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Particle-in-Cell method with adaptive mass∗

T.V. Snytnikova

1. Introduction

Particle-in-Cell methods (PIC) [1–4] are widely used in numerical simula-
tions. The media under study in these methods are represented with a suffi-
ciently large number of model particles with definite characteristics such as
mass, charge, velocity. The evolution of a system of particles at each time
step is evaluated in two steps. First, the Euler step computes the impact of
particles on the medium with fixed particles in grid values. Second, the La-
grange step computes positions and velocities of particles from the equation
of motion with the right-hand side computed at the Euler stage.

Since it is possible to trace trajectories of model particles, the PIC
method allows studying the evolution of a medium. But it is necessary
to keep in mind that model particles do not exactly correspond to real pro-
totypes. Thus, it would be a mistake to directly compare them. The number
of the model and the real particles significantly differ. A model particle rep-
resents tens of millions real particles but not a single physical atom or an ion.

The PIC method has a relatively low precision due to several sources of
errors. One of them is interpolation of forces from the nodes of the Euler
grid into the position of particles as well as approximation of grid functions.
Another source of errors is the so-called self-force. It is the impact of the
particle field on the particle itself through the spatial grid. To decrease errors
of the above two given sorts various particle form-factors are used [1,3,5,6].

One more source of errors is statistical fluctuations and noises that arise
due to a difference of model particles and real particles. It was proved [4]
that the precision of computation depends not only on the time and the the
spatial steps, but also on the number of model particles. Thus, the only
universal way to reduce noises is to increase the number of particles. But
it is not always possible, especially for the 2D and the 3D computations.
Moreover, it greatly increases computer costs.

Nevertheless, the PIC method is capable of simulating many physical
effects that are unreachable for other computational schemes.

Due to this reason, new methods are being developed that enable us
to control the number of particles in a cell: to add new particles if their
number is lower than some definite number, or to remove particles if their
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number is too high. The main characteristics such as density, momentum,
the center of mass and energy in a cell, must not be changed in the course
of adding or removing model particles. At this point, model particles start
having different masses. This may improve precision of computation when
the process involves masses or numbers of atoms less than the size of one
model particle. This situation may take place in the following problems:
gas dynamics at the boundary with vacuum, chemical processes with a low
concentration of reagents, multistream flows.

Methods of controlling the number of particles (decreasing or increas-
ing) are introduced in [7, 8]. Pairwise coalescence [7] of particles has been
previously utilized to manage the number of model particles. The method
searches for particles that have matching momenta to a specified tolerance
in a given cell. The two particles are combined into a single particle with
a mass-averaged position and momentum. The global charge, mass, and
momentum are exactly conserved. The energy conservation is only as good
as specified tolerance.

The adaptive particle management (APM) method [8] can also be used
to reduce or to increase the number of particles in each cell. It computes
masses and velocities from arbitrary positions of new particles using the
conservation laws. But it allows the particles with negative mass appear.
This leads to non-physical results. Such a situation mY takes place when a
spatial distribution after using the method is not equal to spatial distribu-
tion before using it. If a process under simulation is not sufficiently studied,
then more computations would be necessary to attain a good spatial distri-
bution. The particles velocities are calculated conserving not only a global
momentum and energy in a cell, but also local ones (in the grid nodes), the
velocity distribution is conserved for one-stream flows. However, it is not
sufficient for multi-stream flows. That is why this method is not uniform.

In this paper, the PIC method with an adaptive mass is introduced.
This enables us to conserve the velocity distribution, and not only density,
momentum, the center of mass, energy in a cell. This is important for
simulating multi-stream flows. That is why this modification was tested on
the Riemann problem for the ion density.

In Section 2, the model problem statement and methods of solution are
described. In Section 3, the PIC Method with an adaptive mass is presented.
In Section 4, computing experiments for PIC modifications with a constant
and adaptive masses are given and their results are compared.

2. Statement of the problem

Let us consider an example of a model 1D Riemann problem for the ion
density in a dispersive medium [9]. The medium is a non-isothermal rarified
plasma with the Boltzmann electron distribution.
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The problem has one dimension along the spatial coordinate x. The
following system of equations is the basis:
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∂t
+ u
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− e
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E(x) = −∂φ
∂x
.

(1)

Here f is the ion distribution function, u is the ion velocity, mi is the ion
mass, φ is the potential, E(x) is an electric field, n0 is a non-perturbed
plasma density (plasma is assumed to be quasi-neutral), Te is the electron
temperature.

After transition to dimensionless variables and to a finite computation
domain the system of equations has the form

∂xj
∂t

= uj ,
∂u

∂t
= E(xj), β

∂2φ

∂x2
= exp(φ)− ρ. (2)

Here j is the particle number, the potential is measured in the units
of Te/e, the velocity u is measured in the units of ion sound cs = Te/mi,

β = (D/L)2, D = (4πn0e
2/Te)−1/2 is the Debye length, ρ =

L∫
0

f∂u is the

density, L is the size of computation domain.
Let us set the following initial and boundary conditions:

ρ(x, 0) =
{
C, 0 ≤ x ≤ x0,

1, x0 ≤ x ≤ L,
u(x, 0) = 0; (3)

u(0, t) = u(L, t) = 0, φ(0, t) = lnC, φ(L, t) = 0, (4)

where C is the shear of ion density, x0 is the position of the shear. The
boundary conditions are set under assumption that the wave does not reach
the domain boundaries, thus the velocity and the potential at the boundaries
do not change.

System of equations (2) with the initial and boundary conditions (3), (4)
satisfies the conservation laws for mass, impulse and energy [4]:∫ L

0
ρ dx = const,

P =
∫ L

0
ρu dx = (eφ0 − 1)t,

W =
∫ L

0

[1
2
ρu2 +

1
2
βφ2

x + eφ0(φ− 1)
]
dx = const .

(5)
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The computation domain is split into Nc equal cells by the nodes with
the coordinates xk = kh (k = 0, 1, . . . , Nc); h = L/Nc is the splitting step.
At the initial moment of time Nk, immobile particles are placed into each
cell [xk−1, xk]. The potential φk and the density ρk are computed in the grid
nodes and the electric field Ek−1/2 –– in the centers of cells [xk−1, xk].

The density ρk is computed in the grid nodes with the PIC form-factor:

R̄(x, x′) =
{
h−1(1− |x− x′|/h), |x− x′| ≤ h,
0, |x− x′| > h,

with the formula
ρk =

∑
j

mjR̄(xk, xj).

The electric field is interpolated into the position xj where the particle
is placed with the formula

E(xj) =
1
h

[
(xk+1/2 − xj)Ek−1/2 + (xj − xk−1/2)Ek+1/2

]
,

xj ∈ [xk−1/2, xk+1/2].
A computational loop at each time step τ is implemented in the following

way.
Lagrange stage. For each particle with number j, the position xn+1

j and
the velocity un+1

j for the moment of time t = (n + 1)τ are computed from
the values at the previous moment of time t = nτ as follows:

un+1
j − unj

τ
= E(xnj )

xn+1
j − xjn

τ
= un+1

j .

Euler stage. Values of the potential in the grid nodes φk are computed
as limit of the sequence φs of solutions to the linear equation

β
φs+1
k−1 − 2φs+1

k + φs+1
k+1

h2
= exp(φsk)(1 + φs+1

k − φsk)− ρk,

φs+1
0 = lnC, φs+1

Nc
= 0.

This equation is solved with the sweep method. The value of the potential
obtained at the previous time step is set as an initial approximation. The
iteration process goes until the condition ‖φs+1−φs‖ < ε = 10−8 is satisfied.
Then the electric field is computed with the formula

Ek−1/2 =
φk−1 − φk

h
.
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3. Definition of the PIC method with adaptive mass

It is known [4] that the precision of calculation for the PIC method depends
on the number of model particles in a cell. Therefore to solve equations, it
is necessary to know the number of cells, in which the number of particles is
reduced below the threshold. In this case, it is necessary to add particles to a
cell for reaching the given level N∗. In addition, one should decide how mass,
velocity and position of new particles are determined. The conservation
laws and velocity distribution should be satisfied. The latter condition is
necessary for a multi-stream velocity distribution to be undestroyed.

For keeping this the following items are introduced:

• The velocity step hu = 2vmax/Nv, here Nv is a positive integer, vmax

satisfies the condition ∀j, 1 ≤ j ≤ Jm, |uj | ≤ vmax at any time step.

• A set of particle indices Ni = {j : vi < uj ≤ vi+1}, here vi = ihu−vmax.
Let us note that Ni ∩Nj = ∅ and

⋃
Ni = N .

• The total mass of particles belonging to Nj ,

Mi =
∑
j∈Ni

mj . (6)

• The total energy
Qi =

∑
j∈Ni

mju
2
j/2. (7)

• The weighed average velocity

Vi =
{ ∑

j∈Ni

mjuj

Mi
, Ni 6= ∅,

0, Ni = ∅.
(8)

• The centers of mass

Xi =
{ ∑

j∈Ni

mjxj

Mi
Ni 6= ∅,

0, Ni = ∅.
(9)

Now, the procedure of particle adding is split into the following steps for
every N ′i :

1. Calculating the number of particles ki;

2. Calculating the mass m′j so that M ′i = Mi;

3. Calculating the velocity u′j so that V ′i = Vi and Q′i = Qi;

4. Calculating the position x′j so that X ′i = Xi.

Each of them may be performed in several ways.
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3.1. Calculating the particles number and masses. One of possible
methods to calculate the number of particles is an equal distribution between
all non-empty sets Ni, that is

ki =
{
K, Ni 6= ∅,
0, Ni = ∅,

where K = N∗/
∑
{i:Ni 6=∅} 1. This is the same as

ki =
{
K, Mi 6= 0,
0, Mi = 0.

Another method is a probabilistic one:

ki =

{
max

(
N∗Mi∑

Mj
, 1
)
, Mi 6= 0,

0, Mi = 0.

The first condition provides a greater number of particles in the sets Nj ,
where the total mass is greater. The second condition prevents the loss of
particles when the total mass of a set is less than the mass of one particle.
Also, one needs to be sure that

∑
ki ≤ N∗.

For both methods
m′j = Mi/ki. (10)

When the first method is used, the particles with the near zero mass can
appear. This leads to incorrect results, because the velocities are too high
for such particles. Also, particles with a mass greater than the average mass
can appear. This leads to an increase in the noise of density computation.

With a probabilistic method, these problems do not arise. But non-
uniform distributions of particles into the sets N ′i can occur. The proba-
bilistic method is chosen for carrying out experiments.

3.2. Velocity computation. To calculate the velocities of particles in a
set N ′i the following conditions should be satisfied:

1. Momentum conservation in a cell
∑
m′ju

′
j =

∑
mjuj ;

2. Energy conservation Q′i = Qi;

3. The condition of belonging to N ′i : vi < u′j ≤ vi+1.

Let us set velocities of the new particles in the following way:

u′j =


Vi −∆, j < [k+1

2 ],
Vi, j = [k+1

2 ],
Vi + ∆, j > [k+1

2 ],

(11)
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where

∆2 =


2Qi
Mi
− V 2

i , ki = 2p,

ki
ki − 1

(2Qi
Mi
− V 2

i

)
, ki = 2p+ 1.

(12)

Let us check that the momentum is conserved after adding particles.
To do this, let us substitute the mass (10) into the left-hand side of the
momentum conservation equation

∑
m′ju

′
j =

∑
(Mi/ki)u′i = Mi/ki

∑
j≤ki

u′j .

After substituting the velocity (11), for even ki = 2p, we have

∑
m′ju

′
j = Mi/ki

[∑
j≤p

(Vi −∆) +
∑

p<j≤2p

(Vi + ∆)
]

= MiVi,

and, for odd ki = 2p+ 1, we derive

∑
m′ju

′
j = Mi/ki

[∑
j≤p

(Vi −∆) + Vi +
∑

p+1<j≤2p+1

(Vi + ∆)
]

= MiVi.

After substituting the weighed average velocity (8), we conclude

∑
m′ju

′
j = MiVi = Mi

∑
mjuj
Mi

=
∑

mjuj .

This proves that the momentum in a cell is conserved after adding particles.
Now, let us check the energy conservation. We substitute mass (10) and

velocity (11) into the left-hand side of the energy conservation equality and
apply (12). For even ki = 2p, we have

Q′i =
∑

j∈[1,ki]

m′ju
′
j
2

2
=
∑
j∈[1,p]

Mi(Vi −∆)2

2ki
+

∑
j∈[p+1,ki]

Mi(Vi + ∆)2

2ki

=
pMi

2ki

[
(Vi −∆)2 + (Vi + ∆)2

]
=
Mi

2
(V 2
i + ∆2)

=
Mi

2

(
V 2
i +

2Qi
Mi
− V 2

i

)
= Qi.
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For odd ki = 2p+ 1, we derive

Q′i =
∑

j∈[1,ki]

m′ju
′
j
2

2
=
∑
j∈[1,p]

Mi(Vi −∆)2

2ki
+
MiV

2
i

2ki
+

∑
j∈[p+1,ki]

Mi(Vi + ∆)2

2ki

=
Mi

2ki

[
p(Vi −∆)2 + Vi

2 + p(Vi + ∆)2
]

=
Mi

2ki

[
kiV

2
i + (ki − 1)∆2

]
=
Mi

2ki

[
kiV

2
i +

(ki − 1)ki
ki − 1

(2Qi
Mi
− V 2

i

)]
= Qi.

Thus, the energy conservation low is valid.
Let us note that ∆ is the standard deviation of the velocity. So, it can

be expected that the velocity is within the given boundaries.

3.3. Position computation. The position of particles is given by the
following way: x′j = Xi + δj , where δj satisfies the following conditions:
h(l − 1) < Xi + δ ≤ hl and

∑
δj = 0, here l is the number of a cell.

The first condition provides that particles are in the l-th cell. The second
condition provides that the position of the mass center is conserved. This
means that the density in grid nodes does not change.

4. Numerical experiments

The following modifications of the PIC method are used to solve the problem:

PIC-1 with constant mass: particles have the same constant mass. At the
initial moment they are distributed with some density shear.

PIC-2 with an adaptive mass: at the initial moment, particles are uniformly
distributed. The density shear is set by different masses of particles.
If the number of particles in a cell is lower than a given level, then
new particles with mass recomputation for each particle in this cell
are added.

For both modifications the computations were conducted on the grid
with 1001 nodes (Nc = 103 cells) and Np = 104 , 105 particles and on the
grid with 10001 nodes (Nc = 104 cells) and Np = 105 particles. Though the
computational domain is equal to the interval [0, 100], the results are shown
for a smaller interval [10, 60].

To compare the results obtained let us introduce the definition of noise.
Noise is considered to be a relative change of density when a particle moves:

Sh = max
j

n(xl, t)− n(xl, t′)
n(xl, t)

· 100 %,

here j is a particle number, l is the number of a cell that contains this
particle.
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Because this value is very small for real plasma, a change in the model
plasma density is non-physical. This is because model particles are larger
than real ones.

4.1. The PIC method with a constant mass. Masses of all particles
are equal and constant in time in this modification of the PIC method.
At the initial moment, particles are distributed with some density shear.
Because the shear is Cn = 40 and the number of particles is relatively low
(104 for 103 cell), the number of particles in a cell is equal to:

• 44–45 in a high-density area (0 < x < x0 = 20);

• 1–2 in a low-density area (x0 < x < L = 100).

The distribution of particle velocities is shown at the top graphic of
Figure 1. The density and the potential are shown at the bottom. Though
a distance between the adjacent particles is equal at the initial moment of
time, a density disturbance arises and causes the potential perturbation. In
a low-density area, values vary from 0.98 to 1.08. This equals to 10 % of an
average value in this area. The potential changes are from −0.007 to 0.013.
This results in the electric field increase and affects particles. Consequently,
density is affected. Later (see Figure 1) the density varies from 0.5 to 1.3.
This equals 80% of an average value. The potential varies from −0.09 to

Figure 1. PIC-1 method for Nc = 103, Np = 104 at t = 5
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0.06. Particles perform oscillatory movements in the area, where the average
potential equals 0.

Let us note that for computation with these values of the parameters Np

and Nc, noise attains 100 % in a low-density area. This greatly affects the
potential: a potential jump is observed in the position of the first particle
(x = 43) in the top stream (see Figure 1). To decrease the noise to 10 %, it
is necessary to provide, at least, 10 particles per cell in a low-density area
(about 400 particles per cell in a high-density area) at the initial moment.
This means that the number of particles Np should be equal to 105 for
Nc = 103. And Np = 106 (100/4000 particles per cell) to decrease the
noise to 1 %. With increasing the number of particles in a cell, the initial
fluctuation is also decreased to 1.5 and 0.0015 %, respectively.

Another feature of the solution is at the flow integration point (x = 27),
because of an insufficient number of particles (due to their large size): parti-
cle movement is discrete, but not continuous. This feature is not distinctly
expressed for Np = 105.

But increasing the number of particles is not always possible because of
increasing the number of resources that are necessary to solve problems. Np

is increased up to 1010 for 10 % noise level if a 2D problem is solved on a
grid with 103 nodes per axes, and up to 1015 for a 3D problem. Let us note
that for the noise level to be unchanged, one needs to increase the number
of particles in the same extent as for the number of grid nodes.

4.2. The PIC method with an adaptive mass. In this modification,
the density shear is set with different masses of particles. Particles are
uniformly distributed among the cells. At the initial moment, each cell
contains N∗ = 10 particles (Nc = 103, Np = 104). This distribution allows
keeping off a density fluctuation and consequently a potential fluctuation.

At the initial moment, masses of particles from a high-density area
(“heavy” particles) differ from the masses of particles from a low-density
area (“light” particles) by Cn times. But after decreasing the number of
particles that are lower than 0.5N∗ in a cell, new particles with mass redis-
tribution are added: “heavy” particles are broken up and “light” particles
are consolidated. Figure 2 shows the particle mass distribution in an area of
motion (15 ≤ x ≤ 45) at the moment t = 5. The steps between the values of
masses of the “light” (m = 0.1) and “heavy” (m = 4) particles correspond
to redistributions of mass while adding particles into a cell.

As for the previous modification, the velocities distribution, the density
and the potential are given at the moment t = 5 in Figure 3. In a low-
density area (the interval [45, 100]), there is no density fluctuation (δρ = 0)
and particles are at rest at the initial moment and later on. Also, noise is
decreased in the first front of a wave. When a “light” particle moving, the
density increases on 10 %. Particles flying from a high-density area to a low-
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Figure 2. Distribution of particles by mass for Nc = 103, Np = 104 at t = 5

Figure 3. PIC-2 method for Nc = 103, Np = 104 at t = 5

density area do not give more than 80 % of noise. In general, noise is less than
in the previous modification, where noise is equal to 100 %. This is expressed
by the absence of a potential jump at x = 43 and by a smooth decrease of the
potential in the interval [41, 45] (δφ = 0.01) (Figure 3). Let us note that the
particle movement is more continuous at the flow integration point (x = 27).

With an increase of the number of particles per cell to one hundred
(Nc = 103, Np = 105), noise is decreased to 1 and 6 %, respectively. This is
much lower than in the previous modification.
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It should be noted that the number of particles does not decrease below
a given level (0.5N∗ for N∗ = 10). Though the total number of particles is
increased with time, it is equal to 10901 (less than 10 %) at t = 5 and to
13072 (about 30 %) at t = 15 when particles reach the right boundary.

There are some particles that have velocities that do not correspond to
the common character. But this peculiarity occurs for the PIC modification
with a constant mass for Nc = 103, Np = 105 as well.

4.3. Comparison of modifications. In order to evaluate the obtained
results, let us compare the fulfilment of conservation laws (5).

In the table, deviations from a constant value for the momentum δP ,
the energy δW , the density δρ, and the noise level of density Sh are given
for both modifications of the PIC method.

Method δP δW δρ Sh, %

Nc = 103, Np = 104

PIC-1 2.8 · 10−2 9.0 · 10−4 1.5 · 10−4 100
PIC-2 1.0 · 10−3 4.9 · 10−4 3.0 · 10−11 10/80

Nc = 103, Np = 105

PIC-1 7.5 · 10−4 3.7 · 10−4 6.5 · 10−6 10
PIC-2 7.5 · 10−4 4.3 · 10−4 2.0 · 10−10 1/6

Nc = 104, Np = 105

PIC-1 1.5 · 10−4 1.1 · 10−5 6.3 · 10−5 100
PIC-2 2.4 · 10−5 4.8 · 10−6 3.0 · 10−11 10/30

For Np/Nc = 10, the conservation laws are more accurately fulfilled using
the PIC-2 method with adaptive mass.

If only the number of particles is increased, then, for the PIC-1 method
with a constant mass, the accuracy significantly increases, but, for the PIC-2
modification, the accuracy does not essentially increase. Modifications are
equivalent in the accuracy order, but the computer costs are lower for the
PIC-1 modification.

On the other hand, the PIC-2 method for Np/Nc = 10 is compared in
accuracy with the PIC-1 method with Np/Nc = 100 and is more accurate
than the latter with the same parameters.

5. Conclusion

Two modifications of the PIC method were considered. Each of them has
positive and negative features.

PIC-1 with the same constant mass:

− initial density fluctuation;

− a large number of particles is required for calculation a correct solution.
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PIC-2 with an adaptive mass:

+ the absence of the initial fluctuation of density;

+ an equal distribution of particles by cells at the initial time;

+ the possibility of supporting the number of particles above the given
level;

− increasing the total number of particles;

− increasing the computation time as compared to PIC-1 with the same
parameters Np and Nc.

Let us note that despite some negative features of the PIC-2 method
with an adaptive mass, it gives better results than PIC-1 for a relatively
low number of particles in cells (Np/Nc = 10). This allows in increasing the
number of grid nodes thus giving a significant increase of accuracy.
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