
Bull. Nov. Comp.Center, Comp. Science, 39 (2016), 51–60
© 2016 NCC Publisher

Implementation of the STAR-machine on GPU

T.V. Snytnikova, A.V. Snytnikov

Abstract. In this paper, we present the simulation of an abstract model of SIMD
type with vertical data processing (the STAR-machine) on GPU with CUDA frame-
work. There is a number of algorithms developed for the STAR-machine. The
research conducted recently shows that such a model is extremely efficient when
used to solve graph problems. Associative operations are the key properties of this
model. In particular, all of them take constant time. In this paper, we present
an implementation of associative operations on GPU (Graphic Processing Units).
This study is aimed at providing a bridge or a general manual instruction to con-
vert the STAR algorithms to the GPU implementation. As the architecture of the
STAR-machine in modern technologies has not been built yet, this provides a pos-
sible way to implement the STAR algorithms on an alternative platform to verify
their correctness and efficiency, especially, for massive data input.

1. Introduction

The associative (content addressable) parallel processors of the SIMD type
with vertical processing and simple single-bit processing elements ideally suit
to performing fast parallel search operations being used in different applica-
tions such as graph theory, relational database processing, image processing.
Such an architecture performs data parallelism at the basic level, provides
a massively parallel search by contents, and allows using two-dimensional
tables as basic data structures [1]. This class of parallel computers includes
the well-known systems STARAN, DAP, MPP, and CM-2. The STAR-ma-
chine is an abstract model of the SIMD type. There have been a number of
algorithms [2–10] developed with this model.

While a great number of the STAR algorithms are being developed, their
implementation becomes an interesting problem. Because of the platform
STARAN is not accessible in todays computer lab settings, it is impossible
to truly evaluate the performance of a STAR algorithm with massive data
input. The system VisualStar has been developed to simulate the STAR-
machine [11]. It allows one to edit, to compile, and to implement procedures
written in the STAR language. The VisualStar is useful to develop and to
test algorithms, but not to calculate a a great body of data because of
sequential computation.

We look for a platform that is able to implement the STAR-machine so
as to run its algorithms in massively parallel model with high efficiency. An
ideal platform must have SIMD architecture and also be easily accessible.
There is no doubt that Nvidia GPUs are an excellent choice.



52 T.V. Snytnikova, A.V. Snytnikov

The main objective of using GPU is to accelerate intensive graphic data
processing. Later, with introduction of Nvidia CUDA (compute unified de-
vice architecture), a high-level programming interface, GPU was evolved to
be a powerful computing platform to support the general purpose parallel
computation. It has been used in numerous application fields for massively
parallel data processing [12]. The GPU is a typical SIMD architecture and
is especially good for fine-grained large amount data-intensive parallel com-
putation. Its features provide the possibility of implementing associative
parallel algorithms with easy accessibility and high scalability.

To implement a STAR algorithm on an architecture, we need to find
a way to execute each basic operation of the language STAR in the corre-
sponding running environment. In this paper, this is our contribution.

A similar work is performed for the other associative computing model
(MASC) [13].

This paper is organized as follows. The model of the STAR-machine
is described in Section 2. Section 3 presents the implementation steps for
each basis operation of the STAR-mashine on GPU. Section 4 gives the
performance analysis.

2. The STAR-machine model

The STAR-machine is a model of the SIMD type with vertical data process-
ing. It consists of the following components:

• a sequential control unit (CU), where programs and scalar constants
are stored;

• an associative processing unit consisting of p single-bit processing el-
ements (the PEs);

• a matrix memory for the associative processing unit.

The CU passes an instruction to all PEs in one unit of time. All active PEs
execute it in parallel, while inactive PEs do not perform it. Activation of
a PE depends on the data. It should be noted that the time of performing
any instruction does not depend on the number of processing elements [14].

To input binary data are loaded into the matrix memory in the form of
two-dimensional tables in which each datum occupies an individual row and
it is updated by a dedicated processing element. It is assumed that there
are a greater number of PEs than data. The rows are numbered from top
to bottom and the columns – from left to right. Both a row and a column
can be easily accessed. Some tables may be loaded into the matrix memory.

An associative processing unit is represented as h vertical registers
(h ≥ 4), each consisting of p bits. The vertical registers can be regarded
as a one-column array. The bit columns of the tabular data are stored in



Implementation of the STAR-machine on GPU 53

the registers which perform necessary Boolean operations and record the
search results. The STAR-machine run is described by means of the lan-
guage STAR [15] which is an extension of Pascal. Let us briefly consider
the STAR basis constructions. To simulate data processing in the matrix
memory, we use data types word, slice, and table. Constants for the types
slice and word are represented as a sequence of symbols of {0, 1} enclosed
within single quotation marks. The types slice and word are used for the
bit column access and the bit row access, respectively, and the type table
is used for defining the tabular data. Assume that any variable of the type
slice consists of p components which belong to {0, 1}. For simplicity, let us
call slice any variable of the type slice.

Now, we present some elementary operations and predicates for slices.
Let X, Y be variables of the type slice and i be a variable of the type

integer. We use the following operations:

SET(Y ) sets all the components of Y to ′1′;

CLR(Y ) sets all the components of Y to ′0′;

Y (i) selects the ith component of Y ;

FND(Y ) returns the ordinal number i of the first (or the uppermost) com-
ponent ′1′ of Y , i ≥ 0;

STEP(Y ) returns the same result as FND(Y ) and then resets the first com-
ponent ′1′ to ′0′.

In the usual way we introduce the predicates ZERO(Y ) and SOME(Y )
and the bitwise Boolean operations X and Y , X or Y , not Y , and X xor Y .

Let T be a variable of the type table. We employ the following two
operations:

ROW(i, T ) returns the ith row of the matrix T ;

COL(i, T ) returns the ith column of T .

Remark 1. All operations for the type slice can also be performed for the
type word.

Remark 2. Note that the STAR statements [2] are defined in the same
manner as for Pascal.

3. Associative operations on GPU

In this section, implementation steps for the basis operations of the STAR-
machine on the GPU platform are presented. First, the realization of data
types is described. Then each associative operation is discussed one by one
in regard of its implementation on GPU.



54 T.V. Snytnikova, A.V. Snytnikov

3.1. The types of data. As noted above, to simulate data processing in
the matrix memory, we use the data types word, slice, and table in the
STAR language.

The GPU uses a conventional way to store data (Random Access Mem-
ory). A data item is identified by its memory address. The CUDA C is
an extension of C language. Thus, to simulate the data types, we declare
classes of the same name. Class Slice is used to simulate the type word,
too.

class Slice{

// Host memory:

bool word_flag;

// h_v[N] is used for input/output of a slice

Unsigned long long int h_v[N];

// Device memory:

// *d_v stores the address of first element of the array

// of the size N

Unsigned long long int *d_v;

...}

Here N is equal to the length of slice divided into 64 (the size of long long int
type) rounded up. The array h_v[N] is used for input/output of a slice. It
is stored in the host memory, and the device pointer *d_v stores the address
of the first element of the array of the size N of unsigned long long in the
device global memory. All calculations are performed with the array d_v.

The class Table consists of the array of M objects of the class Slice and
some pointers.

class Table{

Slice table[M];

LongPointer *slice_device_pointer_table;

// Device memory:

LongPointer *d_table, *d_slice_device_pointer_table;

...}

The device pointer *d_table stores the address of the first element of
the array of M ×N size of unsigned long long in the device global memory.
The host pointer *slice_device_pointer_table and the device pointer
*d_slice_device_pointer_table store the address of the first element of
the array of N pointers to the columns of d_table.

3.2. The operations on a slice. The basis operations on the STAR type
slice are realized as methods of the class Slice with the same name. And
each method calls a global function, which performs the operation.



Implementation of the STAR-machine on GPU 55

The operation X and Y is implemented as

Slice Slice::operator & (const Slice & b)

{

and_long_values<<<N,1>>>(d_v, b.d_v);

return *this;

}

__global__ void and_long_values(unsigned long long int *d_v,

unsigned long long int *d_v1)

{

d_v[blockIdx.x] &= d_v1[blockIdx.x];

}

The operations SET(X), CLR(X) and the other bitwise Boolean opera-
tions are implemented in the same way. Then, performing these operations
takes a longer time by a constant, and does not depend on the slice length.

Now, let us discuss the implementation of the operation FND(X). It is
made in two stages:

• At the first stage, the array d_v[N] is reduced to one variable of the
type unsigned long long. It performs a call of the global procedure
find. At each level, it reduces the array X to the array new x, whose
size is 64 times smaller. Each non-zero element of X maps the bit ′1′

of the new x, and each zero element of X maps the bit ′0′.

• At the second stage, the global procedure first_backward computes
the result by expending up:

__global__ void first_backward(LongPointer *d_v,

int *d_first_non_zero, int level)

{

int f[LEVELS], iu;

unsigned long long int *dvl, u;

char lprt[100];

f[level+1] = 1;

while(level >= 0)

{

dvl = d_v[level];

int index = f[level+1] - 1;

u = dvl[index];

f[level] = __ffsll(u) + index * SIZE_OF_LONG_INT;

level--;



56 T.V. Snytnikova, A.V. Snytnikov

}

*d_first_non_zero = f[0];

}

Performing the operation FND(X) takes a longer time by the factor
O(logN) for a slice with the length of N . The operation STEP(X), the
predicates SOME(X) and ZERO(X) are performed in the same way.

3.3. The operators on the class Table. The operation COL(i, T ) is
performed by calling T.col(i):

Slice *col(int i) { return &(table[i-1]); }

It is used to access to columns both for reading and writing.
The ROW(i, T ) is implemented with two procedures. The procedure

SetRow(Slice *s, int i) is used to write the word s into the ith row
of the table. And the function Slice *Table::row(int i) returns the
pointer to the word, which matches with the ith row of the table. The
same algorithm is used in both cases:

• In each column, there is an element, which includes one bit of the row.
Thus, the following indices are computed: the element number and
the bit number. The indices are the same for all columns.

• Bits are read or written in parallel by columns. We have M (the size
of the table) variables tmp of the type unsigned long long int, in
which the kth bit is equal to the ith bit of the kth column, and the
other bits are equal to zero.

• To read the row, all bits are gathered into the word in the following
manner.

d_v[ni] = get_array(tmp,0,M)

| get_array(tmp,1,M)

...

| get_array(tmp,63,M)

Performing the operations COL(i, T ) and ROW(i, T ) takes a longer time by
a constant factor, but the COL(i, T ) is faster than the ROW(i, T ).

4. The performance analysis

Now let us consider the simulation of the Warshall associative parallel al-
gorithm. This algorithm was described and proven in [2]. The procedure
receives as input data an adjacency matrix of the graph with n vertices and
returns the path matrix for the transitive closure of the graph.



Implementation of the STAR-machine on GPU 57

proc WARSHALL(n: integer; var P: table);

/*Here n is the number of graph vertices.*/

var X: slice(P); v,w: word; i,k: integer;

begin for k:=1 to n do

begin

x := COL(k,P);

w := ROW(k,P);

while SOME(X) do

begin

i := STEP(X);

v := ROW(i,P);

v := v or w;

ROW(i,P) := v;

end;

end;

end;

It uses the following basic operations: or, SOME, COL (to read), ROW (to
read and to write), and STEP. It is sufficient to consider these operations,
because other operations are realized and run by the same way.

4.1. The basis operations runtime. To estimate the running time, the
Warshall algorithm is performed on the two graph examples: with 100 and
1000 vertices. The result of profiling is shown in the table.

The basic operation ROW(i, T ) is simulated by the procedures get_row
and set_row. The first of them runs a similar time, which does not depend
on the size of a row. The run time of the second procedure grows twice by
increasing the size of a row by a factor of 10.

The procedures find and first_backward perform the operation
FND(X) (one calls the procedure put after them to implement STEP(X)).
Their run time is similar because reducing the arrays is performed once for
the number of vertices smaller than 64× 64 = 4096. The number of reduc-

Profiling of the basic operations

Procedure
100 vertices 1000 vertices

Calls Time (ms) Avg (µs) Calls Time (s) Avg (µs)

get row 7587 141.95 18.71 524427 9.70 18.49
set row 7487 31.16 4.16 523870 5.98 11.23

find 15174 34.25 2.26 1048855 3.06 3.37
first backward 15174 51.23 3.38 1048855 3.54 3.37
put 7487 21.95 2.93 523868 1.54 2.94

or long value 7487 13.97 2.18 523870 1.01 1.93



58 T.V. Snytnikova, A.V. Snytnikov

tion operations and the number of vertices are related in the following way:
n reducing for the number of vertices in [64n, 64n+1].

The procedure put is used to implement the basic operations X(i) and
STEP(i). It runs in a constant time.

The procedure or_long_value performs the basic operation X or Y and
runs in parallel at a constant time. The other bitwise Boolean operations
are similarly situated.

The basic operation COL(i, T ) is performed by passing a pointer to the
column.

4.2. The data size. Now we consider the issues associated with the data
size.

If a graph with n vertices is represented as an adjacency matrix, then
we need 8(n(dn/64e+ 2) + 1) bytes to keep it. The correlation between the
size of the global memory and the number of graph vertices is shown on the
figure. Thus, we need ≈ 3.78 Gbyte of the global memory for a graph with
180K vertices.

The correlation between the number of
graph vertices and the size of the global
memory

If an unweighted graph with n
vertices and m edges is represented
as a list of edges and a list of nodes,
we need 2(8(log2 n · (dm/64e + 2) +
1))+8(log2 n ·(dn/64e+2)+1) bytes
to keep it. In this case, it is nec-
essary to have about 2.39 Mbyte to
keep a graph with 10K vertices and
10M edges. For example, the graph
of MemeTracker phrases and hyper-

links between 96 million blog posts from Aug 2008 to Apr 2009 [19] has 96M
vertices and 418M edges and needs about 2.63 Gbyte to keep in the global
memory. For example, Kepler K40 GPU accelerator has 12 Gbyte memory
and 2,880 thread processors.

4.3. Some optimization of the Warhall procedure. Note, that the
procedure WARSHALL can be changed to decrease the runtime in view of
the implementation. The procedure WARSHALL-1 receives input data as
transposed adjacency matrix of graph with n vertices.

proc WARSHALL-1(n:integer; var P: table);

/* Here n is the number of graph vertices.

P is transposed adjacency matrix. */

var X: word; v,w: Slice; i,k: integer;

begin for k:=1 to n do

begin

x := ROW(k,P);



Implementation of the STAR-machine on GPU 59

w := COL(k,P);

i := STEP(X);

while i>0 do

begin

v := COL(i,P);

v := v or w;

COL(i,P) := v;

i := STEP(X);

end;

end;

end;

5. Conclusion

In this paper, we have proposed the implementation of associative operations
of the STAR-machine on the GPU architecture. As is shown in Section 4,
most of these associative operations can be implemented on GPU with an
extra O(logN) efficiency loss in theory. However, as is shown in Section 5,
the associative operators are implemented with an efficiency close to con-
stant. This is due to the fact that software programmed steps on GPU can
be directly used to convert a STAR algorithm so as to be implemented on
the GPU-CUDA platform.

In the future, we are planing to implement of the library of basis and
auxiliary procedures from [2, 3]. And, perhaps, some blocks of the STAR
operators can be performed taking into account the differences between the
STAR-machine and GPU.

Our purpose is to extend the implementation to a technology, which
would allow one to use and to develop associative parallel algorithms.

References

[1] Potter J.L. Associative Computing: a Programming Paradigm for Massively
Parallel Computers / Kent State University. –– New York, London: Plenum
Press, 1992.

[2] Nepomniaschaya A.S. Solution of path problems using associative parallel pro-
cessors // Parallel and Distributed Systems.–– 1997. –– P. 610–617.

[3] Nepomniaschaya A.S., Dvoskina M.A. A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors // Fundamenta In-
formaticae. –– Amsterdam: IOS Press, 2000. –– Vol. 43. –– P. 227–243.

[4] Nepomniaschaya A.S. An associative version of the Bellman–Ford algorithm
for finding the shortest paths in directed graphs // Proc. 6th Int. Conf. PaCT-
2001.–– Springer, 2001. –– P. 285–292.–– (Lect. Notes in Comp. Sci.; 2127).



60 T.V. Snytnikova, A.V. Snytnikov

[5] Nepomniaschaya A.S. Efficient implementation of Edmonds’ algorithm for
finding optimum branchings on associative parallel processors // Proc. 8th
Int. Conf. on Parallel and Distributed Systems (ICPADS’01), KyongJu City,
Korea. –– IEEE Computer Society Press, 2001. –– P. 3–8.

[6] Nepomniaschaya A.S. Comparison of performing the Prim–Dijkstra algorithm
and the Kruskal algorithm by means of associative parallel processors // Cy-
bernetics and System Analysis. –– 2000.–– No. 2. –– P. 19–27 (In Russian).

[7] Nepomniaschaya A.S. Representation of the Gabow algorithm for finding
smallest spanning trees with a degree constraint on associative parallel pro-
cessors // Proc. Euro-Par’96 Parallel Processing. Second Int. Euro-Par Conf.
Lyon, France. –– Springer, 1996. –– P. 813–817. –– (Lect. Notes in Comp. Sci.;
1123).

[8] Nepomniaschaya A.S., Borets T.V. Associative parallel algorithm of checking
spanning trees for optimality // Bull. Novosibirsk Comp. Center. Ser. Com-
puter Science. –– Novosibirsk, 2002. –– Iss. 17. –– P. 75–88.

[9] Borets T.V. Associative parallel algorithm performing depth-first search //
Bull. Novosibirsk Comp. Center. Ser. Computer Science.––Novosibirsk, 2003.––
Iss. 19. –– P. 15–24.

[10] Borets T.V. An associative version of the Lengauer–Tarjan algorithm for find-
ing immediate dominators in a graph // Optoelectronics, Instrumentation and
Data Processing. –– 2003. –– No. 3. –– P. 21–28 (In Russian).

[11] Borets T.V. A programming system VisualStar // Proc. Conf. of Young Sci-
entists / G.A. Michailov, ed. –– Novosibirsk, 2004. –– P. 20–26.

[12] Park I., Signhal N., Lee M., et al. Design and performance evaluation of im-
age processing algorithms on GPUs // IEEE Transactions on Parallel and
Distributed Systems.–– January, 2011. –– Vol. 22, No. 1. –– P. 91–104.

[13] Jin M. Associative Operations from MASC to GPU // PDPTA’15–– 21st Int.
Conf. on Parallel and Distributed Processing Techniques and Applications. ––
2015.–– P. 388–393.

[14] Foster C.C. Content Addressable Parallel Processors. –– New York: Van Nos-
trand Reinhold Company, 1976.

[15] Nepomniaschaya A.S. Language STAR for associative and Parallel computa-
tion with vertical data processing // Proc. Int. Conf. “Parallel Computing
Technologies”. –– Singapure: World Scientific, 1991. –– P. 258–265.

[16] Kirk D.B., Hwu W.W. Programming Massively Parallel Processors.–– Morgan
Kaufmann Publishers, 2010.

[17] Harish P., Narayanan P.J. Accelerating large graph algorithms on the GPU
using CUDA // IEEE High Performance Computing. –– 2007. –– P. 197–208.

[18] Nvidia CUDA.–– http://www.nvidia.com/cuda/.

[19] Stanford Large Network Dataset Collection. –– https://snap.stanford.edu/
data/.


