation law is reduced, too. Using the local averaged
functions gives a better result than that with the use of the constant or the
spatial averaged functions.

In Figure 2, the distributions of particles velocities derived by PIC-1 and
PIC-2c methods are shown. The area 31 ≤ x ≤ 35 is shown in the top left
corner for both calculations.

Note that the motion of particles is more regular in the second case
(Figure 3). This is conditioned by a sufficient quantity of smaller model

PIC-1 PIC-2c

Figure 2. The distribution of particles velocities for C = 5
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Table 2. The noise and the error of the energy conservation
law (%) for different variant of PIC method for C = 5

Method Mean noise Maximum noise Error

PIC-1 1.56 · 10−2 14.78 · 10−2 1.20 · 10−4

PIC-2a 1.50 · 10−2 3.40 · 10−2 0.73 · 10−4

PIC-2b 1.33 · 10−2 2.89 · 10−2 0.86 · 10−4

PIC-2c 1.41 · 10−2 2.09 · 10−2 0.44 · 10−4

PIC-2a PIC-2b PIC-2c

Figure 3. The distribution of particles mass for PIC-2 methods and C = 5

PIC-1 PIC-2c

Figure 4. The distribution of particles velocities C = 40

Table 3. The noise and the error of the energy conservation
law (%) for different variant of PIC method for C = 40

Method Mean noise Maximum noise Error

PIC-1 7.03 · 10−2 8.81 · 10−2 5.40 · 10−6

PIC-2a 1.76 · 10−2 5.76 · 10−2 3.04 · 10−6

PIC-2b 3.78 · 10−2 7.12 · 10−2 4.40 · 10−6

PIC-2c 2.68 · 10−2 5.51 · 10−2 3.26 · 10−6
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particles (from 7 · 10−6 to 2.16 · 10−4) as compared to model particles in
PIC-1 method (1.8·10−4) in the area. When the constant threshold functions
are used (PIC-2a), the majority of particles is bigger: the mass of particles
varies from 10−6 to 5.96 · 10−4. When the spatially averaged functions are
used (PIC-2b), the mass of particles varies from 2.1 · 10−5 to 2.3 · 10−4.

Note, for obtaining such regular motions by the PIC method with a
constant mass, the number of particles should be 10 times greater. However,
this greatly increases computer costs.

The persistent reflection of particles. When C = 40, the particles are
persistently reflected from the front, and the main wave is broken (Figure 4).
In this case, the PIC method with an adaptive mass gives a gain as compared
to the PIC method with a constant mass, and using the local averaged
threshold functions is preferred to using the constant or the spatial averaged
functions.

As in the above case, the bigger mass of particles in the PIC method
with a constant mass brings about distortions. This is observed as greater
dispersion and oscillatory changes of velocities of particles, which form the
top stream.

6. Conclusion

In this paper, different threshold functions are presented. The constant
threshold functions are simpler and more popular, but sometimes they can
increase noise in the density calculation, because of an increase in the par-
ticle mass. The spatial averaged functions cannot increase noise because of
the normalization factor. But they cannot detect a peculiarity of solution
because of averaging over the whole area. The best results are obtained
when the local averaged functions are used.

That is why for controlling the number of particles in the PIC method,
one should pay attention both to using a method of inserting and deleting
particles and the threshold functions.
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